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Abstract—Low-density parity-check (LDPC) codes have
proved to be very powerful channel coding schemes with a broad
range of applications. However, as maximum-likelihood decoding
is utterly complex, suboptimal decoders have to be employed. One
of the most popular decoding algorithms of LDPC codes is belief
propagation (BP) decoding. In this paper, we present a novel
scheduling for belief propagation decoding of LDPC codes. The
new approach combines probabilistic scheduling with the known
shuffled and check-shuffled serial scheduling algorithms. The
resulting probabilistic shuffled and probabilistic check-shuffled
decoders show a superior performance in terms of residual bit
error rate. The drawback is that the convergence speed is slightly
decreased. However, the convergence is still faster than for the
standard and probabilistic flooding algorithms. Furthermore, we
have adapted the probabilistic and the proposed probabilistic
serial BP schemes to the non-binary case. We show that the
aforementioned effects on the binary decoder can similarly be
observed when applying the different schedules to the decoding
of LDPC codes over higher order Galois fields.

Index Terms—LDPC Codes, Belief Propagation, Decoder
Scheduling

I. INTRODUCTION

Shortly after the breakthrough of the iterative decoding prin-

ciple in Turbo codes [1], Low-Density Parity-Check (LDPC)

codes, originally presented in [2], were rediscovered in [3].

LDPC codes are usually decoded using the belief propagation

(BP) decoding algorithm [4], also called sum-product algo-

rithm. BP decoding operates on the Tanner graph representa-

tion of the LDPC code. The Tanner graph is a bipartite graph

consisting of variable nodes and check nodes. Even though

BP decoding is not optimal in terms of maximum likelihood

decoding, a performance close to the Shannon limit is observed

with long LDPC codes.

The standard BP decoder uses a so-called flooding schedule:

first the information for all the check nodes is evaluated

and then “flooded” to the variable nodes. Then all the vari-

able nodes are evaluated and the resulting information is

flooded back to the check nodes. Several different scheduling

approaches for improving the BP performance have been

presented in the literature. A probabilistic schedule has been

introduced in [5]. This approach takes into account the local

girth (i.e., the length of the shortest cycle passing through a

given node) of each node. To each variable node a probability
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depending on the local girth is assigned and at each iteration

(except the first), the outgoing messages of each variable node

are updated with this probability whereas outgoing check node

messages are always updated. This approach improves the

decoding performance of LDPC codes in terms of residual bit

error rate (BER), however, the convergence properties slightly

change for the worse.

In order to improve the convergence properties of BP

decoding, manifold serial schedules have been presented in

the literature, e.g. [6], [7], [8], [9]. Two examples are shuffled

BP decoding [7] and the dual check-shuffled BP decoding [9].

These algorithms exploit the fact that new information ob-

tained while updating single nodes can immediately be used in

the updates of other nodes within the same iteration. This can

lead to a faster decoding convergence and thus to a better BER

performance in the case of a constrained number of iterations.

Other serial decoding schedules include metric-based ap-

proaches [10]. Here the problem of finding the best sequence

of node updates is addressed by computing a metric for each

message in the Tanner graph which causes a non-negligible

computational overhead. Furthermore, the greediness of these

approaches might lead to significantly higher error-floors after

decoding, which is why they are not considered here.

In this work, we combine the girth-based probabilistic

approach [5] with the shuffled [7] and check-shuffled [9]

approaches and show that the performance in terms of BER

can be improved compared to other serial scheduling strategies

with (almost) no additional operations. The drawback is a

slight loss in convergence speed, however, the convergence

is still faster than for the standard BP decoding with simple

flooding and the standard probabilistic parallel approach.

In [11] and [12] the effects of a serial updating scheme

on the decoding of non-binary LDPC codes over GF(q) were

examined. It was shown that similarly to the binary case the

decoding process can be accelerated by a factor of up to two.

We also present results for the adaptation of the probabilistic

approach [5] and the proposed new scheduling to the decoding

of non-binary LDPC codes over higher order Galois fields.

II. BELIEF PROPAGATION DECODING

First, we will shortly review belief propagation (BP) decod-

ing. The (N,K) LDPC code (length N , K information sym-

bols) is characterized by a parity check matrix H of dimension



M×N (with M = N−K). Hmn denotes the entry of H at row

m and column n. The set N (m) = {n : Hmn 6= 0} denotes

the symbols that participate in parity check equation m,

m = 1, . . . ,M . Similarly, the set M(n) = {m : Hmn 6= 0}
contains the check equations in which symbol n participates.

Exclusion is denoted by the operator “\”, e.g., M(n)\m
describes the set M(n) with check equation m excluded.

Let Zn denote the received channel-related L-value for

variable node n. Before starting the iterative processing, we

set v
(0)
mn = Zn (v

(i)
mn denotes the information at the edge

connecting variable node n with check node m at iteration

i). The first step of the BP decoder consists in determining

the check-node related information

c(i)mn = 2 tanh−1





∏

n′∈N (m)\n

tanh

(

v
(i−1)
mn′

2

)



 (1)

with cmn denoting the information at the edge connecting

check node m with variable node n and i denoting the iteration

counter. The second step updates the variable node information

according to

v(i)mn = Zn +
∑

m′∈M(n)\m

c
(i)
m′n . (2)

Additionally, for each variable node n, the hard decision

ŷ
(i)
n = sign{v

(i)
mn + c

(i)
mn} (for an arbitrary m) is computed.

Using those values the parity check equations are evaluated

to determine whether the decoding can be stopped.

III. NOVEL DECODER SCHEDULING

We propose a novel scheduling strategy that takes into

account the distribution of cycles in the Tanner graph on the

one hand and on the other hand performs the updating of nodes

in a serial fashion.

As pointed out in [5] it can be advantageous to consider the

structure of the Tanner graph of a code in the decoding process.

Since practically all Tanner graphs of LDPC codes contain

cycles, the BP decoder optimality is violated. Let gn denote

the local girth of variable node n (i.e. the length of the shortest

cycle passing through node n) and gmin and gmax the length of

the shortest respectively the longest cycle in the Tanner graph.

After gn/2 iterations the information in a cycle of length gn is

propagated back to its origin and the assumption of statistical

independence of the incoming extrinsic knowledge and the

own knowledge does no longer hold. By only updating node n

with probability p
[g]
n = gn/gmax in each iteration the violation

of the statistical independence can on average be postponed.

It has been shown that by serially updating messages in the

decoding process the convergence speed of the BP decoder

can be up to twice as fast as for the flooding strategy. This

can be explained by the faster spreading of information when

performing serial node updates [7].

A. Probabilistic Shuffled Scheduling

Our first scheduling strategy follows the concept of the

shuffled schedule presented in [7] and adds a probabilistic

component similar to the one presented in [5]. In a pre-

processing step the local girth gn of each variable node n
is calculated and divided by the maximal local girth gmax to

yield the updating probability p
[g]
n = gn/gmax. All variable-

to-check messages v
(0)
mn are initially set to the channel-related

L-values Zn and all check-to-variable messages c
(0)
mn are set

to zero. At the beginning of the ith iteration all check-to-

variable messages c
(i−1)
mn and all variable-to-check messages

v
(i−1)
mn are available as result of the previous iteration. In each

iteration the decoder traverses all variable nodes in a serial

fashion and randomly decides (using, e.g., a small lookup

table with precomputed random numbers) whether to update

the incoming and outgoing messages of each node or not with

probability p
[g]
n .

The probabilistic shuffled scheduling can be described by:

1) Initialize n = 1 and i = 1
2) With probability 1 − p

[g]
n set c

(i)
mn = c

(i−1)
mn and v

(i)
mn =

v
(i−1)
mn for all m ∈ M(n) and continue at step 5

3) Compute all incoming messages of variable node n
(horizontal step), i.e. ∀m ∈ M(n) process:

c(i)mn = 2 tanh−1
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4) Compute all outgoing messages of variable node n

(vertical step), i.e. ∀m ∈ M(n) process v
(i)
mn according

to equation (2)

5) If n < N increment n and continue at step 2

6) If stopping criterion is fulfilled abort decoding and

output hard decision ŷ
(i)
n for all n

7) Start next iteration by setting i = i + 1 and n = 1 and

continue at step 2

Note that the iteration counter i does not correspond to the

number of iterations in a flooding or a simple serial schedule,

since – depending on the girth structure of the code – this

schedule performs fewer message updates per iteration. To

allow a fair comparison of the different schedules we count the

number Lup of total message updates and specify the number

of equivalent (flooding) iterations needed by a schedule as

Isched =
⌊

Lup

2E + 1
2

⌋

, with E denoting the number of edges in

the Tanner graph and ⌊x⌋ denoting the largest integer smaller

than or equal to x (fair rounding).

Note that the formal description of this schedule is similar

to the lazy scheduling approach presented in [13]. However, in

lazy scheduling an updating probability is chosen dynamically

according to some reliability measure to avoid unnecessary

message computations and reduce the overall complexity of

the decoding process. Our approach, by contrast, uses fixed

(girth dependent) updating probabilities and accepts a slight

increase in the overall decoding complexity while it aims at

achieving lower residual bit error rates.



B. Probabilistic Check-Shuffled Scheduling

Our second scheduling strategy can be described as a dual

version of the probabilistic shuffled scheduling, iterating over

the check nodes rather than the variable nodes, just as the

scheduling in [9] is described as a dual version of the shuffled

schedule in [7]. In accordance with Sec. III-A let gn denote

the local girth of variable node n and p
[g]
n = gn/gmax the

updating probability of variable node n. P(i) denotes the set

of variable nodes that participate in updates of iteration i.
After the same initialization as in Sec. III-A at the beginning

of each iteration the decoder decides for each variable node

whether it is active or not (i.e. whether it sends and revceives

updated messages) with probability p
[g]
n . Then all check nodes

are traversed serially and incoming and outgoing messages

are only updated for those edges that are connected to active

variable nodes. This probabilistic check-shuffled scheduling

can be described as follows:

1) Initialize m = 1 and i = 1
2) For 1≤n≤N : with probability p

[g]
n add n to the set P(i)

3) ∀n ∈ N (m) ∩ P(i): compute (vertical step):

v(i)mn = Zn +
∑

m′∈M(n)\m
m′<m

c
(i)
m′n +

∑

m′∈M(n)\m
m′>m

c
(i−1)
m′n

4) ∀n ∈ N (m)\P(i): set v
(i)
mn = v

(i−1)
mn

5) ∀n ∈ N (m) ∩ P(i): compute (horizontal step):

c(i)mn = 2 tanh−1





∏

n′∈N (m)\n

tanh

(

v
(i)
mn′
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6) ∀n ∈ N (m)\P(i): set c
(i)
mn = c

(i−1)
mn

7) If m < M increment m and continue at step 3

8) If stopping criterion is fulfilled abort decoding and

output hard decision ŷ
(i)
n for all n

9) Start next iteration by setting i = i+ 1 and m = 1 and

continue at step 2

Again the total number of message updates Lup is counted and

the number of equivalent (flooding) iterations Isched is deter-

mined as described in Sec. III-A to allow a fair comparison

to other schedules.

C. Adaptation to Decoding of Non-Binary LDPC Codes

The difference between the Tanner-graph representation of

binary LDPC codes over GF(2) and non-binary LDPC codes

over GF(q = 2p) is that in the non-binary case a weight

according to the value of the corresponding check matrix

element is assigned to each edge of the (weighted) Tanner-

graph. Still, the definition of the local girth as the length of

the shortest cycle passing through a node is the same in both

cases since it is independent of the edge weights. Furthermore,

the presence of (short) cycles causes the same degradation on

the decoding performance due to the statistical dependence of

messages after a certain number of decoding iterations. With

this analogy it can be expected that the additional probabilistic

component taking into account the girth structure of a code [5]

has the same effect on the decoding of both binary and non-

binary LDPC codes.

Results of [11] and [12] indicate that applying serial updat-

ing schemes to the decoding of non-binary LDPC codes has

the same advantage of increasing the convergence speed as for

the binary case.

We have investigated the effects of the probabilistic schedule

and the proposed probabilistic shuffled schedule as introduced

in Sec. III-A if adapted to the non-binary case. For this

purpose we modified the log-FFT algorithm for the decoding

of LDPC codes over GF(q) as presented in [14] and described

in detail in [15] to allow for the employment of different sched-

ules. Results for the combination of the log-FFT algorithm

with flooding, probabilistic, shuffled and probabilistic shuffled

schedules are presented in Sec. IV-B.

IV. SIMULATION RESULTS

A. Binary LDPC Codes

In order to evaluate the performance of both proposed

approaches for the binary case, we consider the WiMAX

(576,288) rate-1/2 LDPC code. As a data source, we employ

a Bernoulli source emitting equiprobable bits. A frame of

K = 288 bits is encoded using the LDPC code. The resulting

bits are mapped to BPSK symbols and then transmitted. On

the channel, the (modulation) symbols (with symbol energy

Es = 1) are subject to additive white Gaussian noise (AWGN)

with (known) power spectral density σ2
n = N0/2.

Figure 1 depicts the BER as a function of Eb/N0

(Eb = 2Es). It can be seen that the proposed novel prob-

abilistic shuffled and probabilistic check-shuffled algorithms

outperform the other four schedules (flooding, probabilistic,

shuffled, and check-shuffled).

Figure 2 shows the convergence at Eb/N0 = 2.5 dB. As

expected, the convergence of the new schedules is slightly

slower than for the shuffled approaches [7], [9] (however it

still outperforms the flooding and probabilistic schedules). For
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Fig. 1. BER performance of different BP-based decoding algorithms for the
WiMAX (576,288) rate 1/2 LDPC code at 200 decoding iterations.
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Fig. 2. Convergence (BER as a function of equivalent iterations i or Isched)
of different BP-based decoding algorithms at the fixed Eb/N0 =

2.5 dB for the WiMAX (576,288) rate 1/2 LDPC code.

more than 30 iterations, the probabilistic shuffled schedule

outperforms the shuffled schedule and yields the lowest BER.

In Fig. 3 the average number of decoding iterations needed

for convergence is plotted against the channel quality for the

different schedules (solid lines). The maximum number of

iterations is 40. The dashed lines show the ratio of the number

of iterations needed by the flooding schedule and the number

of iterations needed by the other schedules. It can be seen

that the proposed schedules require slightly more (equivalent)

iterations than the shuffled schedules but the saving compared

to the flooding schedule is still as high as 28%.

Although the probabilistic check-shuffled schedule performs

worse than the probabilistic shuffled schedule in this example,

we have in some cases observed a better performance if using

codes constructed by progressive edge growth (PEG) [16].

Furthermore, the advantages of the check-shuffled approach

indicated in [9] hold. Finally note that strategies like group

shuffling [7] (allowing parallelization) can be directly inte-

grated into the proposed novel schedules.

B. Non-Binary LDPC Codes

For the evaluation of the proposed schedules for the non-

binary case, two PEG Tanner-graph codes over GF(q) as

presented in [16] are considered. The simulation setup is the

same as described in Sec. IV-A. In accordance with Sec. III-C

the modified log-FFT algorithm is used for the decoding of

the non-binary LDPC codes. Results of flooding, probabilistic,

shuffled and the novel probabilistic shuffled schedules are

shown for two codes over GF(8) and GF(64) with rate 1/2 and

a binary block length of K = 504 information bits. The results

for the check-shuffled and the proposed probabilistic check-

shuffled schedules are not shown here since they are similar

to those of the shuffled and probabilistic shuffled approaches.

Figure 4 shows the BER as a function of Eb/N0 with a

maximum number of 100 decoding iterations. Similarly to
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Fig. 3. Average number of equivalent iterations (i or Isched) (solid lines)
and fraction of iterations compared to the flooding schedule (dashed
lines) needed by different BP-based decoding algorithms for the
WiMAX (576,288) rate 1/2 LDPC code. The maximum number
of decoding iterations is set to 40.

the binary case the proposed probabilistic shuffled schedule

outperforms the three other schedules for both codes and for

all shown channel qualities.

In Fig. 5 the convergence at Eb/N0 = 1.9 dB is depicted.

Again a behavior similar to the binary case can be observed.

The initial convergence speed is slightly higher for the non-

probabilistic schedules (flooding and shuffled) but after a

certain number of iterations lower bit error rates can be

achieved by the probabilistic schedules. For more than 35
(resp. 40) iterations the proposed probabilistic schedule yields

the lowest bit error rate for the code over GF(8) (resp. GF(64)).

Finally, Fig. 6 shows the average number of equivalent

iterations needed by the modified log-FFT decoding algorithm
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Fig. 4. BER performance of the modified log-FFT decoding algorithm using
different schedules for the decoding of two non-binary rate 1/2
LDPC codes over GF(8) and GF(64) with binary block length
K = 504 using at most 100 decoding iterations.
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Fig. 5. Convergence (BER as a function of equivalent iterations i or Isched)
of the modified log-FFT decoding algorithm at the fixed Eb/N0 =

1.9 dB using different schedules for the decoding of two non-binary
rate 1/2 LDPC codes over GF(8) and GF(64) with binary block
length K = 504.

using different schedules for varying channel qualities Eb/N0.

For the sake of clarity the results of the code over GF(64)

have been omitted in this figure. However, they show the same

characteristics as those for the GF(8) code with the difference

that the absolute number of iterations needed is slightly lower

for the GF(64) code. The proposed schedule needs slightly

more (equivalent) iterations than the shuffled schedule but still

up to 28% can be saved compared to the flooding schedule.

V. CONCLUSION

In this paper, we have shown how to improve the per-

formance of belief propagation decoding of LDPC codes by

using a probabilistic girth-based serial scheduling approach.

Depending on the girth, a node is updated according to

a certain probability: nodes with a large girth are updated

more often than nodes with smaller girth. If this girth-based

approach is combined with a shuffled serial decoding scheme,

a superior performance in terms of BER is obtained. For

the depicted WiMAX code, the BER is more than halved at

Eb/N0 = 2.5 dB compared to the standard flooding BP decod-

ing with 120 iterations. Although the initial convergence speed

is slightly lower in comparison with the serial algorithms,

it is always faster than in the case of the pure probabilistic

and the flooding algorithms. The proposed algorithm has

(almost) no additional computational complexity compared

to the (check-)shuffled schedules. The performance of the

proposed schedules has been demonstrated for the LDPC

code employed in the WiMAX system. Similar results were

observed for a range of other codes. Furthermore, adaptations

of the proposed novel schedules to the log-FFT decoding of

non-binary LDPC codes over higher order Galois fields have

been presented. It was shown by a range of simulation results

that the effects of the different schedules on the decoding of

non-binary LDPC codes are very similar to the binary case
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Fig. 6. Average number of equivalent iterations (i or Isched) (solid lines)
and fraction of iterations compared to the flooding schedule (dashed
lines) needed by the modified log-FFT decoding algorithm using
different schedules for the non-binary rate 1/2 LDPC code over
GF(8). The maximum number of decoding iterations is set to 40.
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