
IEEE SiPS, Oct. 2013, Taipei, Taiwan 1 / 6

HIGH SPEED DECODING OF NON-BINARY IRREGULAR LDPC CODES USING GPUS

Moritz Beermann, Enrique Monzó⋆, Laurent Schmalen†, Peter Vary

Institute of Communication Systems and Data Processing (), RWTH Aachen University, Germany

⋆ now with Leineweber GmbH, Aachen, Germany

† now with Bell Laboratories, Alcatel-Lucent, Stuttgart, Germany

{beermann|vary}@ind.rwth-aachen.de

ABSTRACT

Low-Density Parity-Check (LDPC) codes are very powerful chan-

nel coding schemes with a broad range of applications. The exis-

tence of low complexity (i.e., linear time) iterative message passing

decoders with close to optimum error correction performance is one

of the main strengths of LDPC codes. It has been shown that the

performance of these decoders can be further enhanced if the LDPC

codes are extended to higher order Galois fields, yielding so called

non-binary LDPC codes. However, this performance gain comes at

the cost of rapidly increasing decoding complexity. To deal with

this increased complexity, we present an efficient implementation of

a signed-log domain FFT decoder for non-binary irregular LDPC

codes that exploits the inherent massive parallelization capabilities

of message passing decoders. We employ Nvidia’s Compute Unified

Device Architecture (CUDA) to incorporate the available processing

power of state-of-the-art Graphics Processing Units (GPUs).

Index Terms— non-binary LDPC codes, iterative decoding,

GPU implementation

1. INTRODUCTION

Low-Density Parity-Check (LDPC) codes were originally presented

in [1] and later rediscovered in [2]. The most prominent decod-

ing algorithm for LDPC codes is the belief propagation (BP) algo-

rithm [3], which has linear time complexity. Even though BP de-

coding is only an approximation of maximum likelihood for practi-

cal codes, a performance close to the Shannon limit is observed for

long LDPC codes. It has been shown that the performance of short-

to medium-length LDPC codes can be improved by employing so

called non-binary LDPC codes over higher order Galois fields Fq

with q = 2p (p ∈ N) elements [4].

While the decoding complexity of binary LDPC codes of di-

mension N bin is in the order of O(N bin), this is not the case for non-

binary LDPC codes of length N = N bin/p (this relation of N and

N bin serves for a fair comparison, as will be explained later). With

a straightforward implementation [4] , the decoding complexity in-

creases to O(Nq2) = O(N22p). With an intelligent, signed-log

domain Fast Fourier transform (FFT) based approach [5, 6, 7], this

complexity can be reduced to O(Nq log2 q), which will still be con-

siderably higher than the complexity of binary belief propagation, if

large Galois field dimensions are used.

Especially for applications where decoding complexity is not a

main concern (e.g., deep space applications), employing non-binary

LDPC codes is a good choice. They exhibit excellent error correc-

tion performance while the complexity stays linearithmic (i.e., better

than any polynomial time algorithm with exponent greater than 1).

Approaches to further decrease the decoding complexity exist

(e.g., [8]), but they suffer from an additional performance penalty

compared to BP. However, for comparison, it is often desirable to

assess the performance of the BP decoder without any approxima-

tions. Therefore, we propose to build a fast reference decoder using

the parallel computing capabilities of today’s graphic cards.

The massive computational power of state-of-the-art graphic

cards has led to the utilization of Graphics Processing Units (GPUs)

for signal processing applications, e.g., [9], [10]. Graphic cards

with GPUs by Nvidia Corporation can be elegantly programmed

in a language similar to C using Nvidia’s Compute Unified Device

Architecture (CUDA) [11]. The main advantage of GPUs is the

large amount of processing cores available on the processor, even

in low-end, low-cost products. These can be used for a parallel

execution of many problems.

In this paper, we present a massively parallelized implementa-

tion of the signed-log domain FFT based decoder that was presented

in [7]. The implementation is generic, i.e., it works for arbitrary ir-

regular codes and does not require any special code structure. The

CUDA framework is employed to adapt a single-core reference CPU

implementation to be executed on one of Nvidia’s general purpose

GPUs. Decoder throughput results are presented for the CPU as well

as the GPU implementations for different Galois field dimensions.

2. NON-BINARY LDPC CODES

2.1. Description

An (N,K) non-binary LDPC code over Fq := {0, 1, α, . . . αq−2}
(α denoting a root of the primitive polynomial defining Fq) with

q = 2p (N coded symbols and K information symbols of p ∈ N

bit each) is defined as the null space of a sparse parity check ma-

trix H with entries from Fq and of dimension M × N (with M =
N − K being the number of parity check symbols). Hm,n ∈ Fq

denotes the entry of H at row m and column n. The set N (m) =
{n : Hm,n 6= 0} denotes the symbols that participate in parity check

equation m. Similarly, the set M(n) = {m : Hm,n 6= 0} contains

the check equations in which symbol n participates. Exclusion is de-

noted by the operator “\”,e.g., M(n)\{m} describes the set M(n)
with check equation m excluded. An irregular LDPC code has the

property that |M(n)| 6= const. and |N (m)| 6= const. Similarly to

the binary case, non-binary LDPC codes are commonly described by

their (weighted) Tanner graph [12], which is a bipartite graph with

N variable nodes and M check nodes connected by edges of weight

Hm,n according to the entries of H. Most decoding algorithms are

so called message passing algorithms that iteratively pass messages

between the variable and check nodes.

IEEE SiPS, Oct. 2013, Taipei, Taiwan 2 / 6

Channel
LLRs

Output

Bits Yes No

Initialize
Qn, Qn,m,

and Rm,n

Evaluate
Check

Equations

Abort?
Hard Decision

of Qn

Start

Stop
Permute
Qn,m

Log-FFT

F(·)
Check Node
Update (1a,b)

Inv. Log-FFT

F−1(·)

Inv. Permute

R̃m,n

Variable Node
Update (2)

Update

posteriors Qn

Fig. 1. Flowchart of the non-binary signed-log domain FFT LDPC decoder. Each gray shaded block represents a CUDA kernel (see Sec. 3.2).

2.2. Decoding Algorithm: Non-Binary Belief Propagation

A decoding algorithm for non-binary LDPC codes over Fq has al-

ready been described in [4]. This algorithm uses the Fast Fourier

Transform (FFT) over Fq for efficiently computing the check node

operations (see also [5]). Its drawback is, however, that the imple-

mentation needs to be carried out in the probability domain and is,

thus, not well suited for an implementation due to eventual numer-

ical instabilities. An implementation in the log domain has been

given in [13], which, however, does not make use of the Fourier

transform for a low-complexity computation of the check node op-

eration (which considerably reduces the complexity for large field

sizes q). In this work, we follow the approach of [6, 7], which uses

an FFT and a representation of messages in the signed-log domain

to carry out the check node update. Other approaches to reduce the

complexity aim at computing only the most relevant terms of the

update equation [8], but the resulting decoder shows performance

losses. In the following, we briefly describe the signed-log domain

algorithm according to [7]. A flowchart is given in Fig. 1.

The binary input additive white Gaussian noise (BIAWGN)

channel output vector of (binary) log likelihood ratios (LLRs) is

denoted L(zbin) =
(
L(zbin

1), . . . L(zbin
N·p)

)
with zbin

i denoting the re-

ceived, noisy binary phase shift keying (BPSK) symbol. To describe

the q probabilities of a symbol v being equal to one of the q elements

of Fq in the logarithmic domain, the notion of a q-dimensional LLR

vector is introduced

L(v) =
(
L[0](v), L[1](v), L[2](v), . . . L[q−1](v)

)

=

(
ln

P (v = 0)

P (v = 0)
, ln

P (v = 1)

P (v = 0)
, . . . ln

P (v = αq−2)

P (v = 0)

)
.

Note that even though the first entry is redundant, we still include

it for implementation purpose since q is a power of two. The chan-

nel output vector L(z) = (L(z1), . . .L(zN)) on symbol level is a

vector of LLR vectors L(zn) =
(
L[0](zn), . . . L

[q−1](zn)
)

whose

entries are computed from the binary LLRs according to

L[b](zn) = −
∑

1≤i≤p: bi=1

L
(
zbin
(n−1)·p+i

)
0 ≤ b ≤ q − 1

where bi is the i-th bit of the binary representation of the b-th element

of Fq . Representing all messages as LLR vectors and performing

all summations and multiplications of LLR vectors element-wise,

the signed-log domain FFT decoding algorithm can be described as

follows.

The message vectors Qn,m (message sent from variable node n
to check node m) and the symbol posteriors Qn are initialized with

the channel output L(zn). The messages Rm,n which are passed

from check node m to variable node n are initialized with zeros. The

check node update consists of multiple steps. First, the elements of

each variable to check message vector are permuted according to the

matrix entry a = Hm,n ∈ Fq\{0}

Q̃n,m = Pa

(
Qn,m

)
, ∀n,m.

The q − 1 permute functions Pa(·), with a ∈ Fq\{0}, move the ith

element of Qn,m to position i · a in Q̃n,m. The permuted messages

are then transformed into the signed-log domain according to

ϕ̃n,m =
(
ϕ̃

s
n,m, ϕ̃m

n,m

)

with ϕ̃
s
n,m = 1, ϕ̃

m
n,m = Q̃n,m, ∀n,m

where the superscript (·)s denotes the sign and the superscript (·)m

denotes the magnitude of a signed-log domain value. To transform

these values into the Fourier domain, the Fast Walsh-Hadamard

Transform F(·) is applied [7]:

Φ̃n,m = F
(
ϕ̃n,m

)
, ∀n,m.

Finally, the check node update equations can be written as

Θ̃
s

m,n =
∏

n′∈N (m)\{n}

Φ̃
s

n′,m, ∀n,m (1a)

and Θ̃
m

m,n =
∑

n′∈N (m)\{n}

Φ̃
m

n′,m, ∀n,m. (1b)

Before the resulting message is sent back to a variable node, the

inverse Fourier transform

θ̃m,n = F−1
(
Θ̃m,n

)
, ∀n,m

is computed, the magnitude is extracted from the signed-log domain

R̃m,n = θ̃
m

m,n, ∀n,m,

and the inverse permutation (with a = Hm,n ∈ Fq\{0})

Rm,n = P−1
a

(
R̃m,n

)
, ∀n,m

IEEE SiPS, Oct. 2013, Taipei, Taiwan 3 / 6

is applied to the message vector. The variable node update is exe-

cuted according to

Qn,m = L(zn)+

∑

m′∈M(n)\{m}

Rm′,n

−δn,m, ∀n,m. (2)

The normalization constant δn,m = maxb∈Fq Q
[b]
n,m helps avoiding

numerical problems. Furthermore, the posterior LLR vector

Qn = L(zn) +
∑

m∈M(n)

Rm,n, ∀n

is computed for each variable node and a hard decision is performed

according to x̂n = argmaxb∈Fq Q
[b]
n . Based on this hard decision,

the parity check equations are evaluated at the end of each iteration.

The check and variable node updates are executed until all check

equations are satisfied or a maximum iteration counter is reached.

3. GPU IMPLEMENTATION

For an effective implementation, two main points have to be consid-

ered: the arrangement of the data in the device memory and the use

of the capabilities of the hardware for accelerating the data process-

ing. For an introduction to the CUDA terminology and specifics, we

refer the reader to [14].

3.1. Description of the Memory Arrangement

The most important structures are the messages Qn,m and Rm,n

that are passed between variable nodes and check nodes and the

posteriors Qn. All of these are accessed very frequently in most

kernels of the main loop. LDPC codes of different sizes and de-

gree profiles as well as different Galois field dimensions should be

supported, such that the potentially required amount of memory for

these message vectors can become too large for on-chip memory. In

addition, the need for quasi-random access to the message structures

only leaves the global device memory as suitable solution.

Although the data is stored as a one-dimensional array in the

device, it is interpreted as 2D (Qn) or 3D (Qn,m and Rm,n) struc-

tures, depending on the indexing as shown exemplarily for the 3D

case in Fig. 2. For the 3D arrays, the first index is pertinent to the

node, the second to the node connection and the third to the Galois

field element that corresponds to one entry of an LLR vector. The

2D arrays are indexed first by the node and second by the Galois

field element. This indexing points to the exact position of one el-

ement in the structure, and helps to set the CUDA grid and block

configuration [14] of the kernels.

Max. Node
Connections

N
o
d
es

G
al
oi
s
Fi
el
d

D
im
en
si
on

Linear Device Memory

Fig. 2. Three-dimensional structures used for message vectors and

corresponding linear data allocation in the global device memory.

By arranging the data in this order, it is possible to access the

memory in a coalesced way, such that multiple float values are han-

dled in only one read/write memory access. If each of the q adjacent

LLR vector entries are accessed by q adjacent threads, this access

will be coalesced, which is a critical requirement for achieving high

throughput performance. This arrangement boosts the performance

with increasing q.

Note that CUDA requires fixed sizes for data structures, and

since irregular LDPC codes do not have a constant number of Tan-

ner graph edges per node, it is obligatory to set the node connection

dimension to the maximum value of all node degrees, taking care of

not accessing the invalid positions during the processing.

Temporary data that is needed within the kernels is either stored

in fast on-chip registers or in the on-chip shared memory if the data

is required by multiple threads within one block. A more extensive

description of the employed data structures can be found in [15].

Another GPU-specific implementation detail is the employment

of the GPU’s texture memory for the Galois field arithmetic. Two-

dimensional lookup tables of size q × q for the addition and multi-

plication of Galois field elements as well as one-dimensional lookup

tables for the inversion (size q−1) and conversion between exponen-

tial and decimal representation (size q) are initialized in the texture

memory and are, thus, available to all kernels.

3.2. Description of the CUDA Kernels

The implementation closely follows the algorithm described in

Sec. 2.2 and depicted in Fig. 1. Each of the gray shaded blocks

corresponds to one CUDA kernel (in CUDA terminology, a kernel

denotes an enclosed subroutine).

Initially, the number of iterations is zero. After initialization,

the input data is transferred to the CUDA device for an initial check

of the parity equations. If they are not fulfilled, the main decoding

loop is executed until they are, or until a maximum number of itera-

tions is reached. When the iterative decoding process finishes, a hard

decision is conducted to obtain the final binary decoding result. In

the following, the most important aspects of the main loop’s CUDA

kernel implementations are explained. An extensive description in-

cluding source code for the main routines can be found in [15].

3.2.1. Permute Message Vectors

Before and after the check node update, the elements of the message

LLR-vectors have to be permuted according to the Galois field ele-

ment at the corresponding check matrix position. A shared memory

block is used as temporary memory, allowing a parallel implemen-

tation of the permute operation. For permuting Rm,n, the shared

memory stores the input data using the permuted indices according

to the matrix entry Hm,n (using the texture tables for multiplication),

and writes the output data directly. For the permutation of Qn,m the

shared memory reads the input values directly, but the output is writ-

ten using the permuted indices as shown in Fig. 3. This way, one

thread (i.e., one of the many processing units of the GPU) per node

and per Galois field element can employed, without accessing the

same shared memory banks. Thus, no bank conflicts are generated,

resulting in full speed memory access.

3.2.2. Signed-Log Domain FFT

The implementations of the signed-log-FFT and the inverse signed-

log-FFT are identical and follow a butterfly diagram as shown in

Fig. 4. As explained in [7], additions in the log domain consist of two

IEEE SiPS, Oct. 2013, Taipei, Taiwan 4 / 6

...

...

Max. Node
Connections

N
o
d
es

G
al
oi
s
Fi
el
d

D
im
en
si
on

Shared Mem.

Texture Mem.

Qn,m

Q̃n,m

Fig. 3. Permutation of message vectors Qn,m.

separate operations for the magnitude and the sign, which is why two

shared memory blocks are required for this purpose. Both operations

are executed simultaneously in the CUDA kernel implementation.

The signed-log-FFT is applied independently to each LLR-vector of

size q. Thus, the CUDA block width is fixed to q. For each node, a

loop processes all node connections to compute the signed-log-FFT

of the q LLR-vector elements. The execution of the butterfly is su-

pervised by a small loop of log2 q iterations. Since each continuous

thread accesses a different shared memory bank during the butterfly,

no bank conflicts are produced.

The exponential and logarithm functions that are needed for the

signed-log domain operations [7] are realized by the fast hardware

implemented functions which are provided by the GPU. The transfer

of data between the global memory and the shared memory is done

in a coalesced way, which is ensured by proper indexing.

3.2.3. Check Node Update

The implementation is visualized in Fig. 5 and uses one thread per

node and Galois field element to compute the outgoing message

LLR-vectors for each edge of the corresponding check node. Since

the computations are performed in the signed-log domain, magni-

tude and sign calculus are performed separately. In each thread, a

first loop over the node’s edges calculates the total sum of the mag-

nitude values and the total product of the sign values. In a second

loop, the current magnitude value is subtracted from the total magni-

tude sum to acquire the extrinsic sum, and the total sign is multiplied

by the current sign value for each edge. Shared memory is not re-

quired since all memory accesses are executed in a coalesced fashion

and, thus, provide high throughput performance.

N
O
D
E
S

N
O
D
E
S

...

...

Max. Node
Connections

N
o
d
es

G
al
oi
s
Fi
el
d

D
im
en
si
on

Shared Memory

Butterfly NetworkLoopϕ̃n,m

Φ̃n,m

Fig. 4. Butterfly network for FFT implementation.

Max. Variable
Node Connections

Max. Check
Node Connections

V
a
ri
a
b
le

N
o
d
es

C
h
eck

N
o
d
es

G
al
oi
s
Fi
el
d

D
im
en
si
on

G
al
oi
s
Fi
el
d

D
im
en
si
on

Loop

Φ̃n,m

Θ̃m,n

Fig. 5. Check node update of message vectors Θ̃m,n.

3.2.4. Variable Node Update

The kernel processes one thread per variable node and Galois field

dimension (see Fig. 6). An internal loop processes all the node con-

nections within one thread. Each thread first reads the input LLR zn

into a shared memory block and then adds all extrinsic information

from Rm,n for the current edge. In a second shared memory block,

the maximum resulting element δn,m of the LLR-vector is found

and subtracted from each entry from the first shared memory block

before the result is written into Qn,m. Since the shared memory op-

erations are inside the loop over the node connections, continuous

thread numbers access different shared memory banks in each itera-

tion. This avoids bank conflicts and provides maximum performance

for the shared memory.

3.2.5. Update Posteriors

The implementation of this kernel follows the one for the variable

node update, except that the search and subtraction of the maximum

element δn,m is omitted and the information of all edges rather than

all but one is added to the input LLR to yield the posterior LLR-

vectors Qn.

N
O
D
E
S

V
a
ri
a
b
le

N
o
d
es

G
al
oi
s
Fi
el
d

D
im
.

LoopShared Memoryzn

δn,m

Rm,n Qn,m

Fig. 6. Variable node update of message vectors Qn,m.

IEEE SiPS, Oct. 2013, Taipei, Taiwan 5 / 6

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

d
ec
.
th
ro
u
gh

p
u
t
[M

b
it
/s
]

Eb/N0Eb/N0

GPU

CPU

F2

F4

F8

F16

F32

F64

F128

F256

d
ec
.
th
ro
u
gh

p
u
t
p
er

it
er
at
io
n
[M

b
it
/s
]

Fig. 7. Average total decoder throughput (left) and average throughput per iteration (right) of coded bits over channel quality in Eb/N0 at a

maximum of 100 iterations. The zoomed region shows the CPU implementation.

3.2.6. Evaluate Check Equations

First, one thread per variable node is employed to determine a hard

decision of the node’s posterior LLR-vector by looping over the Ga-

lois field dimension to find the maximum element. After this, one

thread per check node loops over its edges and utilizes the texture

tables for Galois field addition and multiplication to add up the hard

decision values. The result is a binary vector of length M . To de-

cide if decoding can be stopped, a parallelized reduction algorithm

is applied to sum up the elements of this vector in log2 M steps. The

parity equations are fully satisfied if the result of the sum is zero.

4. PERFORMANCE EVALUATION

The CUDA algorithm implementation is executed under the same

settings as the single-core CPU reference implementation, and the

decoder throughput is measured at several channel SNRs (Eb/N0

values) and for codes over different Galois field sizes q between 21

and 28 in a binary input AWGN channel environment with BPSK

modulation. It should be noted that the obtained results are related

to the hardware architecture used in the simulations and will differ

if different CPUs and/or GPUs are used. For the experiments of this

paper, the following standard hardware and graphic card were used:

• CPU: Intel Core i7-920, 2.67GHz, 6GB RAM

• GPU: GeForce GTX 580, 512 CUDA cores, 1536 MB RAM,

CUDA Compute Capability 2.0.

Table 1 shows the different non-binary rate 1
2

LDPC codes, used

for obtaining the results in this section. Since one Galois field sym-

bol is composed of p bits, the code size N is always chosen accord-

ing to N = N bin/p (with p = log2 q), such that the equivalent num-

ber N bin of bits per code word is constant. Concentrated check node

degree distributions have been used for all codes. The non-binary

check matrices have been constructed with the PEG algorithm [16],

by first constructing a binary matrix of the given dimensions and

subsequently replacing all ones by non-zero Galois field elements

chosen uniformly at random. A maximum number of 100 decoding

iterations have been conducted. For all employed codes, the error

rate results of the GPU and the CPU implementation are identical

within the boundaries given by the different number representations.

The left hand side of Fig. 7 shows the average total throughput of

(coded) bits that is processed by one core of the CPU (dashed lines)

as well as the GPU implementation (solid lines) over the channel

quality in Eb/N0. The right hand side shows the according average

throughput per decoding iteration. In both plots, a zoom in shows

the curves for the CPU implementation in more detail.

The very low total throughput at SNR values below 1 dB is due

to the high maximum number of 100 decoding iterations that are al-

most always executed, before the waterfall region of the code’s error

rate curve is reached. For higher Eb/N0 values, the total through-

put steadily increases, since fewer decoding iterations have to be

executed. The curves in the right hand side plot, however, steadily

decrease with increasing SNR, which is due to the fact that a roughly

constant amount of execution time for initialization and all process-

ing outside the main decoding loop is needed, independent of the

number of actually conducted iterations.

Table 1. Dimensions and degree distributions
∑

Lix
i in node per-

spective of employed non-binary rate 1
2

LDPC codes. Degree distri-

butions for 2p ∈ {8, 16, 32, 64} were taken from [16]

2p N= Nbin

p
M L2 L3 L4 L5

2 2304 1152 0.549 0.144 0.001 0.306
4 1152 576 0.537 0.302 0.042 0.119
8 768 384 0.643 0.150 0.194 0.013
16 576 288 0.773 0.102 0.115 0.010
32 462 231 0.848 0.143 0.009 0
64 384 192 0.940 0.050 0.010 0
128 330 165 0.852 0 0.148 0
256 288 144 0.990 0.010 0 0

IEEE SiPS, Oct. 2013, Taipei, Taiwan 6 / 6

Table 2. Achieved Speedup
throughput GPU

throughput CPU
for different Fq and Eb/N0

Eb/N0 F2 F4 F8 F16 F32 F64 F128 F256

0 dB 17 18 30 44 61 84 112 128

1 dB 18 20 30 47 66 92 124 148

2 dB 15 17 25 39 56 76 109 113

3 dB 13 15 22 34 48 65 100 100

The speedup achieved by the GPU implementation with respect

to the CPU implementation is shown in Tab. 2 for several SNR val-

ues. While the speedup hugely increases from below 20 to almost

150 with increasing Galois field dimension, it is not affected too

much by the varying channel quality. The increasing speedup is

mainly due to the fact that groups of q Galois field elements are

stored in continuous memory positions, which leads to increased ef-

ficiency of the coalesced memory access. This increasing efficiency

of the GPU implementation leads to the interesting effect that the

average throughput is not monotonically decreasing with the Galois

field dimension, even though the decoding complexity increases as

O(N bin2p) where p = log2 q is the number of bits per Galois field

symbol.

In Fig. 8 the achieved average total throughput is plotted against

the number of bits per symbol for different fixed Eb/N0 values.

Again, a zoomed region is shown for the CPU implementation. As

expected, the throughput of the CPU implementation quickly de-

creases with the number of bits per symbol. The GPU implementa-

tion, on the other hand, shows an increasing throughput up to around

4 bits per symbol and then also starts to decrease. This behavior can

be explained by the fact that for moderate Galois field dimensions,

the increasing computational complexity is overcompensated by the

more efficient use of the GPU’s capabilities due to the coalesced

memory access of q addresses at once. However, for larger Galois

field dimensions q ≥ 25 a saturation occurs and the throughput starts

to decrease.

5. CONCLUSION

One way of improving the performance of LDPC codes is to use

codes over higher order Galois Fields Fq and according non-binary

decoders. While the signed-log domain FFT decoding algorithm

provides increasing error correction performance with increasing

Galois field dimension, the computational complexity increases

significantly at the same time. In this paper, we have presented

an efficient implementation of the signed-log domain FFT decoder

exploiting the massive parallel compute capabilities of of today’s

GPUs using Nvidia’s CUDA framework. The key strengths of our

implementation are the increasing efficiency for increasing Galois

field dimensions and the applicability to arbitrary non-binary LDPC

codes. While higher speedup can be expected if the codes are con-

strained to be, e.g., regular and/or quasi-cyclic, the universality of

the presented GPU implementation enables accelerated performance

estimation without the need for any specific code properties.

6. REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T. Press, Cam-
bridge, MA, USA, 1963.

[2] D. J. C. MacKay and R. M. Neal, “Good Codes based on Very

2 4 6 81 3 5 7

0.5

1

1.5

0

2

0.12

0.08

0.04

0

d
ec
.
th
ro
u
gh

p
u
t
[M

b
it
/s
]

Bits per symbol p = log2 q

GPU CPU

0dB

1dB

2dB

3dB

Fig. 8. Throughput over Galois field dimension for Eb/N0 ∈
{0 dB, 1 dB, 2 dB, 3 dB}. Zoom shows CPU implementation.

Sparse Matrices,” in Cryptography and Coding, 5th IMA Conference,
Springer, Berlin, Germany, 1995, pp. 100–111.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, Morgan Kaufmann, San Mateo, CA, USA, 1988.

[4] M. C. Davey and D. J. C. MacKay, “Low-Density Parity Check Codes
over GF(q),” IEEE Comm. Lett., vol. 2, no. 6, pp. 165–167, June 1998.

[5] L. Barnault and D. Declercq, “Fast Decoding Algorithm for LDPC over
GF (2q),” in Proc. IEEE Inform. Theory Workshop (ITW), Apr. 2003,
pp. 70–73.

[6] H. Song and J.R. Cruz, “Reduced-Complexity Decoding of Q-ary
LDPC Codes for Magnetic Recording,” IEEE Trans. Magn., vol. 39,
no. 2, pp. 1081–1087, Mar. 2003.

[7] G. J. Byers and F. Takawira, “Fourier Transform Decoding of Non-
Binary LDPC Codes,” in Proc. Southern African Telecommunication

Networks and Applications Conference (SATNAC), Sept. 2004.

[8] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
Complexity Decoding for Non-Binary LDPC Codes in High Order
Fields,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1365–1375, May
2010.

[9] T. P. Chen and Y.-K. Chen, “Challenges and Opportunities of Obtaining
Performance from Multi-Core CPUs and Many-Core GPUs,” in Proc.

IEEE ICASSP, Taipei, Taiwan, Apr. 2009, pp. 609–613.

[10] C.-I. Colombo Nilsen and I. Hafizovic, “Digital Beamforming Using a
GPU,” in Proc. IEEE ICASSP, Taipei, Taiwan, Apr. 2009, pp. 609–613.

[11] T. R. Halfhill, “Parallel Processing with CUDA,” Microprocessor Re-

port, Jan. 2008.

[12] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,”
IEEE Trans. Inform. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[13] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-Domain De-
coding of LDPC Codes over GF(q),” in Proc. IEEE International Con-

ference on Communications, June 2004.

[14] Shane Cook, CUDA Programming: A Developer’s Guide to Parallel

Computing With GPUs, Morgan Kaufmann, 2012.

[15] E. Monzó, “Massive Parallel Decoding of Low-Density Parity-Check
Codes Using Graphic Cards,” M.S. thesis, RWTH Aachen University
& Universidad Politecnica de Valencia, 2010.

[16] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and Irregular
Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inform. The-

ory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

