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Abstract—Much attention has been paid to Low-Density
Parity-Check (LDPC) codes since their rediscovery by MacKay.
They belong to the most powerful channel coding techniques
known today and have a broad range of applications. In wireless
communication systems it is desirable to be able to adjust
the code rate of the employed channel coding scheme (rate-
matching) to allow for a flexible strength of error protection
for different services and to be able to adapt to the varying
quality of the wireless transmission channel. Many of the current
systems that employ LDPC codes like, e.g., WiMAX or WLAN
specify separate codes for each supported code rate. This paper,
in contrast, addresses the problem of using only one mother
code and matching (almost) arbitrary code rates that are lower
than the mother code rate by inserting known (dummy) bits
into the information bit sequence before encoding (also known
as pruning or code shortening). We present a novel rule of
determining (heuristically) optimized positions of dummy bits
within the information bit sequence suitable for LDPC codes.
Simulation results show that the frame error rate performance
can be improved by the novel approach of dummy bit insertion
especially in the error floor region.

I. INTRODUCTION

Modern wireless communication systems support a variety

of applications and are designed to operate over a wide range

of transmission channel qualities. The demanded data rate and

strength of error protection strongly depend on the services,

like, e.g., speech, video, or data transmission. At the same time

the data rate that can be delivered to a user can be limited by

many factors, e.g., the number of active users and the user’s

current channel quality. For such a system a so called rate-

matching procedure is indispensable in order to support all

these requirements and be able to adapt to varying conditions.

Since most channel codes have a fixed code rate, the purpose

of rate-matching is to allow for flexible adjustment of this

rate which can be realized in different ways. The UMTS LTE

system [1], e.g., uses a rate-1/3 turbo code [2] and applies

bit puncturing to achieve code rates higher than 1/3 and

bit repetition to achieve code rates lower than 1/3. In other

standards like IEEE 802.16e (WiMAX) [3] or IEEE 802.11n

(WLAN) [4], separate Low-Density Parity-Check (LDPC)

codes [5], [6] are specified for each supported code rate.

Many techniques have been proposed to construct codes

of higher or lower code rate from a fixed-rate mother LDPC

code. In [7] Li et al. studied parity bit puncturing to construct
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LDPC codes of higher code rates and proposed a special code

extension to achieve lower code rates. Another approach of

constructing codes of lower code rate from a high rate mother

code was presented in [8] using information shortening (which

has been termed dummy bit insertion in [9]). In this paper

we concentrate on rate-matching by dummy bit insertion and

propose a novel rule to select heuristically optimized positions

to insert known dummy bits into the information bit sequence.

Note that in the literature many terms have been used to

describe the concept of inserting known bits before encoding,

including pruning (e.g., [10]) and code or information short-

ening (e.g., [8]). Throughout this work, however, we use the

term dummy bit insertion as introduced in [9].

II. LOW-DENSITY PARITY-CHECK CODES

A binary (N,K) LDPC code is a linear block code defined

by a sparse parity check matrix H of dimension M × N ,

with K denoting the number of information bits, N the

total number of coded bits and M = N − K the number

of parity bits. In the following, we assume H to have full

rank rank(H) = M . The code rate is then given by R =
K
N

= N−M
N

. Hmn denotes the entry of H at row m and

column n. The set N(m) = {n : Hmn 6= 0} contains all bits

that participate in parity check equation m, m = 1, . . . ,M .

Similarly, M(n) = {m : Hmn 6= 0} denotes the set of all

check equations in which bit n participates.

An LDPC code is commonly described by a bipartite graph

consisting of N variable nodes and M check nodes (known as

factor or Tanner graph [11]). Each variable node corresponds

to a code bit and each check node corresponds to a parity check

equation as defined by a row of the parity check matrix. Those

variable nodes corresponding to information bits are denoted

information nodes, while variable nodes corresponding to

parity bits are called parity nodes. Variable node n is connected

to all check nodes in the set M(n) and check node m is

connected to all variable nodes in the set N(m).
For the decoding of LDPC codes, we apply the iterative

Belief Propagation algorithm as described in [12]. After ini-

tialization of each variable-to-check message vmn (i.e., the

message sent from variable node n to check node m) with the

received channel-related L-value Zn [13] for the nth bit, the

so called horizontal and vertical step are computed alternately.

The horizontal step (or check node update) computes the

check-to-variable messages cmn (i.e., the message sent from
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Fig. 1. Exemplary transmission system (a) with and (b) without dummy bit insertion using a rate 2/3 LDPC Encoder, BPSK modulation, an AWGN channel
and Belief Propagation Decoding.

check node m to variable node n) as

cmn = 2 tanh−1





∏

n′∈N(m)\n

tanh
(vmn′

2

)



 , (1)

where the operator “\” denotes exclusion of an element from

a set. Likewise, the vertical step updates all variable-to-check

messages according to

vmn = Zn +
∑

m′∈M(n)\m

cm′n . (2)

Additionally, after each vertical step, the hard decision

ŷn = sign







Zn +
∑

m′∈M(n)

cm′n







(3)

is computed for each variable node n to evaluate the parity

check equations. Decoding is stopped if either all parity check

equations are fulfilled or a maximum number of iterations is

reached.

III. RATE-MATCHING BY DUMMY BIT INSERTION

The concept of achieving lower code rates using a mother

code of fixed rate and dummy bit insertion (i.e., code short-

ening) is depicted in Fig. 1 for an exemplary system using a

rate R = 2/3 LDPC code, Binary Phase Shift Keying (BPSK)

modulation, an Additive White Gaussian Noise (AWGN) chan-

nel, and Belief Propagation (BP) decoding.

In case (a) without dummy bit insertion the rate R = 2/3
code takes K information bits as input and generates

M = 1−R
R

K additional parity bits at the output. In case (b)

Kd known dummy bits are appended to the Keff infor-

mation bits before encoding. The encoder, thus, generates

Meff =
1−R
R

(Keff +Kd) parity bits. Before passing the result-

ing bit stream to the modulator, the dummy bits are removed

(punctured) since they are known at the receiver and therefore

do not need to be transmitted. The resulting effective code rate

Reff amounts to

Reff =
Keff

Keff +Meff

=
Keff

Keff +
1−R
R

(Keff +Kd)

=
R

R+ (1−R)(1 + Kd

Keff
)

=
R

1 + (1−R) Kd

Keff

.

It can easily be seen that any code rate 0 < Reff ≤ R can be

achieved by an accordant choice of the fraction Kd

Keff
(of course

only in quantized steps depending on the absolute values of

Kd and Keff). If no dummy bits are used Reff = R holds and

if the number of information bits approaches zero the effective

code rate also approaches zero.

At the receiver the dummy bits are known and, thus,

provide perfect a priori information that is inserted (after

demodulation) into the received sequence of L-values in form

of values ±∞ (depending on whether the dummy bits have

been set to 0 or 1). Subsequently, the decoding algorithm can

be run as in the case without dummy bit insertion.

A. Optimized Dummy Bit Insertion for Convolutional Codes

Rate-matching by dummy bit insertion for convolutional

codes has been introduced by Xu and Romme in [9] as a

technique for achieving lower code rates by inserting known

bits into the information bit sequence before convolutional

encoding. The perfect a priori information provided by the

dummy bits highly supports the decoding of the adjacent

information bits resulting in significantly improved decoding



quality. However, only slight decoding gains were realized in

conjunction with non-iterative convolutional decoding com-

pared to standardized rate-matching schemes based on bit

repetition [9]. The effect of dummy bit insertion on trans-

mission systems employing iterative decoding has firstly been

analyzed in [14] for a system based on iterative source-channel

decoding (ISCD) [15], [16]. It has further been shown that best

performance can be expected if dummy bits are not simply

appended to the information bits but instead inserted equidis-

tantly into the information bit sequence. This guarantees that

the number of code bits comprising dummy bits as well as

information bits is maximized, which significantly increases

the decoding reliability of the corresponding information bits.

The adaptation to a system based on convolutional turbo

decoding [2] has been performed in [17] for the standardized

UMTS LTE system [1]. The convergence speed as well as the

decoding performance were improved significantly compared

to the bit repetition scheme employed in UMTS LTE.

B. Optimized Dummy Bit Insertion for LDPC codes

We propose a novel rate-matching approach for LDPC codes

that determines optimized dummy bit positions within the

information bit sequence instead of simply appending the

dummy bits to the information bits. Using dummy bit positions

according to optimized degree distributions has already been

proposed, e.g., in [8], [18]. In [19] Liu et al. presented an

algorithm that selects dummy bit positions according to the

variable node degrees and the so called extrinsic-sum. Our

approach follows the argumentation of [17], where dummy bits

are inserted equidistantly into the information bit vector before

convolutional encoding. While convolutional codes introduce

strong dependencies between neighboring bits, the relation

between code bits of an LDPC code is not determined by

the positions within a frame but solely by the connections of

nodes in the Tanner graph. Thus, distributing variable nodes

with perfect knowledge (corresponding to the known dummy

bits at the receiver) throughout the Tanner graph as uniformly

as possible is not as trivial as for convolutional codes.

We propose the following greedy heuristic to optimize the

average minimum pairwise distance (i.e., the length of the

shortest path) between a given number Kd of variable nodes

in a Tanner graph. First, a simple breadth first search is

applied to find the minimum pairwise distances between all K
information nodes. The result is given by the K×K distance

matrix D, where the matrix entry Dij holds the minimum

distance between information node i and information node j.

Note that the distance matrix D is symmetric and has zeros

on the main diagonal, since the Tanner graph is undirected

and thus, only
K(K−1)

2 elements (either the ones above or the

ones below the main diagonal) have to be stored in memory.

After the distance matrix has been determined, Kd informa-

tion nodes are selected and added to the set of dummy nodes V
in a node-by-node manner. The first two nodes that are added

to V are chosen as imax and jmax with

(imax, jmax) = arg max
∀i,j

Dij , (4)

(a) Simple code shortening: average pairwise distance of 2.67 edges
between dummy bits

(b) Optimized dummy bit insertion according to Sec. III-B: average
pairwise distance of 4 edges between dummy bits

Information bits Dummy bits Parity bits

Fig. 2. Exemplary Tanner graph with five parity nodes and five information
nodes, three of which are used for dummy bits. In case (a) simple code
shortening is applied while case (b) uses the algorithm proposed in Sec. III-B
to select dummy bit positions.

i.e., the two most distant information nodes. From the third

node on, the node to be selected next is the information node i∗

that maximizes the average distance to all information nodes j
that have already been selected:

i∗ = arg max
∀i6∈V

1

|V|

∑

∀j∈V

Dij , (5)

where |V| denotes the cardinality of V . The algorithm stops

when Kd nodes have been added to V (i.e., |V| = Kd). A

summary of the algorithm is given in Alg. 1.

For a rate-matching scenario, the number of dummy bits

K ′
d is typically not fixed but possibly varies from one frame

to the next. However, in this case it is still sufficient to run the

algorithm once using Kd = K and keep track of the order in

which the information nodes are added to V , resulting in an

ordered list of potential dummy bit positions (and of length

K). For each requested code rate smaller then the original

code rate, the corresponding number of dummy bit positions

can then simply be obtained as the first K ′
d entries of this list.

Algorithm 1 Find Kd Optimized Dummy Bit Positions

1: Compute distance matrix D holding the minimum pair-

wise distances between all K information nodes

2: Find two most distant nodes (imax, jmax) = arg max
∀i,j

Dij

3: Initialize V = {imax, jmax}

4: while |V| < Kd do

5: Find i∗ = arg max
∀i6∈V

1
|V|

∑

∀j∈V Dij

6: V = V ∪ {i∗}

7: end while
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Fig. 3. Simulation results for the IEEE 802.16e LDPC codes of effective block length Neff = 576. The upper plot shows the frame error rate (FER) over
the channel quality in Es/N0 after 200 decoding iterations. The lower plot shows the FER over the number of decoding iterations at fixed Es/N0 values.
Results are shown for the following three setups:
Reference codes: codes as specified in WiMAX standard.
DBI A: code rate 5/6 WiMAX mother code, dummy bits are appended at the end of payload to match code rates 3/4, 2/3 and 1/2.
DBI B: code rate 5/6 WiMAX mother code, dummy bits are appended at optimized positions according to Sec. III-B to match code rates 3/4, 2/3 and 1/2.

Figure 2 shows an exemplary Tanner graph with five parity

nodes and five information nodes three of which are used for

dummy bits. In case (a), the dummy bit positions are simply

chosen as the last three information bit positions resulting in

an average pairwise distance of 2.67 edges between nodes

associated with dummy bits. In case (b), on the other hand,

the first, second, and fourth node are selected as dummy bit

positions according to the proposed algorithm resulting in an

increased average pairwise distance of 4 edges.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed approach for

LDPC code rate-matching by optimized dummy bit insertion,

we consider the LDPC codes specified in the IEEE 802.16e

WiMAX standard [3]. After LDPC encoding of K = R · N
equiprobable information bits, BPSK modulation is applied

and the resulting symbols are transmitted with energy Es = 1.

The channel is modeled as additive white Gaussian noise

(AWGN) channel with (known) power spectral density σ2
n =

N0/2. The receiver uses a soft demapper followed by Belief

Propagation decoding as described in Sec. II with a maximum

of 200 iterations. The following three setups are considered:

• Reference codes (solid lines)

The codes of coded block length N = 576 and code rates

R ∈ { 1
2 ,

2
3 ,

3
4 ,

5
6} as specified in the WiMAX standard.



• Dummy bit insertion (DBI) A (dotted lines)

Dummy bits are simply appended at the end of the

payload. The rate R = 5
6 code is used as mother code

and 40%, 60%, and 80% of the available information bit

positions are used for dummy bits to match the effective

code rates Reff =
3
4 , Reff =

2
3 , and Reff =

1
2 , respectively.

• Dummy bit insertion (DBI) B (dashed lines)

Same as for the setup DBI A, but dummy bits are now

inserted at optimized positions according to Sec. III-B.

The block lengths N of the codes for the DBI A and

DBI B setups were chosen to result in the same effective block

length Neff = Keff +Meff =
1−R
1−Reff

N = 576 of the transmitted

frame (payload and parity bits without dummy bits) as for the

reference codes (i.e., N = 864 for Reff = 3
4 , N = 1152

for Reff = 2
3 and N = 1728 for Reff = 1

2 ). Note that

despite the increased block lengths of the codes using dummy

bit insertion, decoding complexity is not increased since all

additional nodes and edges of the Tanner graph are associated

with dummy bits. Thus, these nodes and edges do not have

to be considered during decoding, since they hold messages

with values +∞, which is the identity element of the boxplus

operator [13].

The upper plot in Fig. 3 shows the frame error rate

performance over the channel quality Es/N0 in dB. For an

effective code rate of Reff = 3
4 (star markers) the waterfall

behavior of all three setups is nearly identical, yet, the error

floor performance is slightly degraded for the non-optimized

setup DBI A and slightly enhanced for the optimized case

DBI B. Except for a small loss in the waterfall region, a similar

behavior is observed for an effective code rate of Reff = 2
3

(square markers). The most evident difference between setups

DBI A and DBI B can be seen for the code rate Reff = 1
2

(circle markers). For the non-optimized case DBI A, the error

floor already starts at a frame error rate of about 10−2, in

contrast to the optimized case DBI B which comes very close

to the original rate 1/2 code with a loss of less than 0.2 dB

near the waterfall and even less in the error floor region.

In the three lower plots of Fig. 3, the convergence behavior

is depicted for the three different setups. For each effective

code rate Reff the frame error rate is plotted over the number of

decoding iterations for a fixed Es/N0 value. For Reff =
1
2 and

Es/N0 = 0.99 dB (left plot) it can be seen that convergence

is much slower for setup DBI A than for the reference codes

and setup DBI B. The setup DBI B using optimized dummy

bit insertion, however, converges even faster than the original

rate 1/2 code but achieves a slightly higher frame error rate

if the number of decoding iterations is high. For Reff = 2
3

and Es/N0 = 2.64 dB (center plot), a very similar behavior is

observed. For Reff =
3
4 and Es/N0 = 3.75 dB (right plot), the

original rate 3/4 code exhibits the slowest convergence of all

setups but still converges to a lower frame error rate than for

setup DBI A. The optimized dummy bit insertion (DBI B),

however, has the fastest convergence and also achieves the

best frame error rate for small as well as for high numbers of

iterations.

V. CONCLUSION

In this paper we have presented a novel algorithm for

LDPC code rate-matching by dummy bit insertion. Known

dummy bits are inserted into the information bit sequence

before encoding, which results in a reduction of the effective

code rate. The positions of dummy bits are determined by

a heuristic optimization rule which results in a maximized

average pairwise distance between the associated variable

nodes. This optimization ensures that the perfect knowledge

provided by the dummy bits to the decoder, is evenly dis-

tributed throughout the code’s Tanner graph. It was shown

by simulation results that significant gains in terms of frame

error rate can be achieved by this approach compared to non-

optimized insertion of dummy bits at the end of the payload.
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