
ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 1 / 6

Breaking Cycles with Dummy Bits:

Improved Rate-Compatible LDPC Codes

with Short Block Lengths

Moritz Beermann and Peter Vary

Institute of Communication Systems and Data Processing ()

RWTH Aachen University, Germany

{beermann|vary}@ind.rwth-aachen.de

Abstract—It is well-known that the presence of cycles in
a factor graph degrades the performance of message-passing
algorithms due to the violation of the assumption of statistical
independence of messages. While finding and counting all cycles
in a graph is a very hard problem, efficient algorithms have been
proposed recently to find all short cycles up to some maximum
length. For the message-passing decoding of Low-Density Parity-
Check (LDPC) codes, these short cycles are the main cause for
the existing performance gap to optimal Maximum Likelihood
(ML) decoding. In this paper, we exploit this observation in the
proposed novel method of realizing rate-compatible (RC) LDPC
codes with short block lengths by inserting known dummy bits
into the information bit sequence before encoding. This technique
can be seen as a special case of traditional code shortening and
allows to achieve lower code rates using one fixed rate mother
code. The novelty of the proposed method lies in the selection
of the specific dummy bit positions in a way that “breaks” a
significant number of short cycles in the mother code’s graph
which, thus, no longer degrade the decoding performance.

I. INTRODUCTION

Forward Error Correction (FEC) is a key component of

virtually every modern digital communication system and

enables the reliable transmission of any kind of digital content.

In many of these systems, most notably in the field of wireless

communications, the transmission channel is not fixed and

its quality might change quickly over time. At the same

time, the demanded data rate and strength of error protection

requirements strongly depend on the supported services, like,

e.g., speech, video, or data transmission. The FEC function-

ality of such systems commonly allows for an adaptation to

the varying user requirements and the current state of the

transmission channel, in order to make efficient use of the

available resources, as, e.g, the limited bandwidth of a wireless

communication system. FEC codes that can achieve different

protection levels and information data rates (i.e., different code

rates) based on one fixed so called mother code are frequently

called rate-compatible (RC).

One of the most powerful FEC schemes are Low-Density

Parity-Check (LDPC) codes, originally invented by Gallager

in [1] and rediscovered by MacKay in [2]. LDPC codes

are included in many of today’s communication systems like

This work was supported by the research cluster located at RWTH
Aachen University, Germany, funded by the German research council DFG.

IEEE 802.16e (WiMAX) [3] or IEEE 802.11n (WLAN) [4].

However, all standards that provide different code rates have

in common that separate LDPC codes are specified for each

code rate. As a consequence, transmitter and receiver have to

support all specified codes, which hinders an efficient imple-

mentation and leads to an increased hardware complexity.

Rather than using multiple codes, there exist many alterna-

tive techniques for the construction of LDPC codes of higher

or lower code rates from a fixed-rate mother code (in the

following this process will be referred to as rate-matching).

In [5], Li et al. studied parity bit puncturing to construct

LDPC codes of higher code rates and proposed a special code

extension to achieve lower code rates. Another approach of

constructing codes of lower code rates from a high rate mother

code was presented in [6] by Tian and Jones using information

shortening (which has also been termed dummy bit insertion

in [7]). Their approach is especially useful for medium to

large block lengths since it uses a density evolution [8] based

optimization of degree distributions to construct a parity check

matrix especially suitable for information shortening. While

these kinds of optimizations rely on asymptotic assumptions,

like infinite block size and a cycle free graph representation,

in the finite length regime, the influence of a code’s degree

distributions on its performance is less distinctive. Instead, as

the block size gets smaller, the density of edges in the code’s

Tanner graph [9] gets higher and the increasing number of

short cycles significantly degrades the decoding performance.

To account for short block lengths, different variations of

dummy bit insertion [10], [11], puncturing [12], and code

extension [13] have been presented.

Motivated by the aforementioned observation that the main

cause of performance degradation for short to medium block

lengths is the cycle structure of the Tanner graph, we propose

a novel method of rate-matching by dummy bit insertion that

utilizes the dummy bit positions to significantly reduce the

number of short cycles and, thus, is especially effective for

short to medium block sizes. The effect of increasing a code’s

girth by deleting columns has also been utilized by Milenkovic

et al. in [14]. However, their approach can only be used

for specially structured so called array codes and was not

designed to be used for rate-matching, while our approach

does not require any special code structure.

ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 2 / 6

Append

Dummy

Bits

Rate 2/3
LDPC

Encoder

Puncture

Dummy

Bits

BPSK

Modulator
BPSK De-

modulator

Insert

Perfect

Knowledge
BP Decoder

x̃ x y ỹ

KeffKeffKeffKeff Kd Kd MM

n ∼ N (0, σ2)

Information bits Dummy bits Parity bits

Fig. 1. Exemplary transmission system with dummy bit insertion using a rate 2/3 LDPC Encoder, BPSK modulation, an AWGN channel and Belief

Propagation (BP) Decoding. Encoding with insertion of Kd dummy bits results in the effective code rate Reff =
Keff

Keff+M
= 1

2
.

Note that in the literature many terms have been used to

describe the concept of inserting known bits before encoding,

including pruning (e.g., [15]) and code or information short-

ening (e.g., [6]). Throughout this work, however, we use the

term dummy bit insertion as introduced in [7], since we think

it best describes the proposed mechanism.

II. LOW-DENSITY PARITY-CHECK CODES

A binary (N,K) LDPC code is a linear block code defined

by a sparse parity check matrix H of dimension M × N ,

with K denoting the number of information bits, N the

total number of coded bits and M = N − K the num-

ber of parity bits. In the following, we assume H to have

full rank rank(H) = M . The code rate is then given by

R = K
N

= N−M
N

. Hmn denotes the entry of H at row m
and column n. The set N(m) = {n : Hmn 6= 0} contains all

bits that participate in parity check equation m. Similarly,

M(n) = {m : Hmn 6= 0} denotes the set of all check equa-

tions in which bit n participates.

An LDPC code is commonly described by a bipartite graph

G = (V ∪ C, E) (known as factor or Tanner graph [9])

consisting of the set V of N variable nodes, the set C of M
check nodes and the set E of E edges connecting variable

nodes to check nodes. Each variable node corresponds to a

code bit and each check node corresponds to a parity check

equation as defined by a row of the parity check matrix. The

set of variable nodes V can be further partitioned into the set

I of K information nodes (variable nodes corresponding to

information bits) and the set P of M parity nodes (variable

nodes corresponding to parity bits). Variable node n is con-

nected to all check nodes in the set M(n) and check node m
is connected to all variable nodes in the set N(m).

For the decoding of LDPC codes, we apply the iterative

Belief Propagation algorithm as described in [16]. After ini-

tialization of each variable-to-check message vmn (i.e., the

message sent from variable node n to check node m) with the

received channel-related L-value Zn [17] for the nth bit, the

so called horizontal and vertical step are computed alternately.

The horizontal step (or check node update) computes the

check-to-variable messages cmn (i.e., the message sent from

check node m to variable node n) as

cmn =
∑

n′∈N(m)\n

⊞ vmn′ , (1)

where “⊞” denotes the boxplus operator [17], and “\” denotes

the exclusion of an element from a set. Likewise, the vertical

step updates all variable-to-check messages according to

vmn = Zn +
∑

m′∈M(n)\m

cm′n . (2)

Additionally, after each vertical step, the hard decision

ŷn = sign{Zn +
∑

m′∈M(n)

cm′n} (3)

is computed for each variable node n to evaluate the parity

check equations. Decoding is stopped if either all equations

are fulfilled or a maximum number of iterations is reached.

III. RATE-MATCHING BY DUMMY BIT INSERTION

The general concept of achieving lower code rates using a

mother code of fixed rate and dummy bit insertion is depicted

in Fig. 1 for an exemplary system using a rate R = 2
3

LDPC code, Binary Phase Shift Keying (BPSK) modulation,

an Additive White Gaussian Noise (AWGN) channel, and

Belief Propagation (BP) decoding.

A. Encoding

The rate R mother code takes K = Keff+Kd bits, composed

of Keff information bits and Kd known dummy bits, as input

and generates M = 1−R
R

(Keff +Kd) additional parity bits at

the output. In the following, we will w.l.o.g. assume that all

dummy bits are set to 0. Before passing the resulting bit stream

to the modulator, the dummy bits are removed (punctured)

since they are known at the receiver and therefore do not

need to be transmitted. The effective block length is denoted

Neff = Keff +M resulting in the effective code rate

Reff =
Keff

Keff +M
=

Keff

Keff +
1−R
R

(Keff +Kd)

=
1− kd

R−1 − kd
(4)

where kd = Kd

Kd+Keff
denotes the fraction of information bit

positions that are filled with dummy bits (e.g., 50% in Fig. 1).

It can easily be seen that any code rate 0 < Reff ≤ R can

be achieved by an accordant choice of kd (of course only in

discrete steps depending on the absolute values of Kd and

Keff). If no dummy bits are used (i.e., kd = 0) Reff = R holds

and if the number of information bits approaches zero (i.e.,

kd → 1) the effective code rate also approaches zero.

ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 3 / 6

B. Decoding

At the receiver the dummy bits are known and, thus,

provide perfect a priori information that is inserted (after

demodulation) into the received sequence of L-values in form

of values +∞ (according to the known bit value of 0).

These positions with perfect knowledge influence the message-

passing decoding as follows.

If a parity check equation of the form x1+x2+ . . . xη = 0
is considered, in which one or more dummy bits participate

that are known to be 0, the equation can be equivalently

described by simply discarding those bits from the equation,

due to xi + 0 = xi (note that here “+” denotes the bitwise

XOR operator). An analogous equivalence also holds for the

computation of messages in the L-value domain during a

check node update according to (1) since Li ⊞ +∞ = Li.

Consequently, the outgoing messages vmn = +∞ of variable

nodes n that are associated with dummy bits (these nodes

are denoted dummy nodes in the following) do not have to

be considered in any check node update. Since there is no

need for improving the reliability of a dummy bit’s (known)

value, also the incoming messages cmn of dummy nodes n are

of no particular use. According to this observation, all edges

connected to dummy nodes can be removed from the Tanner

graph without any influence on the decoding process. Hence,

the effective graph as “seen” by the decoder is the graph of the

mother code with all dummy nodes (and all connected edges)

simply removed. Accordingly, the effective parity check matrix

is achieved by removing the columns associated with dummy

bit positions from the mother code’s parity check matrix.

As a consequence, even though the block length of the

employed mother code is N , the complexity of decoding is

equivalent to that of decoding an LDPC code with smaller

block length N ′ = Neff =
1−R
1−Reff

N and code rate R′ = Reff.

However, note that it is not mandatory to remove any nodes

or edges at all but just serves to reduce complexity. Existing

decoder implementations do not have to be changed in any way

and are fully compatible with this rate-matching technique.

IV. PROPOSED METHOD: BREAKING CYCLES

As described in the previous section, from a message-

passing decoder’s point of view, inserting dummy bits means

removing edges from the Tanner graph. We propose a novel

method of choosing the positions for the dummy bits so

that the removal of edges “breaks” as many short cycles as

possible. More precisely, since removing a node also removes

all cycles running through it, the nodes chosen for dummy bits

are the ones with most cycles running through them.

Naturally, this approach will tend to select many high degree

nodes, since these are more likely to have a high number of

cycles. If the resulting effective graph is desired to have a

specific predetermined variable node degree distribution [8],

this can easily be achieved by a minor modification of the

proposed approach (i.e., pre-compute the required number of

dummy bits for each degree and stop choosing these degrees

as soon as the target quantity is reached). However, the

optimization of degree distributions is not the focus of this

Algorithm 1 Breaking Cycles algorithm for finding optimized

order d of dummy bit positions

1: Given a Tanner graph G = (I ∪ P ∪ C, E)
2: Initialize I ′ = I, E ′ = E , G′ = G
3: Initialize vector of dummy nodes d = [] // empty vec.

4: while size(d) < K do

5: Find the length g of the shortest cycle in G′

6: Find the length gI′ of the shortest cycle running through

any information node i ∈ I ′

7: if (gI′ > 2g − 2) then

8: break // cycles cannot be found

9: end if

10: Compute C
g
I′

i for all i ∈ I ′

11: Find i∗ = arg max
∀i∈I′

C
g
I′

i

12: d = [d, i∗] // append i∗ to d

13: I ′ = I ′ \{i∗} // remove i∗ from I ′

14: E ′ = E ′ \ Ei∗ // Ei∗ denotes all edges connected to i∗

15: G′ = (I ′ ∪ P ∪ C, E ′)
16: end while

17: if size(d) < K then

18: for all i ∈ I ′ do

19: d = [d, i] // Select remaining positions arbitrarily

20: end for

21: end if

paper and will be disregarded for the moment (the influence

of a modified degree distribution will be shown in Sec. V-B).

In [18], an efficient message-passing algorithm for counting

the number of cycles of length up to 2g − 2 was presented,

with g being the girth, i.e., the length of the shortest cycle in

the graph. The complexity of the algorithm grows as O
(

gE2
)

which is only feasible for moderate block lengths. We use

a slight modification of this algorithm that does not count

the global number of cycles but the number Cl
i of cycles of

length l running through each information node i ∈ I (i.e.,

each potential candidate for a dummy bit position).

Given a Tanner graph G = (I ∪ P ∪ C, E), the proposed

algorithm selects information nodes from I to be used for

dummy bits in a node by node manner until all K nodes

have been selected. In each step, the selected node i∗ is the

one with the largest number of cycles CgI
i∗ of the currently

shortest length gI in the set I. After node i∗ has been removed

from the graph, the numbers of cycles Cl
i of other nodes are

potentially reduced and the shortest cycle length gI might

increase. Thus, gI and CgI
i have to be recomputed for all

remaining nodes i after each step. It is theoretically possible

that at some stage the value gI becomes larger than 2g − 2
(with g still denoting the current global girth). In this case,

the values CgI
i can no longer be computed by the algorithm

in [18]. However, in practice this only happens after almost all

K nodes from the set I have already been selected, so that the

few remaining nodes can simply be chosen in some arbitrary

fashion. Finally, the algorithm yields an ordered vector of bit

positions d of size K. For each mother code, this algorithm has

ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 4 / 6

Algorithm 2 Simplified Breaking Cycles algorithm for finding

optimized order d of dummy bit positions

1: Given a Tanner graph G = (I ∪ P ∪ C, E)
2: Initialize I ′ = I
3: Initialize vector of dummy nodes d = [] // empty vec.

4: Find the length gi of the shortest cycle running through

node i, for all i ∈ I
5: Compute Cgi

i for all i ∈ I
6: Set C2t

i = 0 for all i ∈ I and all t with 2 ≤ t < gi/2
7: while size(d) < K do

8: Find l = min
∀i∈I′

gi

9: Find i∗ = arg max
∀i∈I′

Cl
i

10: d = [d, i∗] // append i∗ to d

11: I ′ = I ′ \{i∗} // remove i∗ from I ′

12: end while

to be executed only once offline to find the vector d. To realize

any effective code rate Reff < R, the first Kd = 1−ReffR
−1

1−Reff
K

positions in d are then simply chosen as dummy bits. An

algorithmic description is given in Alg. 1.

Of course, the columns of the parity check matrix can

simply be reordered according to d. This allows to achieve

the performance gain of the proposed method by appending

the desired number of dummy bits to the end (or likewise to

the beginning) of the information bits.

One drawback of the proposed approach is its high com-

putational complexity, since the algorithm of [18] has to

be executed K times (line 10 of Alg. 1), which leads to

an overall complexity of O(N3). Although, the method is

mainly intended to be used for moderate block lengths N and

for a given code only has to be executed once in advance,

this complexity becomes quickly infeasible for block lengths

of about a few thousand bits. To deal with this complexity

problem, we also propose a simplified version of the above

algorithm, that only computes the numbers of cycles Cl
i once

and selects dummy bit positions solely based on these values.

The simplified algorithm is described in Alg. 2.

Empirical investigations show, that for this simplified ver-

sion the amount, by which the number of short cycles in

the graph is reduced, is almost the same as for the more

complex first proposed algorithm. In Tab. I the numbers of

cycles are given for an optimized rate 1/2 Progressive Edge-

Growth (PEG) LDPC code [19] with block length N = 2304,

girth g = 6, and degree distributions (in node perspective)

λ(x) = 0.45x2 + 0.37x3 + 0.03x4 + 0.15x11

and ρ(x) = 0.47x7 + 0.53x8.

In the upper part, the global numbers of cycles Cl of lengths

l ∈ {4, 6, 8, 10} are shown, while the lower part shows only

those cycles that are running through information nodes I
denoted by Cl

I , which are of special interest since only

these cycles can be eliminated by dummy bits. To achieve

these numbers Cl
I , we simply count the cycles in a node

TABLE I
CYCLES OF RATE 1/2 PEG LDPC MOTHER CODE WITH N = 2304

global cycles C4 C6 C8 C10

mother code, Kd = 0 0 2285 141934 3379631

Approach of [10], Kd = 768 0 1768 101415 2202533

Approach of [11], Kd = 768 0 1822 104556 2294903

Proposed, Kd = 768 0 269 9573 119791

Proposed simplified, Kd = 768 0 269 10438 128547

node wise cycles of all i ∈ I C4
I

C6
I

C8
I

C10
I

mother code, Kd = 0 0 3506 281903 8414973

Approach of [10], Kd = 768 0 2436 183644 4989422

Approach of [11], Kd = 768 0 2559 190889 5249099

Proposed, Kd = 768 0 0 1086 21745

Proposed simplified, Kd = 768 0 0 1990 31124

by node manner leading to cycles potentially being counted

multiple times, which is why the values Cl
I are larger than

the corresponding values Cl. In addition to the cycles of

the mother code, the according numbers are also given if

dummy bit insertion with Kd = 768 (resp. kd = 66.7%)

is used to achieve Reff = 1
4 . Four different approaches of

finding optimized dummy bit positions are considered: the one

presented by Liu et al. in [10], the one we presented in [11],

the proposed Alg. 1, and the proposed simplified Alg. 2.

While the approaches of [10] and [11] only reduce the

number of cycles of length 6 by about 20–25%, both proposed

approaches achieve a reduction by about 90%. A similar

behavior is observed for the cycles of length 8 and 10. In

the lower part of the table, it is worth noting that within

the information nodes I, in fact, the proposed approaches

eliminate all cycles of length 6 and more than 99% of the

cycles of lengths 8 and 10.

V. SIMULATION RESULTS

To numerically evaluate the performance of the pro-

posed rate-matching approach, we employ the rate 1/2 PEG

LDPC code with block length N = 2304 as described in

Sec. IV as mother code and apply dummy bit insertion with

Kd ∈ {768, 1024} (resp. kd ∈ {66.7%, 88.9%}) dummy bits

to match effective code rates Reff ∈ { 1
4 ,

1
10}. The following

five setups are considered in Fig. 2:

• Approach of [10] (square markers)

• Approach of [11] (triangle markers)

• Proposed method (see Alg. 1) (plus markers)

• Proposed simplified method (see Alg. 2) (star markers)

• Reference PEG codes (circle markers)

The reference PEG codes (including the used mother code)

have been optimized for their specific code rates and serve for

comparison only. They have code rates R ∈ { 1
2 ,

1
4 ,

1
10} and

block lengths N ∈ {2304, 1536, 1280}, which correspond to

the effective code rates Reff and block lengths Neff achieved

by the dummy bit insertion.

After LDPC encoding of the equiprobable information bits,

BPSK modulation is applied and the resulting symbols are

ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 5 / 6

−9 −8 −7 −6 −5 −4 −3 −2 −1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

F
E
R

Es/N0

opt. PEG codes Liu et al. [10] Beermann et al. [11] proposed Alg. 1 proposed Alg. 2

Reff = 1
10

Reff = 1
4

mother code, R = 1
2

1.5 dB gain
0.9 dB
gain

Fig. 2. Frame error rate (FER) results for rate 1
2

PEG mother code with block length N = 2304 and four different approaches of dummy bit insertion:

algorithm of [10], algorithm of [11], proposed Alg. 1, and proposed simplified Alg. 2. As a reference, optimized PEG codes of rates 1
4

and 1
10

are also shown.

transmitted with energy Es = 1. The channel is modeled as

additive white Gaussian noise (AWGN) channel with (known)

power spectral density σ2
n = N0/2. The receiver uses a soft

demapper followed by Belief Propagation decoding as de-

scribed in Sec. II with a maximum of 100 iterations.

A. Frame error rate performance

Fig. 2 shows the frame error rate performance over the

channel quality Es/N0 in dB. For Reff =
1
4 (solid lines) it can

be seen that for the approaches that use dummy bit insertion

according to [10] and [11], there is a performance gap of

about 1 dB compared to the optimized PEG code. Both of the

proposed approaches, however, perform even a little better than

the optimized PEG code in the waterfall region, but show a

slight error floor for error rates below 10−4. At an error rate of

10−4, a gain of about 0.9 dB is achieved compared to the other

two methods. For Reff =
1
10 , the proposed approaches show

a performance gap of about 0.6 dB compared to the reference

PEG code, but still clearly outperform the approaches of [10]

and [11] by about 1.5 dB.

Furthermore, the simulation results show that in terms of

error correction performance, the proposed simplified Alg. 2

performs very close to Alg. 1, which complies with the

observation that it also reduces the number of short cycles

to almost the same extent.

As a result, the proposed novel method increases the range

of code rates for which rate-matching by dummy bit insertion

can compete with specifically optimized codes, as compared

to previously known methods.

B. Influence of degree distributions

As already indicated at the beginning of Sec. IV, different

algorithms for the selection of dummy bit positions can result

in different effective degree distributions if the allowed degrees

of the dummy nodes are not predefined. The variable node

degree distributions of the mother code, the effective rate 1
10

code after dummy bit insertion according to [10] and according

to Alg. 1, as well as the optimized rate 1
10 PEG code are shown

in Tab. II. The decoding thresholds (theoretical waterfall cliffs)

have been computed with density evolution [8] under the

assumption of concentrated check node degree distributions.

Since these varying degree distributions obviously have an

influence on the frame error rate results from the previous sec-

tion, we have conducted the following additional experiments

for the effective rate Reff = 1
10 : we instantiated 20 random

selections of dummy bit positions (i.e., random shortening)

with the same degree distribution as resulting from Alg. 1.

Furthermore, by predefining the allowed number of dummy

nodes for each degree, we have constrained the proposed

Alg. 1 to exactly match the degree distribution as achieved

by [10]. The results are shown in Fig. 3.

It can be seen that the proposed Alg. 1 achieves better

performance than random dummy bit insertion with the same

degree distribution (red versus turquois). Moreover, also for

the degree distribution achieved by the algorithm from [10]

with a much higher threshold, the proposed method still

outperforms the reference algorithm (purple versus blue).

Altogether, the novel approach of breaking cycles with

dummy bits is an effective method to find an optimized set

of dummy bit positions that shows superior error correction

performance in a rate-matching scenario with a single mother

code. It can easily be used in conjunction with a predeter-

mined optimized degree distribution to achieve near capacity

performance over a wide range of code rates (e.g., 0.5 to 0.1
as presented here).

ITG SCC, Jan 2013, Munich, Germany, PRINT ISBN: 978-3-8007-3482-5 6 / 6

TABLE II
EFFECTIVE VARIABLE NODE DEGREE DISTRIBUTIONS IN NODE

PERSPECTIVE AND Es/N0 THRESHOLDS

λ(x) =
∑

i≥2 λix
i λ2 λ3 λ4 λ11

(

Es

N0

)∗

dB

mother code, R = 1
2

0.450 0.370 0.030 0.150 −2.63

[10], Reff =
1
10

0.403 0.334 0.028 0.235 −6.42

Proposed, Reff =
1
10

0.492 0.345 0.028 0.135 −8.34

opt. PEG, R = 1
10

0.718 0.136 0.098 0.048 −11.03

It should further be noted that the proposed method does not

rely on any specific code contruction algorithm. In this section

the PEG construction was only used as an example since it is

one of the most prominent code construction methods. Even

though, for this specific combination of code construction

and dummy bit insertion, it might be possible to incorporate

the cycle breaking apporoach directly into the process of

constructing the PEG code (which is also based on the idea of

avoiding short cycles), for the sake of generality we consider

both processes as seperate entities.

VI. CONCLUSION

In this paper, we have presented a novel approach of dummy

bit insertion for the implementation of rate-compatible LDPC

codes, allowing to achieve close-to-capacity error correction

performance over a wide range of code rates using only a

single fixed rate mother code. Known dummy bits are inserted

into the information bit sequence before encoding, resulting

in a reduced effective code rate. The novelty of the proposed

approach lies in the strategy of selecting the positions to be

used for dummy bits. Based on a recently published algorithm

for counting all short cycles in a bipartite graph, the proposed

algorithm selects dummy bit positions in a node by node

manner to break as many of those short cycles as possible. As

a result, the effective graph, as seen by the decoder, contains

only a small fraction of the cycles of the initial mother code.

Furthermore, it has been demonstrated that a simplified version

with reduced complexity is capable of reducing the number of

cycles almost to the same extent. Simulation results have been

presented for the two proposed approaches and two reference

approaches from the literature which are clearly outperformed

by the novel methods.

It has further been demonstrated how the insertion of

dummy bits modifies the degree distribution and to what

extent this influences the error correction performance. Even

though the decoding threshold of the effective code’s degree

distribution after rate-matching already has a significant effect,

the error correction performance is even further improved by

the proposed method of breaking cycles with dummy bits.

REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform.

Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
[2] D. J. C. MacKay and R. M. Neal, “Good Codes based on Very Sparse

Matrices,” Cryptography and Coding, 5th IMA Conference, Springer,
Berlin, Germany, 1995, pp. 100–111.

−9 −8 −7 −6 −5 −4 −3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

F
E
R

Es/N0

opt. PEG code

Liu et al. [10]

Alg. 1 with

deg. dist. of [10]

Alg. 1

random shortening,

deg. dist. of Alg. 1

same degree

distribution

same degree

distribution

Fig. 3. Evaluation of the influence of different degree distributions of the
proposed Alg. 1 and [10] for effective code rate Reff =

1
10

.

[3] “IEEE 802.16e: Air Interface for Fixed and Mobile Broadband Wireless
Access Systems,” IEEE Standard 802.16e, 2004.

[4] “IEEE 802.11n, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, Amendment 5: Enhancements
for Higher Throughput,” IEEE Standard 802.11n-2009, 2009.

[5] J. Li and K. Narayanan, “Rate-Compatible Low Density Parity Check
Codes for Capacity-Approaching ARQ Schemes in Packet Data Com-
munications,” Proceedings Int. Conf. on Communications, Internet, and

Information Technology, Virgin Islands, USA, Nov. 2002, pp. 201–206.

[6] T. Tian and C. R. Jones, “Construction of Rate-Compatible LDPC Codes
Utilizing Information Shortening and Parity Puncturing,” EURASIP J.

Wirel. Commun. Netw., vol. 5, pp. 789–795, Oct. 2005.

[7] W. Xu and J. Romme, “A Class of Multirate Convolutional Codes by
Dummy Bit Insertion,” IEEE Global Telecommunications Conference

(GLOBECOM), San Francisco, CA, USA, November 2000.

[8] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity-
Check Codes Under Message-Passing Decoding,” IEEE Trans. Inform.

Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[9] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE

Trans. Inform. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[10] X. Liu, X. Wu, and C. Zhao, “Shortening for Irregular QC-LDPC
Codes,” IEEE Comm. Lett., vol. 13, no. 8, pp. 612–614, Aug. 2009.

[11] M. Beermann, T. Breddermann, and P. Vary, “Rate-Compatible LDPC
Codes Using Optimized Dummy Bit Insertion,” 8th International Sym-

posium on Wireless Communication Systems, Nov. 2011, pp. 447–451.

[12] J. Ha, J. Kim, D. Klinc, and S. McLaughlin, “Rate-Compatible Punc-
tured Low-Density Parity-Check Codes with Short Block Lengths,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 728–738, Feb. 2006.

[13] G. Yue, X. Wang, and M. Madihian, “Design of Rate-Compatible
Irregular Repeat Accumulate Codes,” IEEE Trans. Comm., vol. 55, no. 6,
pp. 1153–1163, June 2007.

[14] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened Array Codes of
Large Girth,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3707–3722,
Aug. 2006.

[15] O. Collins and M. Hizlan, “Determinate State Convolutional Codes,”
IEEE Trans. Comm., vol. 41, no. 12, pp. 1785–1794, Dec. 1993.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. San Mateo, CA, USA: Morgan Kaufmann, 1988.

[17] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary
Block and Convolutional Codes,” IEEE Trans. Comm., vol. 42, no. 2,
pp. 429–445, Mar. 1996.

[18] M. Karimi and A. Banihashemi, “A Message-Passing Algorithm for
Counting Short Cycles in a Graph,” IEEE Information Theory Workshop

(ITW), Jan. 2010.

[19] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and Irregular
Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inform. Theory,
vol. 51, no. 1, pp. 386–398, Jan. 2005.

