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Abstract
Linear transmission systems are often characterized by
their impulse responses. A simple and fast approach to
acquire these impulse responses is the normalized least-
mean-square (NLMS) algorithm in combination with a per-
fect sequence excitation. It is not only applicable to static
impulse response measurements, but has been optimized
especially for the tracking of time varying linear systems.

In this paper, different implementation strategies of the
perfect sequence excited NLMS algorithm, namely the ef-
ficient NLMS and the inverse cyclic convolution algorithm,
are discussed and compared in terms of performance, com-
plexity, and applicability. As a main result it is shown that
for certain conditions all algorithmic variants can be trans-
ferred to each other.

1 Introduction
Several approaches have been proposed to solve the prob-
lem of system identification and tracking given the input
and the output signal of an unknown linear transmission
system. A digital model for a typical system identifica-
tion approach is illustrated in Fig. 1. The unknown linear
transmission system and the adaptive filter are represented
by their time varying impulse responses in vector notation
g(k) and h(k), respectively, with time index k. In order
to consider the influence of an unavoidable measurement
noise, n(k) is added to the system response r(k).

One approach to solve this problem is the normalized
least-mean-square (NLMS) algorithm excited with a per-
fect sequence (PSEQ) p̃(k) acccording to [1, 2], where
the adaptation process is driven by the error signal e(k).
This technique has been used for a wide range of appli-
cations. On one hand, it can be used with the focus on
identification, e.g., to perform static measurements, such
as measurements of acoustic transfer functions. On the
other hand, due to its rapid tracking ability the PSEQ ex-
cited NLMS process is also capable to cope with time vari-
ant system indentification. In these applications rather the
tracking aspect is predominant. Examples are simulations
of time variant room impulse responses [2], medical appli-
cations as sonotubometry for real-time monitoring of the
Eustachischen tube activity [3], or continuously measured
and tracked head-related transfer functions (HRTFs) [4].

In [5, 6], a new efficient version of the PSEQ excited
NLMS process has been proposed. The advantage is its
drastic reduction of the computational effort. Besides its
relation to the conventional NLMS algorithm the efficient
NLMS also bears a certain resemblance to a simple in-
verse cyclic convolution (ICC) approach. For this reason
we want to provide a deeper understanding regarding the
different algorithms and their relations. Besides the theo-
retical and numerical aspects especially complexity prop-
erties are of interest for real-time implementations.
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Figure 1: Digital model for system identification.

The paper is organized as follows. Sec. 2 summarizes
the main characteristics of PSEQs as far as they are of rel-
evance for the theoretical derivations. The objective of
Sec. 3 is to give a review of the three considered system
identification variants, i.e., the NLMS, the efficient
NLMS, and the ICC. Hereafter, the direct mathematical
comparison between the algorithms is evolved in Sec. 4.
Finally, simulation results in Sec. 5 testify the theoretical
conclusions and complexity aspects are presented.

2 Perfect Sequences (PSEQs)
All system identification algorithms considered in this pa-
per are excited with so called perfect sequences (PSEQs).
A PSEQ is a discrete sequence p(k) of length N with an
impulse like periodic autocorrelation function

ϕ̃pp(λ ) =
N−1

∑
k=0

p̃(k)p̃(k+λ ) (1)

=

{
‖p(k)‖2 for λ modN = 0

0 else ,
(2)

where p̃(k) denotes the periodically repeated sequence
p(k) and ‖ · ‖2 the quadratic norm. For notational
clarity we introduce the PSEQ excitation vectors
p(k) = (p̃(k), p̃(k− 1), . . . , p̃(k−N + 1))T. Since p̃(k) is
periodic, only N different excitation vectors

p(k) = p j (3)

exist with j = k mod N. As the excitation vectors are cycli-
cally shifted versions of each other, all excitation vectors
have the same energy according to

Ep = ‖p(k)‖2 = ‖p j‖2 = pT
j p j with j = k mod N . (4)

The discrete Fourier transformation (DFT) of a PSEQ has
a constant magnitude with

|DFT{ p̃(k)}N |= |P(k,µ)|= 1/
√

Ep . (5)



Furthermore, according to [3] for PSEQs the relation

IDFT
{

1
P(k,µ)

}
N
= p̃(−1)(k) =

1
Ep

p̃(−k) (6)

holds. Combining a constant magnitude spectrum with an
arbitrary odd-symmetric phase spectrum according to

φ(0) = 0,±π (7)
φ(N−µ) =−φ(µ) for 0 < µ < N (8)

results – after inverse DFT (IDFT) – always in a real-valued,
perfect sequence, which can be used to construct different
classes of PSEQs (cf. [7]).

3 System Identification
Three different algorithms for the identification of g(k) in
terms of h(k) will be discussed, the NLMS, the efficient
NLMS, and the inverse cyclic convolution (ICC). The fo-
cus is how the algorithms behave in case of a PSEQ exci-
tation and how they are related to each other.

3.1 NLMS
The first approach to be considered is the classical normal-
ized least-mean-square (NLMS) algorithm which is driven
by the adaption

h(k+1) = h(k)+α
e(k)p(k)
‖p(k)‖2 = h(k)+α

e(k)p(k)
Ep

(9)

with stepsize α . In [1] it has been shown that due to the
special orthogonal properties of the PSEQs, the NLMS al-
gorithm enables the identification of an unknown linear
time invariant (LTI) system of dimension N within N it-
erations.

3.2 Geometric Interpretation
To gain a better understanding of the relation between the
NLMS and the efficient NLMS from [5, 6], the NLMS
adaptation process is geometrically interpreted in terms of
a vector space representation as known from literature. For
this reason the distance vector d(k) = g−h(k) is intro-
duced as difference between the unknown system vector g
and filter vector h(k). For the geometric interpretation the
unknown system vector g is assumed to be time invariant,
noise signal n(k) is set to zero and stepsize α = 1. With
these assumptions the NLMS algorithm can be expressed
as

d(k+1) = d(k)− pT(k)d(k)
‖p(k)‖

p(k)
‖p(k)‖

= d(k)−d‖(k) . (10)

Due to the correlation properties of PSEQs this special
class of sequences fulfills the requirements of an optimal
excitation signal for the NLMS algorithm. An example is
illustrated in Fig. 2 for the N = 2 dimensional vector space
with distance vector d(k) (blue) and the two orthogonal
excitation vectors p(k) and p(k+ 1) (red). According to
(10) the updated d(k+ 1) is obtained by subtracting from
d(k) the orthogonal projection d‖(k) of d(k) onto p(k).
Obviously, only the component into the direction of the
excitation vector p(k) contributes to the reduction of the
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Figure 2: Geometric interpretation of NLMS and efficient
NLMS, N = 2.

length of vector d(k). If N successive excitation vectors
are orthogonal in the N dimensional vector space, all N
dimensions of distance vector d(k) are eliminated after N
iterations. This requirement is fulfilled by PSEQs. All N
dimensions are equally excited and can be compensated
accordingly.

3.3 Efficient NLMS
In the conventional NLMS algorithm, all coefficients of
h(k) change in each time instant, i.e., (9) has to be cal-
culated for all N coefficients hi(k) with 0 ≤ i < N. The
basic idea of the efficient NLMS [5, 6] is to perform, prior
to adaptation, a coordinate transformation of the adaptive
filter h(k) to a new orthogonal basis according to

h(k) =
N−1

∑
m=0

cm(k)wm (11)

with
wm = pm/Ep ∀ 0≤ m < N (12)

and (3). The new orthogonal basis wm is chosen such that
in the first iteration the first dimension of the distance vec-
tor d(k) regarding the new basis is eliminated, whereas all
other dimensions remain unchanged. Thus, in one iteration
exactly one of the N dimensions of the transformed h(k)
is identified. This leads to a drastic reduction of computa-
tional complexity by factor N, while, as before, the com-
plete system identification is achieved after N iterations.

Accordingly, in contrast to the conventional NLMS in
the efficient NLMS algorithm the coefficients cm(k) of an
equivalent representation of vector h(k) are adapted during
the recursion. When needed, the desired impulse response
h(k) can be determined with (11) or alternatively with

h(k) = IDFTN{DFTN{w0} ·DFTN{c(k)}} , (13)

as the sum in (11) refers to a cyclic convolution.
For the adaptation of cm(k) we look for the coeffcients

which minimize the instantaneous least-mean-square cost
function J(k) = e2(k) = (ŷ(k)− y(k))2 applying the gradi-
ent method

cm(k+1) = cm(k)−
α

2
∂J(k)

∂cm(k)
, 0≤ m < N , (14)

which leads to

cm(k+1)=
{

cm(k)+α(ŷ(k)− cm(k)) for m = k mod N
cm(k) else

using the special orthogonal properties of PSEQs. See
[5, 6] for more details. In each iteration only one of the
N coefficients cm(k+1) changes and in case of α = 1 the



above equation even reduces to a simple assignment oper-
ation:

cm(k+1) =
{

ŷ(k) for m = k mod N
cm(k) else .

(15)

After the initialization phase, i.e., if k ≥ N, (15) can be
expressed in compact notation as

cm(k+1) = ŷ(k− `) (16)

with m = (k− `) mod N and 0≤ ` < N.
Thus, for a static acoustic measurement of a room im-

pulse response, for instance, we assign with (15) the latest
N samples of the measured system response ŷ to cm and
perform afterwards a cyclic convolution with (13). This
procedure shows a certain analogy to a conventional in-
verse cyclic convolution, which will be studied within the
next sections.

3.4 Inverse Cyclic Convolution (ICC)
In acoustics, unknown impulse responses are often mea-
sured with a simple ICC approach, i.e.,

h(k) = IDFTN

{
DFTN{ŷ(k)}
DFTN{p(k)}

}
(17)

or, equivalently, in scalar representation

hi(k+N) =
N−1

∑
m=0

ŷ(k+m) · p̃(−1)(i− (k+m)) . (18)

In [3] it has been shown, that for α = 1 and a PSEQ exci-
tation the NLMS algorithm and the ICC provide the same
results within computational accuracy, which is sketched
in the following. Starting with (9) and exploiting the or-
thogonal properties of PSEQs an expression for h(k+N)
according to

h(k+N) = (1−α) ·h(k)+ α

Ep

N−1

∑
m=0

ŷ(k+m) ·p(k+m)

can be derived recursively or in scalar notation

hi(k+N) = (1−α) ·hi(k)+
α

Ep

N−1

∑
m=0

ŷ(k+m) · p̃(k+m− i) .

for all 0≤ i < N. For α = 1 we get

hi(k+N) =
1

Ep

N−1

∑
m=0

ŷ(k+m) · p̃(k+m− i) . (19)

Using the periodicity of the PSEQ and (6), it turns out that
(19), derived from the NLMS algorithm, is equivalent to
the convolution of the system response ŷ(k) with the in-
verse excitation signal p̃(k) as known from (18).

4 Equivalence
The direct comparison of (18) and (19) derived from the
ICC and NLMS with PSEQ excitation, respectively, proves
for α = 1 the numerical equivalence of both approaches. In
this section it will be shown that also the efficient NLMS
algorithm represented by (11) is identical to eqs. (18) and
(19), i.e., that all versions provide the same results.

The scalar representation of (11) at time instant k+N
is given by

hi(k+N) =
1

Ep

N−1

∑
m=0

cm(k+N) · p̃(µN +m− i) (20)

using (12) and an arbitrary µ ∈ Z. First, let us note that
variable cm refers to a cyclically shifted representation of
N samples of the system response ŷ according to (16). Also
it is of interest that wm in (11) or the periodic sequence p̃
in (20), respectively, is not a function of time instant k in
contrast to (19).

In order to find an equivalent expression for cm(k+N)

in (20) we substitute k+1 = k
′
+N in (16), which leads to

cm(k
′
+N) = ŷ(k

′
+N−1− `) (21)

with m = (k
′
+N− 1− `) mod N and 0 ≤ ` < N. With a

second substitution `
′
= N−1− ` we find that

cm(k
′
+N) = ŷ(k

′
+ `

′
) (22)

for m = (k
′
+ `

′
) mod N and 0 ≤ `

′
< N. For notational

simplicity, variables k
′
= k and `

′
= ` are replaced again

such that we obtain for (20) the expression

hi(k+N) =
1

Ep

N−1

∑
`=0

c(k+`) mod N(k+N)·

p̃(µN +(k+ `) mod N− i) , (23)

where the substitution of variable m in the sum of (20) pro-
vokes simply a reordering of the summands. As p̃(k) is
periodic with N we find that

hi(k+N) =
1

Ep

N−1

∑
`=0

ŷ(k+ `) · p̃(µN +(k+ `) mod N− i)

=
1

Ep

N−1

∑
`=0

ŷ(k+ `) · p̃(k+ `− i) . (24)

A comparison of equation (24) with (18) and (19) proves
that in case of a PSEQ excitation and a stepsize of α = 1
the NLMS, the efficient NLMS as well as the ICC pro-
vide the same results. For the derivation of (18), (19),
and (24) we neither assumed that n(k) 6= 0 nor that g(k)
is time invariant. Thus, the equivalence between the three
approaches also holds for real measured signals, i.e., in all
three cases the noise signal n(k) and the time variance of
g(k) are treated in the same way. Differences only occur
in case of a stepsize 0 ≤ α < 1 or during the initialization
phase, i.e., when 0 < k < 2N. These theoretical results will
now be verified via simulation.

5 Results
The aim of this section is twofold. First, some simulation
results are presented to visualize the equivalence between
the three adaptation algorithms and to show the influence
of the excitation signal itself. And secondly, a short dis-
cussion concerning the complexity aspects of the three im-
plementation variants provides some more insight in their
algorithmic characteristics.

5.1 Simulation
For the comparison, the NLMS, the efficient NLMS algo-
rithm, and the ICC have been considered. For the simula-
tion we chose a system g(k), which is time invariant de-
spite of a sudden change at k = 1024, and an adaptive filter
h(k), both of length N = 256. The stepsize is set to α = 1
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Figure 3: Comparison of NLMS, efficient NLMS, and
ICC for a perfect sweep (PS) and a periodic white noise
(WN) excitation (N = 256, α = 1).

and we considered a measurement white noise floor n(k) of
−40dB. As excitation signals we applied a perfect sweep
(PS) according to [7] as special PSEQ and in addition, a
periodic white noise (WN) signal. Fig. 3 summarizes the
results in terms of the system distance:

D(k)/dB = 10 lg(||g(k)−h(k)||2/||g(k)||2) .

Inspecting the results of the PSEQ excitation (PS, blue) we
can observe differences of all three algorithms during the
initialization phase (0 < k < N). For k ≥ N the efficient
NLMS and the ICC approach provide identical system dis-
tances. After all filter states are filled (k ≥ N) the NLMS
algorithm takes N iterations for a complete identification.
In this phase it works slightly different compared to the
other algorithms. After 2N iterations, however, the three
algorithms provide identical curves, irrespective of a time
variance of g(k) or the occurance of n(k), which confirms
the results of Sec. 3.4 and 4.

As expected the curves for a periodic white noise (WN,
red) excitation show different progression for each adapta-
tion algorithm and worse results compared to a PSEQ ex-
citation.

5.2 Complexity
The complexity balance of the different algorithms strictly
depends on the particular application, the corresponding
dimensions, and especially the required update rate of h(k).

It is well known that the NLMS algorithm takes an or-
der of O(2N) (multiply/add) operations per iteration.

The complexity of the efficient NLMS (for α = 1) is
mainly determined by (13), which requires for each h(k)
essentially one DFT of order N, N complex multiplica-
tions, and one IDFT. As w0 is constant, the corresponding
DFT has to be performed only once in an actual implemen-
tation.

If the update rate of h(k) is a multiple of N, the ICC
approach represented by (17) has basically the same com-
plexity as the efficient NLMS, since the DFT{p(k)} is con-
stant. Otherwise, all different DFT{p j} for 0≤ j < N can
be precalculated and stored efficiently in a lookup table.
Furthermore, the complex divisions in (17) can easily be
expressed as multiplications in case of a PSEQ excitation.

Let us consider two applications. First, we perform a
static measurement of an acoustic impulse response. In this
case, we have to take the last N samples of the measured
system response ŷ(k) according to (15) and determine h(k)
with (13). Alternatively, we can chose the ICC approach
leading to the same result with same complexity.

The second example refers to the acquisition of head-
related impulse responses (HRIRs) [4] continuously mea-
sured during a 360◦ rotation of the object. In practice, it
is beneficial to take only every Nth impulse response h(k).
The resolution of impulse responses is still high enough
that a simple linear interpolation is sufficient when inter-
mediate HRIRs are needed for auralization or other pur-
poses. On one hand, the NLMS algorithm is used itera-
tively, where only every Nth impulse response was stored.
On the other hand, the efficient NLMS and the ICC ap-
proach were performed with an update rate of N time in-
stants. All algorithms provide the same results, however,
the efficient NLMS and the ICC approach speed up compu-
ation by factor 70 for N = 308 (and factor 400 for
N = 4096) compared to the NLMS algorithm.

6 Conclusions
In this contribution a theoretical analysis of the PSEQ ex-
cited NLMS algorithm and related implementation vari-
ants was performed for a deeper understanding. Thereby,
the efficient NLMS algorithm was proven to be equiva-
lent to a inverse cyclic convolution operation, i.e. the ICC
approach. As a result, for a stepsize of α = 1 and after
the first 2N iterations all algorithms show identical perfor-
mance. Furthermore, in all variants the measurement noise
n(k) and a time variance of the unknown linear system have
the same impact on the achieved results. For many appli-
cations where a low update rate of h(k) is sufficient, the
ICC as well as the efficient NLMS allow for a significant
reduction of complexity.
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