RWTH Aachen
University
Institute for Communication
Systems and Data Processing
Skip to content
Direkt zur Navigation
Home
Home

Publications – Details

Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics

Author:
Rainer Martin
Journal:
IEEE Transactions on Speech and Audio Processing
Volume:
9
Number:
5
Date:
July 2001
Pages:
504–512
Language:
English

Abstract

We describe a method to estimate the power spectral density of nonstationary noise when a noisy speech signal is given. The method can be combined with any speech enhancement algorithm which requires a noise power spectral density estimate. In contrast to other methods, our approach does not use a voice activity detector. Instead it tracks spectral minima in each frequency band without any distinction between speech activity and speech pause. By minimizing a conditional mean square estimation error criterion in each time step we derive the optimal smoothing parameter for recursive smoothing of the power spectral density of the noisy speech signal. Based on the optimally smoothed power spectral density estimate and the analysis of the statistics of spectral minima an unbiased noise estimator is developed. The estimator is well suited for real time implementations. Furthermore, to improve the performance in nonstationary noise we introduce a method to speed up the tracking of the spectral minima. Finally, we evaluate the proposed method in the context of speech enhancement and low bit rate speech coding with various noise types.

Download of Publication

Copyright Notice

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

The following notice applies to all IEEE publications:
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

File

martin01c.pdf 209 K