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ABSTRACT

For many applications such as acoustic echo compensation,
adaptive noise reduction or acoustic feedback control it is
of great interest to simulate reproducibly a real, time variant
room. One approach to describe the transient behavior of a
room is the generation of a physical room model, e.g. [1].
To identify the variation of a room impulse response with
time an alternative concept is presented, which uses the
normalized least mean square (NLMS) algorithm excited
by perfect sequences. The proposed general concept is
capable to efficiently simulate the fluctuations of the room
impulse response. The time variant simulation can be
performed without the necessity to store large amounts of
data by storing only the reaction of the unknown system
instead of all sets of filter coefficients. The practical aspects
of the new concept are pointed out for an acoustic echo
control application.

1. INTRODUCTION

The simulation of the time variant room impulse response
is based on a system identification approach driven by the
normalized least mean square (NLMS) algorithm [2]. Ac-
cording to Fig. 1 the acoustic echo path from the loud-
speaker to the microphone is represented by its time variant
room impulse response in terms of vector
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Figure 1: Identification of the room impulse response
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of length N, where { denotes the time. In order to identify
the unknown impulse response the time variant room is
periodically excited by a perfect sequence p(i) of period
N. In paragraph 2 it will be shown that for this particular
excitation signal the NLMS algorithm
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is capable to identify the unknown system within N itera-
tions [3]. Subsequently, paragraph 3 contains the analysis
of the tracking properties of the proposed system identi-
fication approach. Based on an acoustic echo control ap-
plication the practical aspects conceming the simulation of
time variant room impulse responses are finally discussed.

2. SYSTEM IDENTIFICATION
WITH PERFECT SEQUENCES

The geometric interpretation of the NLMS algorithm [4]
shows that the convergence properties of the adaptation
process depend on the angle of consecutive signal vectors
P(4), p(i = 1). Assuming

* a time invariant system g during N iterations

* a sufficiently small noise signal n(i) and

* a stepsize of @ = 1

perfect adaptation, i.e. Q(z) = g, is achieved, if N consecu-
tive vectors (i), p(i ~ 1), ..., p(f — N + 1) are orthogonal
in the N dimensional vector space, see [3].

Suppose p(#) is a white noise process then vectors
p*(),p"(i—1), ...,p' (i — N + 1) of infinitive length are
orthogonal in the infinitive vector space. So for the pro-
jected set of vectors j(3), (i — 1), ..., (i — N + 1) the or-
thogonality in the N dimensional vector space is not guar-
anteed. Consequently, a white noise process does not really
fulfili the requirements of an optimal orthogonal excitation
signal.
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Perfect sequences, however, are characterized by their pe-
riodic autocorrelation function
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which vanishes for all out-of-phase values #, i.e. all
N phase shifted perfect sequences p(i), (i — 1), ..,
#(i = N 4 1) are orthogonal in the N dimensional vector
space, see for example [S]-

For this reason perfect sequences represent an op-
timal excitation signal for the NLMS algorithm, so
that the resulting set of N filter coefficients’ §(i)
@@, §:0), ..., @N._l(i))T represents exactly the room
impulse response of the unknown system. In this case and
for n(?) = 0 the accuracy of the identification is given by
the computational precision.

Figure 2 confirms these results by the comparison of the
system distance
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for a white noise and a perfect sequence excitation. Ex-
ploiting perfect sequences as stimulus signal for the NLMS
algorithm leads to an identification of the unknown sys-
tem response after an initialization phase of 2N iterations.
This delay is caused by the N empty filter states of the
echo path and by N iterations, which are required to adapt
N filter coefficients. In the continuous adaptation process
only N iterations are needed to achieve an identification
within computational complexity.
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Figure 2: System distance of the NLMS algorithm excited with
a white noise process and a perfect sequence (g time
invariant, N = 1023, o = 1, n(i) = 0)

3. TRACKING PROPERTIES

In [6] the tracking properties of an NLMS-type adaptive fil-
ter in the application of modelling an unknown time variant
system have been studied, see also [2]. It was concluded
that the NLMS driven algorithm with a white noise excita-
tion is not able 1o track time variant changes. In contrast to
these investigations our proposal benefits from the use of
the optimal excitation signal, i.e. a perfect sequence. Based
on the capability of perfect sequences to identify the un-
known system within NV iterations, the proposed concept
is able to efficiently simulate the fluctuations of the room
impulse response.

The most state-of-the-art measuring systems are typically
blockwise oriented methods using the Fast Hadamard
Transform (7], i.c. only every N iterations a completely
new set of filter coefficients is obtained. In contrast to this
the new approach operates iteratively. In each time instant ¢
a new set of coefficients is available, i.e. §x(¢) # §r(i+1)
forall 0 < k < N.
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Figure 3: Tracking properties of the identification algorithm exemplary for two different coefficients
............. Time evolution of the synthetically generated coefficient

Tracking behavior of the proposed algorithm
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In practice, for time variant systems and n(i) # 0 the
generated set of coefficients does not match exactly the
actual impulse response. However, in the presence of noise
the use of perfect sequences instead of m-sequences (as in
[7)) leads a prioti to an identification improved by 3 dB.
The negative influence of n(7) can further be reduced by
choosing a smaller step size parameter 0 < a < 1, which
results in an averaging procedure.

To visualize the tracking properties of the new identifica-
tion algorithm a synthetic room model has been developed
on the basis of numerous measurements in a strongly time
variant room. Fig. 3 outlines the comparison of the curves
referring to the time fluctuation of the synthetically gener-
ated coefficient and the tracking behavior of the identifi-
cation algorithm. Though the identification is not able to
track exactly the synthetic coefficient in every single time
instant, the tendency of the curves do match very well.

4. TIME VARIANT SIMULATION FOR AN
ACOUSTIC ECHO CONTROL APPLICATION

As a result of its convergence speed the identification algo-
rithm provides in every iteration step a set of coefficients
§(#), which represents a close approximation of the actual
acoustic room impulse response. For this reason consec-
utive sets of coefficients (§(7), §(¢ + 1), ...) can be used
to simulate the time varying characteristic of the room.
To point out the practical aspects of the time variant sim-
ulation an acoustic echo control application (e.g. [8]) is
investigated.

For a typically time variant simulation of T=4 seconds
duration, at a sampling frequency of f, = 8 kHz and a
filter length of N = 1023, the total number of coefficients

is given by N - f, - T = 32.736.000. The storage needed
for a float (4 byte) representation amounts to 125 Mbyte —
not a practicable amount of storage. To reduce the required
storage capacity the different sets of filter coefficients are
on-line identified from the room response m(i). During
the run time of the simulation the instantaneous room
impulse response §(¢) is transferred according to Fig. 4.
The on-line identification requires to store only the perfect
sequence $(¢) and the measured microphone signal m(3).
The storage for the recorded microphone signal m() and
for one period of the perfect sequence amounts to f, -7 -
4 byte = 125 kbyte and N - 4 byte = 4 kbyte, respectively.
The on-line identification, which generates the coefficients
to be transferred, works within the complexity of a NLMS-
type adaptation process. So multiply and add operations
in an order of 2N per sample period are required. The
computational complexity for the generation of the echo
signal y(¢) amounts to N additional operations, due to the
evaluation of the inner product between signal vector z(7)
and echo path §(i)

Besides the reproducibility of computer simulations the
echo return loss enhancement ERLE-measure ERLE(i) as
well as the system distance D(i):
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can be evaluated for time variant conditions in order to
enable an objective assessment.

ERLE(i) = 10 log )

D(i) = 10 log ©)
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Figure 4: Identification and simulation of a real, time variant room for an acoustic echo control application
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Figure S: Comparison of the objective quality measures for different extents of time variance:
a po person in the measured room
b — — — — inactive person in the room
[ R, moving person in the room
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