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Abstract—Beside the well known iterative Belief Propagation
algorithm several alternative decoding schemes for Low-Density
Parity-Check (LDPC) codes providing better performance in
terms of residual error rate, convergence speed or computational
complexity have been developed in the last years. Recently,
Informed Dynamic Scheduling has been proposed in [1] providing
different decoding strategies that dynamically decide which
messages are passed throughout the decoding process. It was
shown that the overall convergence can be sped up considerably
and also more errors can be corrected compared to other (non-
dynamic) decoding strategies. However, these improvements are
somehow overshadowed by a significant amount of additional
computational complexity that is needed for the selection of
the messages to be updated in each decoding step. We propose
two novel dynamic decoding strategies that allow for a flexible
adaptation of the decoder’s dynamics and reduce the additional
complexity remarkably while maintaining, and in some cases even
exceeding, the convergence speed and error rate performance of
currently known dynamic schedules.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes, as originally pre-
sented in [2] and rediscovered in [3], are usually decoded using
the iterative Belief Propagation (BP) decoding algorithm [4].
Standard BP decoding uses the so called flooding schedule
to pass messages between variable nodes and check nodes of
the code’s factor graph. Due to the cycles in this graph the
performance of BP decoding is suboptimal and convergence
to the maximum likelihood solution can not be guaranteed. In
the last years manifold variants of the BP algorithm have been
developed aiming for better error rate performance, faster con-
vergence, lower decoding complexity or combinations thereof.
Prominent examples include the min-sum approximation [5],
probabilistic techniques [6], and several sequential message
passing schedules, e.g., [7], [8], [9].

Recently, Casado et al. presented what they termed Informed

Dynamic Scheduling (IDS) [10], [1] as the first message
passing schedule for LDPC codes that dynamically updates
those parts of the graph that have not converged yet. IDS
determines the order of messages to be updated and propagated
using a metric called residual measuring how far a message is
from convergence. It was shown that this dynamic approach
has the capability of converging with much fewer message
updates than other schedules and, in addition, is able to solve
many trapping set errors [11].

The shortcoming of IDS, however, is that the computation of
residuals and the selection of the messages to be updated cause
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a significant increase in computational complexity. Much
more residuals are calculated than messages are updated and
for each message update all residuals have to be searched
through beforehand. While there are approaches that reduce
the overhead caused by the computation of residuals, to the
best of our knowledge, no efforts have yet been made to reduce
the complexity of the continuous search for large residuals.

We propose two novel decoding algorithms that address the
issue of computational complexity by significantly reducing
the number of search operations needed per iteration. Further-
more, we show that the proposed algorithms maintain and in
some cases even exceed the convergence speed and also the
error rate performance of currently known IDS strategies.

II. BELIEF PROPAGATION DECODING

To establish a basis of notation, we will shortly review
Belief Propagation (BP) decoding. The (N,K) LDPC code
(length N , K information symbols) is characterized by a parity
check matrix H of dimension M × N (with M = N − K).
Hmn denotes the entry of H at row m and column n. The set
N (m) = {n : Hmn 6= 0} denotes the symbols that participate
in parity check equation m, m = 1, . . . ,M . Similarly, the
set M(n) = {m : Hmn 6= 0} contains the check equations
in which symbol n participates. Exclusion is denoted by the
operator “\”, e.g., M(n)\m describes the set M(n) with
check equation m excluded.

Let Zn denote the received channel-related L-value for
variable node n. Before starting the iterative processing, we
set vmn = Zn (vmn denotes the information at the edge con-
necting variable node n with check node m). The horizontal
step computes the check node related information

cmn = 2 tanh−1
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with cmn denoting the information at the edge connecting
check node m with variable node n. The vertical step updates
the variable node information according to

vmn = Zn +
∑

m′∈M(n)\m

cm′n . (2)

Additionally, for each variable node n, the hard decision
ŷn = sign {vmn + cmn} (for an arbitrary m) is computed.
Using those values the parity check equations are evaluated
to determine whether decoding can be stopped.



III. INFORMED DYNAMIC SCHEDULING

The first instance of an IDS strategy for general message
passing algorithms was presented in [12] under the name of
Residual Belief Propagation (RBP). Casado et al. adopted and
extended this approach for the decoding of LDPC codes in
[10], [13], [1]. Those approaches are based on the so called
residual which is defined as the norm of the difference between
a message before and after an update. The residual r (cij) of
a check-to-variable message cij is defined as [1]

r (cij) =
∥

∥

∥c
updated
ij − ccurrent

ij

∥

∥

∥ . (3)

The current value of the message is denoted by ccurrent
ij and the

value if it was updated at this stage is denoted by cupdated
ij . In

case of binary codes the messages are scalar L-values and the
norm corresponds to the absolute value. From this definition
it directly follows that messages with large residuals are still
far from convergence while small residuals indicate messages
that have already converged to a final state.

By only updating messages with large residuals convergence
of the decoding process can be achieved with much fewer
overall message computations than for traditional (flooding
or serial) message passing schedules. It was also shown that
certain IDS strategies can correct more errors than other
schedules since they are able to solve trapping sets [11].

As mentioned above the drawback of these approaches is
that they implicate a significant increase in computational
complexity. In the following this will be described in more de-
tail for the IDS strategies RBP and Node-Wise RBP (NWRBP)
as proposed in [10].

A. Residual Belief Propagation (RBP)

RBP describes a greedy message passing schedule that
always updates the check-to-variable-message with the largest
residual. The algorithm is given in Alg. 1.

Algorithm 1 Residual Belief Propagation

1: Initialize all vij = Zj

2: Initialize all cij = 0
3: Compute all r (cij)
4: while stopping rule not satisfied do

5: Find message cmn with largest residual r (cmn)
6: Update message cmn

7: Set r (cmn) = 0
8: for m′ ∈ M(n) \m do

9: Update message vm′n

10: for n′ ∈ N (m′) \ n do

11: Compute r (cm′n′)
12: end for

13: end for

14: end while

In accordance with [10], we define E executions of the
main loop (lines 4 – 14) as one equivalent iteration, where
E denotes the number of edges in the factor graph. With
this definition in one equivalent iteration of RBP the same
number of check messages is updated as in one iteration of a
conventional (flooding or serial) schedule. In the following this

criterion of equal numbers of check message updates is used
to define an equivalent iteration for all considered schedules.

It can be seen that the additional complexity introduced
by RBP is caused by the search for the largest residual
(line 5) and the calculation of residuals (lines 10 – 12).
Since each calculation of a residual requires the evaluation
of (1) but is only needed to determine the order of message
updates Approximate RBP (ARBP) was introduced in [10]
to reduce the computational overhead. In ARBP the min-sum
approximation [5] is used for the calculation of residuals while
the actual message updates still use the exact BP equations (1)
and (2). This approach was shown to perform nearly as well
as the ones using exact residuals.

However, it turns out that for medium to large block lengths
the complexity of the search for the lagest residual dominates
the whole decoding algorithm as described in Alg. 1 since it
raises the overall decoding complexity from O(N) to O(N2).
This is due to the fact that for each message update a list of
length E = d̄v · N has to be searched through (d̄v denotes
the average variable node degree). In fact, if the residuals are
organized as an ordered list and reordered whenever a residual
changes, it is possible to implement RBP with complexity
O(N · log(N)). Nevertheless, a significant amount of the
computational overhead is caused by this managing of an
ordered list, especially as the block size increases.

B. Node-Wise RBP (NWRBP)

Another drawback of RBP originates from its greediness.
As pointed out in [13] certain types of errors cannot easily be
corrected by RBP which causes a distinct error floor behavior.
A partial remedy to this behavior is accomplished by what
was termed node-wise RBP (NWRBP) in [10] and node-wise
scheduling (NS) in [1]. In this less greedy approach not only
the message having the largest residual is updated in each
step but all outgoing messages of the corresponding check
node instead. For a more detailed description of NWRBP the
reader is referred to [10]. It was shown that NWRBP can reach
lower error rates than other strategies while converging only
slightly slower than RBP.

Nevertheless, the computational overhead of calculating
residuals and searching (or sorting) a list is similar to RBP.
While the same number of residuals has to be calculated per
iteration the number of search operations is slightly reduced
since for each largest residual that was found on average d̄c
check messages are updated. The average check node degree
d̄c, however, is only a small constant compared to the number
of edges in the factor graph so that the overall complexity is
only slightly reduced.

IV. NOVEL DECODER SCHEDULING

We propose two novel flexible approaches of IDS that are
capable of significantly reducing the average number of search
operations executed per iteration. At the same time both new
approaches can overcome the problem of RBP’s greediness
to an even greater extent than NWRBP. Furthermore, while
NWRBP converges slower than RBP our approaches converge
as fast as RBP and show superior performance even when the
maximum number of decoding iterations is very small.

The proposed schedules are based on the idea of not only
updating one single message that has the largest residual rmax



but updating all messages whose residuals are greater than an
adaptive threshold rthresh = α · rmax that is determined by a
factor α (with 0 ≤ α ≤ 1) and the current value rmax. For this
purpose we introduce an updating queue Q that contains only
messages having residuals greater than the current threshold.
In the following the two novel approaches termed Lazy Queue
Residual Decoding (LQRD) and Queue Residual Decoding
(QRD) will be described in detail.

A. Lazy Queue Residual Decoding (LQRD)

LQRD is based on RBP and likewise updates a single check
message in each execution of the main loop (lines 4 – 18 in
Alg. 2). In contrast to RBP this message is not selected by
searching through all residuals but simply obtained from the
head of a message queue Q. At the start of decoding Q is
initialized and only modified if it runs empty. Every time this
happens the value rmax of the largest residual is determined
and all messages with residuals r(cij) > α ·rmax are appended
to Q. Then message updates are performed until either the
stopping rule is satisfied or the queue runs empty again. This
procedure can be motivated as follows.

If at some stage of decoding there are large outliers in the
values of the residuals LQRD will focus on updating the cor-
responding messages first since the threshold rthresh = α · rmax

for a message to be added to Q will be very high. On the
other hand if there are no outliers RBP will spend a lot of
effort on finding the largest residual which will, in fact, not be
much different from e.g. the second or third largest residuals.
LQRD will behave differently since the threshold rthresh will
be relatively small and many messages will be added to Q.
Thus, while still constantly focusing on parts of the graph that
have not yet converged LQRD is far less greedy (depending,
of course, on the choice of α) than RBP or even NWRBP. An
algorithmic description of LQRD is given below in Alg. 2.

It can easily be seen that the factor α directly influences the
frequency of Q running empty and consequently the amount of

Algorithm 2 Lazy Queue Residual Decoding

1: Initialize all vij = Zj

2: Initialize all cij = 0
3: Compute all r (cij)
4: while stopping rule not satisfied do

5: if Q is empty then

6: Find message with largest residual
rmax = max

∀i,j
r (cij) and append it to Q

7: Append all messages cij with r(cij) > α · rmax to Q
8: end if

9: Remove message cmn from head of Q
10: Update message cmn

11: Set r (cmn) = 0
12: for m′ ∈ M(n) \m do

13: Update message vm′n

14: for n′ ∈ N (m′) \ n do

15: Compute r (cm′n′)
16: end for

17: end for

18: end while

computational complexity that is saved for search operations.
If a large value is chosen for α fewer messages are added to
Q and accordingly it will run empty more often. At the same
time, however, for the choice of a small α many messages
with relatively small residuals will be updated which conflicts
with the main idea of Informed Dynamic Scheduling.

LQRD can be seen as a generalization of RBP since it
includes RBP as a special case for α = 1. In this case
whenever rmax is determined only the message with the largest
residual is appended to Q since there can be no message with
r(cij) > α · rmax. After this message is updated the queue
will be empty and again the largest residual is determined.
For α = 0 on the other hand every time rmax is determined
all messages with residuals greater than zero are added to Q
(note that messages in Q are in no specific order, though). In
this case LQRD is similar to (non dynamic) message passing
schedules that perform serial check node updates as presented,
e.g., in [8], [9]. The main difference is that in each iteration
the message that changes most is updated first and messages
that do not change are not updated at all.

At the same time, if α changes the convergence speed and
the error rate performance of LQRD change. In general a
higher value of α results in faster convergence. However, as α
increases the algorithm becomes more and more greedy and
a similar error floor behavior can be observed as for RBP.

B. Queue Residual Decoding (QRD)

The second proposed algorithm QRD is a modification of
LQRD and has the potential of reducing the computational
overhead even further while providing similar results in terms
of convergence speed and error rate performance.

The difference between QRD and LQRD is that in the latter
one the message queue is generated once at the beginning of
decoding and then only regenerated if it runs empty regardless
of the values of the residuals that have been computed in the
meantime (thus the name ”lazy”). QRD, in contrast, allows
for a message to be appended to Q as soon as its residual
exceeds the threshold rthresh = α ·rmax. This can be realized by
simply checking whether a residual is greater than the current
threshold whenever it is recomputed and if so adding the
corresponding message to Q. Additionally, in QRD a message
that has already been added to Q is not updated if its residual
has dropped below the current threshold rthresh since the time
it has been appended. This more instantaneous handling of the
message queue lets it run empty less frequently which means
that on average fewer search operations have to be executed
per iteration. The exact algorithm is given in Alg. 3.

V. SIMULATION RESULTS

In order to evaluate the performance of both proposed
approaches, we consider the IEEE 802.16e WiMAX (576,288)
rate-1/2 LDPC code. A frame of K = 288 equiprobable bits is
encoded. The resulting bits are mapped to BPSK symbols and
then transmitted. On the channel, the (modulation) symbols
(with symbol energy Es = 1) are subject to additive white
Gaussian noise (AWGN) with (known) power spectral den-
sity σ2

n = N0/2. The presented simulation results include six
different decoding strategies: conventional BP with flooding
schedule, shuffled BP as presented in [7], RBP, NWRBP,
LQRD and QRD.



Algorithm 3 Queue Residual Decoding

1: Initialize all vij = Zj

2: Initialize all cij = 0
3: Compute all r (cij)
4: while stopping rule not satisfied do

5: if Q is empty then

6: Find message with largest residual
rmax = max

∀i,j
r (cij) and append it to Q

7: Append all messages cij with r(cij) > α · rmax to Q
8: end if

9: Remove message cmn from head of Q
10: if r(cmn) > α · rmax then

11: Update message cmn

12: Set r (cmn) = 0
13: for m′ ∈ M(n) \m do

14: Update message vm′n

15: for n′ ∈ N (m′) \ n do

16: Compute r (cm′n′)
17: if cm′n′ not in Q and r(cm′n′) > α · rmax then

18: Append message cm′n′ to Q
19: end if

20: end for

21: end for

22: end if

23: end while

A. Complexity

As described in Sec. IV LQRD and QRD are capable
of reducing the additional complexity of IDS caused by
the continuous search for the largest residual. In order to
compare LQRD and QRD to RBP and NWRBP we counted
the average number of iterations and the average number of
search operations performed per iterations for the different
schedules and for different values of Eb/N0.

In the upper part of Fig. 1 the average number of times the
largest residual has to be determined per iteration is depicted
as a function of Eb/N0 (note that a logarithmic scale is used
for the y-axis). As explained in Sec. III-B the savings of
NWRBP compared to RBP are in the order of the average
check node degree d̄c ≈ 6.3 of the employed WiMAX LDPC
code. For LQRD and QRD curves are shown for values of
α ∈ {0.0, 0.5, 0.9, 1.0} (note that the curve for LQRD and
α = 1.0 corresponds to that of RBP). The setups LQRD
with α = 0.5 and QRD with α = 0.9 are highlighted
by markers since they show the best BER performance (see
Fig. 2) and, thus, will be used in the results below. The number
of search operations decreases significantly as α decreases.
At Eb/N0 = 1 dB, e.g., for QRD with α = 0.1 the number
of search operations is reduced by a factor of up to 12000
compared to RBP and up to 2100 compared to NWRBP.

The lower part of Fig. 1 shows the average number of equiv-
alent iterations as defined in section III-A at varying values of
Eb/N0. For LQRD, QRD and RBP fewest iterations have to
be conducted over the whole range of channel qualities. This
reduced number of iterations can be seen as partial remedy to
the increased complexity per iteration of the IDS strategies as
compared to non dynamic schedules.
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Fig. 1. Average number of equivalent iterations (lower plot) and average
number of performed search operations per iteration (upper plot) needed for
convergence over Eb/N0 for WiMAX rate-1/2 blocklength 576 LDPC code

In Fig. 2 the BER performance of LQRD and QRD for
values of α between 0.0 and 1.0 in steps of 0.1 is shown. While
a significant complexity reduction was shown to be possible
by adjusting α, the BER performance is only influenced
marginally in case of QRD and slightly more in the error floor
region in case of LQRD. This allows for a flexible choice of
α while almost maintaining the BER performance.

All things considered LQRD and QRD are ultimately supe-
rior to the currently known IDS strategies RBP and NWRBP
since they show equal and in some cases even exceeding
performance while considerably reducing the additional com-
plexity introduced by IDS.
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Fig. 2. Bit error rate (BER) performance of QRD (left) and LQRD (right)
for values of α between 0.1 (light) and 1.0 (dark) in steps of 0.1
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B. Frame Error Rates and Convergence Speed

Figure 3 shows the frame error rate (FER) as a function
of Eb/N0 (Eb = 2Es) after 5 (upper plot) and 20 (lower
plot) equivalent iterations. It can be seen that while NWRBP
performs poorly for 5 iterations RBP performs well but, in
contrast to NWRBP, does hardly improve for a higher number
of iterations. The performance of LQRD and QRD, however,
is superior for both 5 and 20 iterations and outperforms all
other decoding strategies for all shown channel qualities. It
can also be seen that for the chosen values of α LQRD slightly
outperforms QRD especially for smaller numbers of iterations.

Figure 4 depicts the FER over the number of equivalent
iterations for Eb/N0 = 3 dB and confirms the previous results.
The convergence of QRD is almost as fast as that of RBP for
smaller numbers of iterations while the performance roughly
converges to that of NWRBP for higher numbers of iterations.
LQRD on the other hands shows the fastest convergence and
the best FER performance of all shown algorithms and for all
numbers of iterations.

VI. CONCLUSION

We have presented two novel decoding strategies for LDPC
decoding based on IDS as introduced in [10]. Both ap-
proaches address the problem of the computational overhead
introduced by IDS. While the additional complexity spent
on the computation of residuals can be reduced by using
simplified equations to calculate approximate residuals (as,
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Fig. 4. FER over number of equivalent iterations at Eb/N0 = 3 dB for the
WiMAX rate-1/2 blocklength 576 LDPC code

e.g., in ARBP [10]), the presented algorithms LQRD and QRD
are the first approaches that significantly reduce the complexity
spent on search operations, which otherwise dominates the
complexity of the whole decoding process if medium to large
block lengths are used.

We have shown that by not only updating the message
with the largest residual in each step but instead managing
a message queue that contains all messages with residuals
greater than an adaptive threshold the average number of
search operations can be reduced by a factor of up to 12000 for
the employed WiMAX code. At the same time the convergence
speed and error rate performance were shown to be equal or in
some cases even better than for currently known IDS schemes.

Furthermore, the presented algorithms can be controlled by
a factor α that allows for a flexible adaptation of the decoder’s
dynamic and influences the complexity savings as well as the
convergence speed and error rate performance.
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