
IEEE ICASSP, May 2011, Prague, Czech Republic, DOI: 10.1109/ICASSP.2011.5946446 1 / 4

PERFECT-SWEEP NLMS FOR TIME-VARIANT ACOUSTIC SYSTEM IDENTIFICATION

C. Antweiler, A. Telle, P. Vary

Institute of Communication Systems
and Data Processing, RWTH Aachen University,

52056 Aachen, Germany
antweiler@ind.rwth-aachen.de

G. Enzner

Institute of Communication Acoustics
Ruhr-University Bochum,
44780 Bochum, Germany

gerald.enzner@rub.de

ABSTRACT

Fast and robust acoustic system identification is still a research

topic of interest, because of the typically time-variant nature of

acoustic systems and the natural performance limitation of elec-

troacoustic measurement equipment. In this paper, we propose

NLMS-type adaptive identification with perfect-sweep excitation.

The perfect-sweep is derived from the more general class of perfect

sequences and, thus, it inherits periodicity and especially the desired

decorrelation property known from perfect sequences. Moreover,

the perfect-sweep shows the desirable characteristics of swept sine

signals regarding the immunity against non-linear loudspeaker dis-

tortions. On this basis, we first demonstrate the fast tracking ability

of the perfect-sweep NLMS algorithm via computer generated simu-

lation of a time-variant acoustic system. Then, the robustness of the

perfect-sweep NLMS algorithm against non-linear characteristics

of real measurements in a time-invariant case is presented. By fi-

nally addressing the measurement of quasi-continuous head-related

impulse responses, we face the combined challenge of time-variant

and possibly non-linear distorted acoustic system identification in a

real application scenario and we can demonstrate the superiority of

the perfect-sweep NLMS algorithm.

Index Terms— Adaptive filters, system identification, perfect

sequences, acoustics, head-related transfer functions

1. INTRODUCTION

The problem of tracking a time-variant acoustic transmission path

arises in many application areas. One approach relies on an NLMS-

type (normalized least mean square) adaptive filtering algorithm in

combination with its optimal excitation signal, i.e., a perfect se-

quence (PSEQ) [1, 2], enabling maximum convergence speed. It

rests upon the assumption that the changes of the acoustic system

under test are slow in comparison to the time available for its iden-

tification. In this context, besides the rapid convergence speed, an

appropriate choice of system parameters is essential. Owing to its

simplicity and beneficial properties we used this technique to track

time-variant systems in diverse applications [3, 4, 5, 6].

It is well understood that the choice of the excitation signal takes

immense influence on the performance of the adaptation process. To

achieve a sufficiently high signal-to-noise ratio (SNR), the excitation

signal must have a high energy uniformly spread over the frequency

range of interest. Furthermore, in practice, besides a certain amount

of noise, there are typically also distortions due to loudspeaker non-

linearities, non-ideal converters, amplifiers, etc., and this restricts the

power of the excitation signal [7]. To reduce this limitation in acous-

tics, sweep signals, avoiding non-linear distortions to a large extent,

have been established for a wide range of measurement tasks, e.g.,

[8, 9]. In this paper, we propose NLMS-type adaptive identifica-

tion with perfect-sweep excitation – in this context a new excitation

signal which enables a rapid convergence speed combined with a

certain robustness against non-linear loudspeaker distortion.

The basic measurement setup and the corresponding tracking al-

gorithm are presented in Sec. 2. In Sec. 3 the common characteristics

of perfect sequences (PSEQs) are introduced. We motivate the use

of the new subclass of PSEQs, the perfect-sweeps and show how to

construct them. In Sec. 4 the advantages of a perfect-sweep exci-

tation are demonstrated with computer-generated data and more re-

alistic with data from acoustic measurements. Furthermore, we are

dealing with an actual application, the acquisition of head-related

impulse responses (HRIRs), where high-fidelity measurement of the

binaural transmission paths is desired. An interesting approach for

spatially continuous acquisition was presented in [5, 6], relying on

dynamical identification of the HRIRs with a rotating dummy head

and the use of adaptive filters. In this approach, we therefore require

both fast and robust adjustment of the filter coefficients. In Sec. 5 we

will demonstrate to which extent perfect-sweeps meet these require-

ments.

2. TIME-VARIANT SYSTEM IDENTIFICATION

The discrete time model in Fig. 1 depicts a system for the identi-

fication of an unknown time-variant acoustic transmission path by

means of an adaptive filter. The recorded signal y(k) at time instant

k can be expressed as

y(k) = g
T (k)x(k) + n(k)

with the real-valued excitation vector

x(k) = (x(k), x(k − 1), . . . , x(k −N + 1))T , (1)

the vector representation of the time-varying acoustic system,

g(k) = (g0(k), g1(k), . . . , g(N−1)(k))
T ,

and the observation noise n(k) at the microphone.
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Fig. 1. Discrete time model for the NLMS-based identification
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The system identification method relies on the normalized least

mean-square (NLMS) algorithm which is a linear adaptive filtering

algorithm that consists of an adaptive process performing the adjust-

ment of the filter taps, i.e.,

h(k + 1) = h(k) + µ0
e(k)x(k)

||x(k)||2
,

and of a filtering process calculating the estimation error between

the recorded response y(k) and the adaptive filter ouput x̂(k), i.e.,

e(k) = y(k)− h
T (k)x(k) .

In most applications, the acoustic systems under test are of infinite

length. As the impulse response of the adaptive filter is restricted

in length, the resulting truncation of the last samples of the acoustic

path leads to a systematic error due to the periodic excitation signal

x(k). This effect has been intensively discussed in [6] and will not

be considered in this paper, as we provide sufficient length N for

vector h(k).
The aim of the identification process is to achieve the best pos-

sible match between the adaptive filter represented by h(k) and the

system under test g(k). The key to obtain a rapid convergence speed

– especially in case of time-variant acoustic systems – is to use the

NLMS algorithm in combination with its optimal excitation signal,

i.e., with perfect sequences (PSEQs) [10, 11].

3. PSEQS: PSEUDO-NOISE VS. SWEEPS

Perfect sequences (PSEQs) [10, 11] are time-discrete signals of finite

length M that are repeated periodically and posses a perfect, i.e.,

impulse-like periodic autocorrelation function

ϕ̃pp(λ) =

M−1
∑

m=0

p(m)p(m+ λ) =

{

Ep λ = 0 (mod M)

0 λ 6= 0 (mod M),
(2)

where Ep is the energy of one period of the sequence.

3.1. Ternary Perfect Sequences

So far, in our applications we mostly used ternary PSEQs [12], be-

longing to the class of pseudo-noise sequences. They show a very

high energy efficiency, i.e., a small crest factor.

However, Müller and Massarani [7] showed, that the theoret-

ically high energy efficiency of pseudo-noise sequences cannot

be reached in practical measurement setups, because the D/A-

converters introduce significant distortion for high amplitudes.

Furthermore, it is argued that pseudo-noise signals might induce

additional distortions due to loudspeaker non-linearities. As a con-

sequence, in acoustics sweeps are figured out as the preferable

choice for the majority of measurement tasks. However, the sweep

signals do usually not show the perfect impulse-like auto-correlation

function (2) as needed for our application scenarios.

In [13], a new class of so-called perfect-sweeps is defined which

combines both, the characteristics of a PSEQ and a sweep signal.

Acoustical measurements using these perfect-sweeps as excitation

signal for the NLMS-based identification process can thus exploit

the maximum convergence speed needed to track time-variant sys-

tems and the higher immunity against distortions.

3.2. Construction of Perfect-Sweeps

Fortunately, constructing a perfect-sweep is quite easy [13]. Actu-

ally, a perfect-sweep is a time-stretched pulse [14] constructed in

the frequency domain with an ideally flat magnitude spectrum and a
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Fig. 2. a) Time-stretched pulse with M = 308 and m = M/4.

b) Transition between contiguous periods of a periodically

repeated perfect-sweep; M = 308, m = M/2.

linear group delay, i.e., a quadratic phase. The general construction

formula is given by

P (ν) =







exp

(

−j4mπν2

M2

)

; 0 ≤ ν ≤ M

2

P ∗(M − ν); M

2
< ν < M ,

with frequency index ν, length M of one period of the sequence,

and the factor m which determines the stretch of the time-stretched

pulse. As the magnitude spectrum is flat and the phase is odd-

symmetric, in the time-domain we obtain a real-valued, perfect se-

quence. The term stretch is used to describe the relative portion of

one period of the sequence in which the main energy of the sweep

is concentrated. For example, a stretch factor of m = M/2 means

that the sweep covers the whole period and the energy is equally dis-

tributed. A stretch factor of m = M/4 results in a sweep which

starts approximately at n = M/4 and ends at n = 3M/4, i.e., the

energy of the sweep is concentrated in only one half of the period

length, see, e.g., Fig. 2-a).

Typically, in acoustical measurement setups the excitation sig-

nal is emitted only once or, if the excitation signal is emitted peri-

odically, a pause is inserted between each repetition for the acousti-

cal system to settle before it is excited again. For such a scenario,

mostly a stretch factor of m = M/4 or smaller is used and the se-

quence is windowed to avoid discontinuities at the start and end of

the sequence.

However, the crest factor of such a sequence is suboptimal and

if it is windowed it isn’t perfect anymore. For dynamic system iden-

tification with the NLMS-algorithm a perfect, periodically repeated

excitation signal is needed and a high crest factor is desired. Thus,

for the construction of the perfect-sweep, the stretch factor is set

to m = M/2 so that the sweep covers the whole sequence. This

increases the energy efficiency by 3 dB when compared to a time-

stretched pulse with m = M/4 and there is a continuous transition

between sucessive periods as can be seen in Fig. 2-b).

4. PSEQ-NLMS FILTERING

In order to verify the advantages of the new excitation signal, we

show the results of the system identification process for a simulated

transmission path, for actual room impulse response measurements,

and finally, in Sec. 5, for a practical application scenario.

4.1. Simulation with Computer-Generated Data

In the PSEQ-NLMS algorithm we periodically apply the PSEQ of

length M to the system under test. The optimal adaptation of h(k)
relies on N = M consecutive excitation vectors x(k) being exactly

orthogonal to each other, see (2). As a consequence, the period M
of the PSEQ has to match the length N of the adaptive filter h(k).
Assuming a stepsize of µ0 = 1 and N = M , the PSEQ excita-

tion enables the NLMS algorithm to identify a linear, time-invariant,

simulated system within N iterations [1].
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Fig. 3. System distance for different excitation signals;

g time-invariant, except sudden change at k = 3000.

Fig. 3 illustrates the simulation results of an NLMS adaptation

process in case of a ternary PSEQ, a perfect-sweep and additionally

a white noise excitation signal in terms of the normalized system

distance

D(k) = ||g(k)− h(k)||2/||g(k)||2.

For the simulation, we chose an effective signal-to-noise ratio (SNR)

of 30 dB at the microphones.

For the ternary PSEQ and the perfect-sweep excitation, Fig. 3

reflects the rapid convergence speed after a sudden change of the

simulated impulse response g at k = 3000. In addition, the effect

of the time-constant N can be observed. The direct comparison with

the system distance achieved with white noise emphasizes that the

NLMS benefits from the special correlation properties of the deter-

ministic PSEQs.

4.2. System Identification from Real Measurements

Ususally, we have to deal with non-linearities due to the measure-

ment equipment such as the converter, loudspeaker, microphones,

and amplifier. In the experiments of this section, we perform room

impulse response measurements in a professional studio box and fo-

cus on the distortions due to loudspeaker non-linearities. The effects

of the other components are kept small by the careful choice of the

saturation parameter for the D/A converter.

For the comparison, all considered excitation signals are nor-

malized to the same signal power, i.e., for all excitation signals at

the microphone the same SNR is guaranteed, which leads to differ-

ent maximum amplitudes of the excitation signals.

Again, an instrumental objective measure of the achieved quality

for the system identification is of interest. However, as in this exper-

iment the actual room impulse response g(k) is not known, only the

power of the identification error E{e2(k)} can be used as an indica-

tor for the quality of the adaptation process. It should be noted that

a small value of E{e2(k)} does not automatically correspond to a

small system distance. As quality index, we define the normalized

error signal attenuation

Q = E{y2(k)}/E{e2(k)} .

Fig. 4 depicts the results in terms of the quality measure Q for dif-

ferent sound pressure levels (SPLs), different excitation signals, and

two loudspeakers. The observations can be summarized as follows:

• With computer-generated data, ternary PSEQ and the perfect-

sweep excitation provide almost identical rapid convergence

speed as illustrated in Fig. 3. However, in case of a system

identification from acoustic measurements, major differences

in the Q-values might be detected, as shown in Fig. 4.
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Fig. 4. Q-measure for different excitations and two loudspeakers.

• The curves in Fig. 4-a) corresponding to the loudspeaker of

higher quality generally show a better performance than in

Fig. 4-b).

• Increasing the sound pressure level by ∆SPL = 5 dB goes

along with an increased SNR at the microphone. Conse-

quently, the quality index should also show an improvement

of ∆Q = 5 dB. Obviously, only the curves refering to the

perfect-sweep excitation prove the expected theoretic results

for both loudspeakers in Fig. 4-a) and b).

• In contrast, if we lower the volumn, two effects can be ob-

served. On the one hand, the distortions due to loudspeaker

non-linearities can be reduced and the quality indices Q of the

different curves approach. On the other hand, the SNR at the

microphone degrades, the influence of the background noise

increases and the quality measure Q degrades, respectively.

As a result we can conclude that obviously, the perfect-sweep can be

fed to the loudspeaker with considerably more power without intro-

ducing distortions into the adaptation process.

5. APPLICATION TO QUASI-CONTINUOUS

ACQUISITION OF HRIRS

In this section we investigate the performance of the perfect-sweep

NLMS algorithm in the context of quasi-continuous acquisition of

head-related impulse responses (HRIRs) [5] as needed, e.g., for bin-

aural rendering. For the continuous HRIR representation in the az-

imuth direction, the subject of interest is continuously rotating dur-

ing the binaural recording. Using the input and output signals of the

measurement setup, the NLMS-based identification process extracts

the time-varying HRIRs at any azimuth. Besides the efficiency in

terms of the time consumption for the acoustic measurement itself,

the concept also benefits from avoiding the classical sampling and

interpolation issue. In [6] the effect of a PSEQ excitation for this

technique has been discussed. In this paper we will now focus on the

influence of the proposed perfect-sweep excitation which combines

the rapid tracking ability and a higher robustness against distortions

due to loudspeaker non-linearities.

5.1. Measurement Setup

The measurements are performed with a dummy head-and-torso

simulator placed in the middle of an anechoic chamber facing a loud-

speaker in a distance of 2 m. The different excitation signals x(k)
are emitted via loudspeaker at a sampling rate of fs = 44.1 kHz.

The reaction of the system including anechoic chamber, outer ear,

and torso is recorded with microphones located at the two ear canal

entrances. A signal processing stage according to Fig. 1, provides

for the left and right acoustic channel a representation of the actual

binaural HRIRs in every single time instant.

Two different kinds of measurements are considered. First, a

dynamic measurement for the continuous-azimuth aquisition of all
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Fig. 5. Dynamic HRIR measurement for different excitations.

HRIRs in the azimuthal plane is performed with a continuously ro-

tating dummy head with a revolution time of T360 = 20 s, see [5] for

more details. Secondly, we present the results of a stationary mea-

surement at 270◦ such that the left ear is exposed to maximal direct

sound.

5.2. Instrumental Comparison

The results in terms of the Q-values are summarized in Fig. 5 and

Fig. 6, respectively. For the experimental comparison, again all three

excitation signals are normalized to the same power.

The curves belonging to the perfect-sweep excitation show

the best performance in all experiments. Due to its high conver-

gence rate and its robustness against loudspeaker non-linearities, the

perfect-sweeps outperform the other excitation signals by far.

In the dynamic measurements in Fig. 5 the typical fluctuation of

the Q-value over the azimuth angle can be seen. At 270◦ we detect

the highest Q-values because the left ear picks up the most direct

sound from the loudspeaker and thus the best SNR condition as well

as the highest Q-value is achieved.

Stationary measurements in Fig. 6-a) can be compared to the

position θk = 270◦ of Fig. 5 and due to symmetry reasons Fig. 6-b)

to θk = 90◦, respectively. Obviously, in almost all conditions the

results of the dynamic measurements range in the same order as in

the static case. The only exception is detected for θk = 90◦ and

white noise excitation. The Q-value degrades severly in the dynamic

case as the NLMS algorithm does not show the rapid tracking ability

as in case of a PSEQ excitation.

6. CONCLUSIONS

In this paper the perfect-sweep NLMS algorithm has been investi-

gated for time-variant acoustic system identification. The advantage

of using perfect-sweeps is that they combine the characteristics

of PSEQs and sweeps, enabling a rapid convergence speed of the

NLMS adaptation algorithm as well as a high robustness against

distortions. The benefits have been demonstrated with simulations

based on computer-generated data, with real acoustic measure-

ments, and in an application-oriented context. The influence of

different excitation signals, such as white noise, ternary PSEQs, and

perfect-sweeps on the measurements has been investigated showing

immense differences in the performance. The use of perfect-sweeps

opens up the possibility to excite the unknown acoustic system

with considerably more power without introducing non-linear dis-

tortions. Thus, the capabilities of the given hardware components
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can be much better exploitet. As a consequence significant im-

provements in terms of the objective Q-values are gained which also

correlates with performed informal listening results.
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