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ABSTRACT 

This contribution deals with a robust decoding approach of source 
codec parameters called Softbit-Source Decoding. It can be con- 
sidered as an error concealment technique which estimates codec 
parameters at the receiver utilizing residual redundancy remaining 
after source coding and channel decoder reliability information. 

In this paper we will apply the TURBO-principle to Softbit- 
Source Decoding. We derive a formula that shows how different 
terms of residual redundancy can be transformed into independent 
extrinsic information utilizable in iterative processes. After intro- 
ducing a new, iterative approach to Softbit-Source Decoding, we 
will analyze the influences of different bit mappings and of the 
number of iterations. Finally, the new approach will be compared 
to conventional techniques with respect to performance and com- 
plexi ty. 

1. INTRODUCTION 
Transmission bandwidth is a limited resource in digital mobile 

communication. Therefore, low to medium bit rate source en- 
coders based on models are used. Characteristic parameters are 
extracted from the signal, b t  unfortunately they are partly highly 
sensitive against transmission errors. Some bit errors in the re- 
ceived parameters can result in extremely annoying artifacts. 

In general, source codecs reduce redundancy, but due to delay 
and complexity constraints source parameters can exhibit consid- 
erable redundancy, either in terms of a non-uniform distribution 
or in terms of correlation, i.e., auto-correlation in time and cross- 
correlation between adjacent parameters. Measurements of the sta- 
tistical properties of frame-oriented compression algorithms have 
shown that, for example, subsets of line-spectrum frequencies de- 
termined in modem speech codecs as the GSM-AMR codec (adap- 
tive multi-rate) or scale factors of audio transform codecs like 
in digital audio broadcasting (DAB) exhibit significant auto- and 
cross-correlation. As already indicated by Shannon this residual 
redundancy can be exploited at the receiver to enhance the dis- 
turbed signal. 

Recently, we have proposed an approach to error concealment 
by Softbit-Source Decoding [ 1,2]. Reliability information gained 
from a soft-output channel decoder is combined with a-priori 
knowledge about statistical properties of the source to estimate 
the codec parameters. But an optimal utilization of all given terms 
of residual redundancy [3] requires high computational efforts. 

The performance bounds might already be reached with less 
complexity by a suboptimal iterative approach. Iterative algo- 
rithms are known from the so-called TURBO technique originally 
introduced to channel decoding [4,5] and recently applied to 
joint source-channel decoding [6,7]. Two independent channel 
decoders are able to benefit from each other when extrinsic in- 

formation extracted from the one decoder serves iis additional 
a-priori knowledge in the other decoder. 

In this paper we adopt the TURBO-principle to Softbit-Source 
Decoding. Therefore, both techniques will be briefly reviewed 
first. In Se1;tion 3 we will introduce the new approach and after- 
wards, in Swtions 4 and 5, we will analyze the performance of the 
iterative procedure and compare it with conventional techniques. 

2. SOFTBIT-SOURCE DECODING AND THE 
TURBO-PRINCIPLE 

For further considerations the transmission model depicted in 
Figure 1 is assumed [7]. 

I-- i n  -1 7 Quant. & Z T , , ~  Parameter 
In. Assign. Estimation 

Figure 1 : Transmission model 

At time 'instant T ,  a source encoder determines a set of N 
parameters U,.,,, with n = 1 , 2 , .  . . , N denoting the position 
within the set. Each value 'LL~,,, which is continuous in mag- 
nitude but discrete in time, is individually quantized by R, 
reproduction levels iit) with z = 1 , 2 , .  . . R,. The reproduction 
levels are iiivariant with respect to T and a whole set is given by 
U n -  - {CL'), iii2), . . . , iiiRcR")}. To each iit) a unique bit pattern 
x, = {z,(X))"' with k[1, w,] is assigned where the length w, 
of x, is usuallygiven by w K  = logz(R,). Correspording to a set 
of quantizer reproduction levels U,, the complete set of possible 
bit patterns is given by X,. The bit pattern assigned to uT,,, i.e. 
Tit7), is denoted by x,.,,, i.e. uT,, -+ x~,,. In order to simplify 
notation throughout this paper, time sequences of parameters are 
denoted by XI,, = x ~ , ~  xT-  I,, . . . XI ,,. 

At time instant T, a set of bit patterns x r , ,  is transmitted over a 
channel wi1.h additive noise n and a possibly disturbzd bit vector 
zr,, is received. 

2.1. Review of Softbit-Source Decoding 
Softbit-Source Decoding (SBSD) by parameter estimation de- 
termines ari estimate &,, of ur,,. Usually, the minimum mean 
squared error (MMSE) is used as optimality criterion individually 
for each parameter E{ (uT,, -GT,,)')). E{ . )  denotes the expected 
value. With regard to the introduced notations the well known 
MMSE estimation rule can be written as 

h T , K  = G!) ' P ( ~ ~ ' l z ~ , N . .  .zT,, . . . Z ' [ , l )  . (1) 
u y ' e u ,  

F'(ii~)l~~,~ . . . ) is the a-posteriori probability for reproduction 
level ii:) at position K. when the complete set of entire history 
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zl,, with K = 1 , 2 , .  . . N is given. Due to the fixed index assign- 
ment, iitT) -+ x,,,, P ( E ~ ) I z ; , ~  . . . ) is equal to the i th of R, 
possible conditional probabilities P(x,,,(z;,N . . . ). Hence, the 
problem of estimating the optimal parameter value &,, can be re- 
duced to the problem of determining the a-posteriori probabilities 
P(xr,,Iz;,N . . . ). 

Recently, several solutions for the determination of P ( x , , , ( z ; , ~  . . . ) 
have been introduced, exploiting different terms of redundancy [l- 
31. If, for example, the non-uniform distribution P(iip)), P(x, , , )  
respectively, of the desired parameter and no correlation shall 
be utilized, P(x,,,Iz;,~ . . . ) can easily be determined using 
Bayes’ theorem Vx,,,eX, 

P(x,,nlzr,n) = C .p(z,,nlxT,n) . P(xT.,,) . (2)  

C denotes a constant term which ensures that the sum over 
a-posteriori probabilities Cx7,,eX, P(x, , ,  Iz,,,) at position K 

equals one. The probability density function p(z, , , lx, , ,)  is a 
channel-dependent term for x,,,, and the last factor in Eq. (2) 
represents a-priori knowledge resulting from the non-uniform 
distribution. Note that thereby, the a-posteriori probabilities 
P ( X , , , ] Z ; , ~  . . . )  are reduced to P(x,,,~z,,,), because only the 
received bit pattern z,,, at time instant 7 of the desired parameter 

If on the basis of a first-order Markov model time-correlation 
between consecutive parameter indizes x,-l,, and x,,, shall be 
utilized, then parameter a-priori knowledge has to be considered 
in form of transition probabilities P(xT,,lxT-l,n) [2 ] .  This form 
enables to approximate the parameter a-posteriori probabilities 
P(x,,,~z;,~ . . .)  by P(x,,,Iz~,,), as the entire history of the 
desired parameter will be considered. However, in this simpli- 
fied estimation rule most of the given parameters . . . z;,~ 
are still unused as K. is fixed, i.e, the cross-correlation between pa- 
rameters is not considered. Therefore, some performance might 
be lost. In order to exploit all available information, correlation 
properties between adjacent parameter indizes xT,,-l and xr,, 
have to be utilized, too. The optimal solution was derived in [3], 
but the computational complexity needed for the determination of 
all P ( X , , , ~ Z ; , ~  . . . z;,~) is extremely high. Hence, to cope with 
possibly given complexity constraints we will propose a new low 
complexity determination rule for P ( x , , , I z ; , N  . . . ) considering 
all given parameters z ; , ~ ,  . . . z;,~. This rule will be derived from 
the TURBO-principle. 

2.2. Review of the TURBO-Principle 
The TURBO-principle is originally known as a decoding tech- 
nique for concatenated channel codes [4,5]. The so called ex- 
trinsic information can be extracted from the soft-output of the 
one decoder and serve as additional a-priori knowledge for the 
other decoder. While decoding the independent processes itera- 
tively, an update of the extrinsic information after each iteration 
allows to successively increase quality, e.g., in terms of decreasing 
bit error rates. In contrast to conventional decoding techniques, 
the TURBO-principle permits to approach Shannon’s performance 
bounds quite close with reasonable computational complexity. 

The extrinsic information is the key parameter in an iterative de- 
coding process. In special cases i t  can be extracted from the de- 
coder’s soft-output as the following simple example for binary data 
should clarify: 

If the bit pattern x,,, is channel encoded with an even sin- 
gle parity check code, the parity bit q,,, is generated by 
q,,, = { ~ , , ( l )  Fd 2,,,(2) @ . . . z,,,(w,)}. ‘3 denotes the 
binary exclusive-or operation. From this follows immediately that 

has been taken into account. 2L(,17) 

each information bit z,,,(m) can also be determined from the 
parity bit q,,, and all the other information bits of x,,& 

(3) 
zT,,(m) = { z T , K ( l )  . . zT,,(m - 1) @ 

zT,,(m + 1) @ . . . ZT.K(wK) @ qT,tC} . 

Thereby, information for bit z,,, (m)  is available twice, directly 
and indirectly according to Eq. (3), which is a special form of di- 
versity. At the receiver side of a (possibly noisy) transmission sys- 
tem this redundancy allows to enhance the a-posteriori probabili- 
ties for bit z,,,(m). These probabilities are not only conditioned 
on z,,,(m), but also on all the other bits of z,,, as well as the 
received value &,, for bit q,,,. Neglecting bit correlation, the a-  
posteriori probability is given by P(zT,,(m))zT,,, Q,,,), which 
can easily be re-written as 

p(~~,tc(m)lzT,K, Qr,n) = C ’ Z J ( Z T , ~ ~ ( ~ ) I ~ T , K ( ~ ) )  . 
(4) 

p(zT,n(m)) ’ P ( { z T , ~ ( x ) I I & ,  qr,, IzT,K(m)) 

when a memoryless channel is assumed. Again, C denotes 
a constant term which ensures that the sum of a-posteriori 
probabilities P(zr,n(m)lzr,n, &,,) equals one. In addition 
to the channel related term p(z,,,(m)Iz,,,(m)) and the a- 
priori term P(z,,, (m)) ,  there exists an extrinsic knowledge 
p ( { ~ T , , ( ~ ) } ~ ~ m , ~ T , , l ~ , , K ( m ) )  for bit x,,,(m). This term re- 
sults from the special diversity according to Eq. (3) and therefore 
diversity is required to enable iterative processes. 

3. ITERATIVE SOFTBIT-SOURCE DECODING 
In the transmission model depicted in Fig. 1, sets of correlated 

and scalar-quantized parameters i i k )  -+ x,,, have been assumed. 
In contrast to the explanations in Subsec. 2.2, diversity for single 
bits z,,,(m) has not been introduced in terms of explicit redun- 
dancy, such as parity bits, but implicit redundancy is available due 
to the statistical properties of the source codec parameters. A non- 
uniform parameter distribution or correlation properties can be in- 
terpreted as diversity for single bits z,,,(m) as well. Hence, an 
extrinsic value for single bits x,,,(m) might be available when- 
ever parameter a-posteriori probabilities P ( X , , , ~ Z ~ ,  . . . ) are de- 
termined using Softbit-Source Decoding (SBSD). 

Therefore, we will quantify the extrinsic value(s) of SBSD next. 
This will be done for a single kind of redundancy at first, e.g., ac- 
cording to Eq. (2) for the probabilities of occurrence P(x,,,) [7]. 
Afterwards the extrinsic values due to the auto-correlation and 
cross-correlation properties will be considered, too. 

3.1. The extrinsic value due to a non-uniform distribution 
Softbit-Source Decoding mainly depends on the determination of 
a-posteriori probabilities P ( X , , , \ Z ; , ~  . . . )  for bit patterns x,,,. 
In order to quantify the gain due to Softbit-Source Decoding for 
single bits z,,,(m), the probabilities P ( z , , , ( m ) l ~ ; , ~  . . . )  with 
m = 1 , 2 ,  . . . w, can easily be obtained by 

p(z,,,(m)lz;,N . . . ) = C p(xr,nlz;,N . . . ) ,  ( 5 )  
V ( X T , %  Izr.x(m)) 

i.e., the marginal distribution of parameter a-posteriori probabili- 
ties has to be determined over all x,,,EX, with a given z,,,(m). 

If a non-uniform distribution serves as parameter a-priori knowl- 
edge only, i.e correlation properties between consecutive or adja- 
cent parameters are neglected, then parameter a-posteriori proba- 
bilities are given by Eq. (2). Hence, Eq. (5) can be re-written as 

P(z,,,(m)lzT,,) = C ’ p(z,,nlxr,,)P(xT,,). ( 6 )  
V(XT,< b T , # C ( r n ) )  
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Figure 2: a.) Illustration of the conditions on combination b.) Iterative decoding approach using three steps per iteration 

In case of a memoryless transmission the channel dependent pa- 
rameter terrnp(z,,, l ~ ~ , ~ )  is given by a product of terms for single 
bits 

P(zr,K(m)lzT,K) = c ' w x  

P ( X T + )  J-J P ( z r , f i ( w r , K ( ~ ) ) ~  (7) 
V ( x , , x l 2 r , c ( m ) )  X=1 

Furthermore, the a-priori information of parameter xr,, is a joint 
probability P ( x , , ~  = {zT ,K(X) }vx )  of single bits X,,~(X) with 
X = 1 , 2 , .  . . w,. Applying the chain rule allows to extract the 
probability for P(zT, , (m))  

p ( x , , K )  = P ( { z T , , ( X ) } ~ : m I z T , K ( m ) )  . P ( z T , K ( m ) ) .  (8) 
As the sum of Eq. (7) has to be determined for any fixed combi- 
nation r, K and m, the bitwise a-priori knowledge P(z,,,(m)) as 
well as the channel dependent term p(~, , , (m)lz , ,~(m))  are con- 
stant. Hence, both can be factored 

p(zT,K(m)[zT,K) = c ' p(zT,K(m)lzT,K(m)) ' P ( z T , K ( m ) )  ' 

The bitwise a-posteriori knowlgme of Softbit-Source Decoding 
can be separated into three product terms: a channel dependent 
term, an a-priori term and an extrinsic value for bit zr,,(m). The 
extrinsic value resulting from Softbit-Source Decoding consists of 
channel information as well as joint a-priori knowledge for the 
bits x,+ representing parameter U,,, excluding bit z,,,(m) it- 
self'. A comparison of Eq. (9) and Eq. (4) yields that the implicit 
redundancy utilized by Softbit-Source Decoding might act like the 
explicit redundancy given in terms of parity bits. 

3.2. The extrinsic values due to correlation properties 
In the previous basic considerations the Markov properties in 
time P(X~, , (X, -I ,~)  and position P ( X , , , ~ X ~ , ~ - I )  have been 
neglected. Thereby, the a-posteriori probability of the desired bit 
z,,,(m) (see Eq. ( 5 ) )  has been reduced to P ( ~ , , ~ ( m ) l z ~ , ~ ) .  In 
order to improve quality, all received values z;,,, . . . Z T , ~  have to 
be taken into account. In this case the optimal solution will be 
obtained when the marginal distribution of P ( x ; , ~  . . . I z ; , ~  . . . ) 
is determined over all XI,,, . . . ~ f , ~  given the desired bit z,,,(m) 

P(zT,K(m)lzT,N . . . z;,1) = 

E.. .x...c P ( x ; , N . .  .x;,llz;,N.. . z ; , l ) .  (10) 
v / ( x ; , N .  ..x;,l lzr ,= (n)) 

Of course, this formal solution is by far too complex. Each bit- 
wise a-posteriori probability P(z,,,(m)lz;,, ,  . . . )  is a function 

'Note, in order to simplify notation P({~~,,(X)}~Xf~lz,,,(m)) is 
re-written as P ( x , , , ) / P ( ~ ~ , ~ ( r n ) )  (see Eq. (8)). 

of three indizes: the time instant r ,  the position within a set of pa- 
rameters K ,  and the bit position m. Therefore, to reduce complex- 
ity we consider (with respect to extrinsic information) only such 
values z + + ( f i )  which fulfill the following conditioris on combi- 
nation for 7., R ,  61 

m =: m, R = K ,  and?  = r - T + 1,r -T  + 2 , .  . . r  

? = r , m = m , a n d R = 1 , 2  ,... N 

.?- = r ,  R = K ,  and m = 1 , 2 , .  . . W, 

Figure 2 a.) illustrates these conditions. In the resulting 3- 
dimensional space every partition represents a single bit. If 
z,,,(m) is the desired bit (marked dark grey), then only such re- 
ceived bits will be considered, which are in one line with z,,,(m) 
in any of the three dimensions (medium grey). Furthermore, in 
the time dimension the entire history is limited to the latest T time 
instants. Hence, taking the previous constraints into account and 
using Bayes' theorem, Eq. (10) can be reduced to 

P ( z , , , ( , ~ ) l { z + , i ( m ) } v ( + , E , ~ ) )  = c .  
v ( { Z + , ~ ( ~ ) } v ( + , ~ , ~ ) l Z ~ , = ( m ) )  

p (  { Z i  ,i ( m ) l z + , i ( m ) } v ( i , E , ~ ) )  ' P({Zi,i,  ( f i ) } V ( + , k * f i ) )  

Applying the chain rule to the last term and assuming indepen- 
dence of the different directions 7, K and m, allow!; to factorize 
the a-priori knowledge, 

( I  I )  P ( { z - , -  T K  ( m - )}v(-+)) "N P({zi,K(m)}g;rIzT,,(m)) ' 

p( {z , r ,E (m)}X$K I z T , K  (m))  ~ ( { z r , ,  ( i iz)}"").  
If in addition a memoryless transmission channel is ccinsidered, the 
determination rule given in Eq. (10) can be re-written according to 
Eqs. (7)-(9) as 

P(zT,K(m)lZ; ,N . . . ) c 'p(zT,K(m)lzT,K(m)) ' p ( z T , K ( m ) )  ' 

T -  1 

' P ( { z i , K ( m ) } g ~ ~ I Z r , , ( m ) )  n p ( z ~ , ~ ~ ( m ) l z ~ ~ ~ ( m ) )  
V ( { ~ + , = ( m : l } ~ '  I Z r , = ( m ) )  X=T-T+1 

N 

' P({zTIR(m)}~nfnlzr,n(m)) n P(ZT ,x (m) l zT ,x (m) )  
X = l  

V ( { . r , i  ( m ) } V i  1Zr . r  (n)) A#.. 

The a-posteriori knowledge for bit z,,,(m) is enhanced by three 
independent extrinsic terms. The last line in Eq. (12) is known 
from Eq. (!)) as extrinsic value due to the non-uniform distribution. 
The center two lines implicitly contain the extrinsic information 
due to the correlation properties (see Subsec. 5.1). Both terms 
combine channel information as well as a-priori knowledge for 
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the bits which are arranged in one line with z,,,(m) either in time 
T or in position n. 

3.3. Utilizing the extrinsic values iteratively 
Due to the independent extrinsic values an iterative evaluation of 
Eq. (12) might be possible. Figure 2 b.) illustrates an example so- 
lution of the determination of z,,,(m). In the 1st step the first 2 
lines of Eq. (12) are considered only and extrinsic information for 
z,,,(m) is calculated for all m = 1, . . . tu, with n = 1,. . . N .  
Afterwards, in the 2nd step, the extrinsic value given in the 3rd 
line of Eq. (12) has to be determined, where the extrinsic value 
of the 1st step is enclosed as additional a-priori knowledge. The 
dashed arrows represent the enclosed information. In the 3rd step 
the extrinsic information due to the non-uniform distribution is 
calculated, while the results of the 1st and 2nd step serve as ad- 
ditional a-priori knowledge. After the 3rd step all received values 

. . . z:-T+l,l have once been taken into account, either 
directly (solid arrows) or indirectly (dashed arrows). The first it- 
eration is finished and a second iteration might start where the 1st 
step uses the extrinsic information of the 2nd and 3rd step as addi- 
tional a-priori knowledge. 

4. SIMULATION RESULTS 
For simulations the source model proposed in [3] is used. This 

model allows to adjust parameter correlation properties in time T 

by the auto correlation factor p and in position n by the cross cor- 
relation factor 6. In our simulations we set N = 5 .  The param- 
eters U,,, are quantized by a 32-level Lloyd-Max quantizer using 
5 bits, i.e., R, = R = 32Vn. The bit patterns x,,, are assigned 
according to the natural binary bit mapping. The time span T used 
in the decoder is limited to T = 5 .  As transmission channel serves 
an AWGN channel with known Eb/No. 

4.1. Improvements due to the iterative approach 
Fig. 3 depicts the parameter signal-to-noise ratio (SNR) as a func- 
tion of Eb/No for simulations with p = 0.95 and 6 = 0.8. Such 
auto and cross correlation factors can be found for scale factors de- 
termined in audio transform codecs as, for example, in the MPEG 
audio codec for digital audio broadcasting (DAB). 

Figure 3: Simulation results 

The curve labelled 0th iteration shows the obtained simulation 
result if none of the extrinsic terms of Eq. (12) is utilized. A 
stepwise addition of extrinsic information according to Fig. 2 b.) 
allows to increase the parameter SNR by up to 4.77 dB. Further- 
more, in case of low channel qualities the reference system defined 
by Eq. (12) (see Fig. 2 a.)) can be slightly outperformed. The rea- 
son is that due to the iterative solution all partitions of the cube 

have been considered once, directly or indirectly. On the other 
hand, the reference exploits only such partitions which are in one 
direct line with the desired partition. 

4.2. Different numbers of iterations 
Usually, more than one iteration does not improve quality any fur- 
ther. It is a known fact [5] that in the first iteration the different ex- 
trinsic information can be considered as statistically independent. 
But afterwards, the iterations will use the same information indi- 
rectly and therefore they will become more and more correlated. 
This has a major impact on the parameter a-priori knowledge. 

As Softbit-Source Decoding (SBSD) is a parameter estimation 
technique, a precise a-priori knowledge is very important. In or- 
der to separate a bitwise a-priori knowledge independently for the 
three dimensions T ,  K and m, in the derivation of Eq. (12) the over- 
all a-priori information for bit z,,,(m) has been approximated 
according to Eq. ( 1  I). 

Of course, due to the assumed independence of the different di- 
rections some information might be lost. However, usually we 
cannot benefit from the new dependencies introduced by higher 
numbers of iterations, especially as these are based on channel re- 
lated terms. Therefore, sometimes i t  might happen that quality will 
slightly be increased by a larger number of iterations, but in most 
cases the overall a-priori knowledge gets more imprecise. Hence, 
the performance of SBSD by parameter estimation will decrease. 

5. COMPARISON WITH CONVENTIONAL 

Finally, the iterative approach to SBSD shall be compared with 
the conventional technique. The main difference between both 
methods is the utilization of the correlation properties. The con- 
ventional approach exploits the correlation properties explicitly 
in terms of parameter transition probabilities for consecutive 
indizes 7, i.e., P(X,,,~X~-~,~), or for adjacent indizes n, i.e., 
P(xT,,lxs,,-l). The new iterative approach does it implicitly. 

5.1. Impact of the implicit utilization of correlation properties 
The implicit utilization of correlation properties might result in 
significant quality degradations. In order to simplify the analysis 
of the performance loss we restrict the following basic consider- 
ations to bit patterns xs-l,, and xs,, of consecutive parame:ers. 
X s - l , n  xT,, It is easy to prove that in the introduced itera- 
\ / tive aooroach the oarameter transition orobabil- 

SOFTBIT-SOURCE DECODING 

.. 
ity P(x, , , lx , - l+)  is approximated by transi- 
tion probabilities on bit level 

(13) 

Note that in the estimation rule 

l'(z,,,(A)~z,-~,,(A)) are implied in the 
~(~,,,l~,-~,,) given by Eq. (12) the probabilities 

probabilities P({zi,,(m)}JS,I~r,n(m)). The impact of the 
approximation is illustrated in Fig. 4, where the settings of 
the experiment described in Sec. 4 are reused. The curve la- 
belled original shows the true parameter transition probability 
P(x,.,nlx,-l,,) for the example situation where x,-l,, repre- 
sents the 15th quantizer reproduction level. If bit patterns are 
assigned according to the natural binary bit mapping the approxi- 
mation given in Eq. (13) yields the dashed curve. Unnatural hops 
arise. I! particular, in the given example situation the approxi- 
mation P(x,,, = 100001x,-~,, = 01111), i.e., x,,, represents 
i = 16 given that xs-l,, represents 15, is untruly very small. The 

~ ( z r , ,  (A) Izr- 1,n (A)). 
X=l ...m El3 
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higher the Hamming distance between xr+ and x , - I +  is, the 
more unlikely is F(X~,~~X~-I,~). 

0 “‘I 16 n 
h 

5 10 15 20 25 30 

index i 
Figure 4: Different approximations of P ( X ~ + ~ X ~ - I , ~ )  

Therefore, an index assignment according to the Gray mapping’ 
seems to be more suitable, because bit patterns of neighbouring 
indizes i always possess the Hamming distance d = 1. 

5.2. Simulation result 
To demonstrate the performance of both approximations, either 
with natural binary or with Gray mapping, they are compared with 
the optimal parameter estimator proposed in [ 3 ] .  The optimal solu- 
tion (PARAM-OPT) explicitly exploits a-priori knowledge due to a 
non-uniform distribution, correlation properties in time according 
to P ( x r , n J x r - l , K )  as well as cross-correlation properties accord- 
ing to P ( x ~ , ~ ~ x , , ~ - ~ ) .  The settings of Sec. 4 are reused for this 
simulation. 

- 

5 PARAM-OPT 

-10 -5 0 5 10 

-%/No [dBl 
Figure 5: Simulation results 

Fig. 5 depicts the simulation results. In general, the iterative 
solution is outperformed by the optimal parameter estimator be- 
cause of the imprecise approximation of a-priori knowledge given 
in Eq. (13). Furthermore, in all simulations with Gray mapping, 
transmission errors result in minor quality degradation due to the 
short Hamming distance of neighboured symbols. The gain due to 
Gray mapping is highest for the iterative Softbit-Source Decoder, 
because, as described in the previous subsection, the mapping can 
also be exploited to approximate the parameter a-priori knowledge 
more precisely. In contrast to the solution without any extrinsic 
knowledge (0th irerafion) significant improvements are obtainable 
with only 1 iteration. 

2zc[0, 1 . . ,311 is mapped into^ic[20,21,23,22,18,19,17,16,0,1,3,  
2 ,6 ,7 ,5 ,4 ,12 ,13 ,15 ,14 ,10 ,11 ,9 ,8 ,24 ,25 ,27 ,26 ,30 ,31 ,29 ,28 ]  

5.3. Rough estimates of the computational complexity 
In addition to the simulation results the optimal solution [3] and 
the iterative approach to Softbit-Source Decoding shall be com- 
pared with respect to their computational efforts. In the following 
some rough estimates will be performed. In order to simplify the 
consideratians we assume that the number of paramel.ers within a 
set N is equal to the time span T as well as the number of bits 
zv = wn per- parameter with I(. = 1. . . N, i.e., N = T’ = w. 

The optimal solution [3] exploits Markov properties in time 
(P(xr,Klxs-- l ,n))  and position ( P ( x ~ , ~ ~ x ~ , ~ - ~ ) ) .  Yence, each 
xr+ has 2” possible predecessors ~ ~ - 1 , ~  and 2“ po:;sible neigh- 
bours x ~ , ~ . -  1 and therefore the determination of 2“ possible 
xr+  at a fixed time instant T and position K. requires at least 
arithmetical operations of the order O(23”). Data mcmory of the 
same order is necessary to store the parameter a-prior; knowledge. 

The computational efforts of the iterative approach can be esti- 
mated corresponding to Fig. 2 b.). In the 1st step operations of the 
order O ( N , W ~ ~ )  are necessary, in the 2nd step operations of the 
order O(W:!~) and in the 3rd step operations of the corder O(2”). 
In total this results in arithmetical operations as well 21s data mem- 
ory of the order 0 ( w 2 2 ” )  to determine 2” possible xr+. 

Hence, the iterative approach allows significant complexity re- 
ductions if w > 2, i.e. O(w22”) << O(23w).  Note that a re-usage 
of intermediate results can lower complexity demandas further. 

6. CONCLUSION 
In this paper, we applied the TURBO-principle to Softbit-Source 

Decoding. .As a novelty, we introduced an approach which utilizes 
different teims of residual redundancy iteratively. The derived for- 
mula show,$ how, in particular, to exploit correlation properties. 
Their imphcit utilization allows to reduce complexity demands 
significant1.y. Simultaneously, quality decreases due to a loss in pa- 
rameter a-priori information. A suitable approximation has been 
found in terms of a Gray mapping. Furthermore, we explained 
why more than 1 iteration does usually not increase performance. 
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