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Abstract—In most communication systems, being able to adapt
the error protection strength of the physical layer is essential
to ensure the functionality of the system in potentially strongly
varying conditions. Traditional forward error correction code
design focuses on the optimization of codes with a fixed code
rate for a worst-case channel condition. So-called rate-compatible
codes, on the other hand, are tailored to support multiple code
rates. In this paper we present an optimization strategy for a
rate-compatible system based on shortening and puncturing of
Low-Density Parity-Check (LDPC) codes. While the technique
itself is well known, we propose a novel joint optimization of the
resulting multi-rate LDPC code ensemble at all rates. This joint
optimization achieves close to capacity decoding thresholds over
an arbitrarily wide range of target code rates using only a single
encoder and decoder implementation.

I. INTRODUCTION

In wireless communications the physical layer has to deal

with potentially rapidly varying transmission channels. More-

over, the variety of supported services determines the required

data rates and error protection levels. The Forward Error Cor-

rection (FEC) functionality of such systems commonly allows

for an adaptation to these variations in order to efficiently use

the available resources as, e.g, the limited radio bandwidth.

FEC codes that can achieve different protection levels and

information data rates based on one fixed so-called mother

code are frequently denoted rate-compatible (RC).

As one of the most powerful FEC schemes, Low-Density

Parity-Check (LDPC) codes [1], [2] are included in many

of today’s communication systems. However, these standards

specify separate LDPC codes for each supported code rate.

This increases hardware complexity since all supported codes

have to be implemented in each transmitter and receiver.

Rather than using multiple codes, there exist techniques to

construct RC LDPC codes of higher or lower code rates from

a fixed-rate mother code. In [3], Li et al. studied parity bit

puncturing to construct LDPC codes of higher code rates and

proposed a special code extension to achieve lower code rates.

Another approach to construct codes of lower code rates was

presented in [4] using information shortening.

In this paper, we present a novel joint optimization strategy

for the binary input additive white Gaussian noise (BIAWGN)

channel to achieve a multi-rate LDPC code ensemble with one

mother code of rate rm. The resulting multi-rate ensemble

supports code rates between 0 and rm by information short-

ening and code rates between rm and 1 by parity puncturing

in a rate-compatible way. With the proposed approach, close

to capacity performance is achieved over an arbitrarily wide

range of code rates.

II. LOW-DENSITY PARITY-CHECK CODES

A binary sparse parity check matrix H of dimension M×N
defines a binary (N,K) LDPC code with N code bits and

K = N−M information bits. We assume H to have full rank,

such that the code rate is given by r = K
N . The Tanner graph

description of an LDPC code is convenient for describing

the commonly used message-passing decoders. This graph

consists of N variable nodes and M check nodes which are

connected by edges according to the non-zero entries of H.

Let the number of non-zero elements in a column (row) of

the parity check matrix be denoted the weight of that column

(row) or equivalently the degree of the corresponding variable

(check) node. The distribution of the different column and

row weights is commonly described by a so-called degree

distribution pair in the following polynomial notation:

edge perspective: λ(x) =

dv,max∑

i=2

λix
i−1, ρ(x) =

dc,max∑

j=2

ρjx
j−1

node perspective: Λ(x) =

dv,max∑

i=2

Λix
i, R(x) =

dc,max∑

j=2

Rjx
j ,

where dv,max is the maximum column weight and dc,max the

maximum row weight. The coefficients Λi and Rj of the

node perspective correspond to the proportion of columns

of weight i and the rows of weight j, respectively. The

coefficients λi and ρj of the edge perspective, on the other

hand, describe the proportion of non-zero entries found in

columns of weight i and in rows of weight j, respectively.

A valid degree distribution has coefficients between zero and

one and Λ(1) = R(1) = λ(1) = ρ(1) = 1 holds. The two

notations are related by the following two equations:

λ(x) =
d

dxΛ(x)
d

dxΛ(x)
∣∣
x=1

and ρ(x) =
d

dxR(x)
d

dxR(x)
∣∣
x=1

.
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The connection between the code rate r = K
N and the degree

distribution pair is given by

r = 1−

∑dv,max

i=2 iΛi∑dc,max

j=2 jRj

= 1−

∑dc,max

j=2 ρj/j
∑dv,max

i=2 λi/i
. (1)

It is well known that the degree distributions of an LDPC

code strongly influence its error correcting capabilities. For

long code lengths, close to capacity performance can be

achieved by LDPC codes under Belief Propagation (BP) de-

coding if their degree distributions are carefully optimized [5].

III. RATE-COMPATIBLE LDPC CODES

In applications that support different code rates, it is de-

sirable to employ rate-compatible coding schemes based on

one single so-called mother code. In this paper, we consider a

combination of information shortening and parity puncturing

of a single mother code. This scheme can achieve code rates

in an arbitrary range between 0 and 1. It has a very low

encoding and decoding complexity, and only a single encoder

and decoder implementation are needed.

A similar combination of shortening and puncturing was

already used in [4], where the authors successively optimized

shortening parameters for a given fixed mother code with

a given fixed puncturing scheme. In contrast, the novelty

of our approach is the joint optimization of all supported

code rates. This includes the optimization of the mother code

itself, as well as all parameters of information shortening and

parity puncturing. Before this joint rate-compatible optimiza-

tion process is discussed in Sec. IV, the general concepts of

information shortening and parity puncturing are reviewed.

A. Rate-Compatibility by Information Shortening1

Information shortening is a technique for achieving lower

code rates from a fixed rate mother code.

1) Encoding: The (N,K) mother code of rate rm takes

K = Keff + Kd bits, composed of Keff information

bits and Kd known dummy bits, as input and generates

M = 1−rm
rm

(Keff +Kd) parity bits at the output. W.l.o.g.

we will assume that all dummy bits are set to 0. Before

transmission, the dummy bits are removed from the code

word since they are known to the receiver. This results in the

shortened (N−Kd,K−Kd) code with effective block length

Neff = Keff +M and the effective code rate reff = Keff

Keff+M .

Any code rate reff ∈ (0, rm] can be achieved by an accordant

choice of Keff ∈ {1, . . . K} (of course only in discrete steps).

2) Decoding: At the receiver, the dummy bits are known

and thus provide perfect a priori information that is inserted

into the received sequence of log-likelihood ratios (LLRs) in

form of the value +∞ (corresponding to the known binary

value 0). For the computation of messages according to the

check node update of the BP decoder, these messages with

infinite reliability do not have to be considered, since +∞ is

the neutral element of the boxplus operation ⊞ (see, e.g., [7]).

1The introductory section III-A follows the corresponding parts of our
earlier publication [6].

As there is no need for improving the reliability of a dummy

bit’s (known) value, also the incoming messages of nodes

with perfect knowledge are of no further use. Accordingly, the

effective graph as seen by the decoder is simply the mother

code graph with all dummy nodes (and all connected edges)

removed. Thus, the effective parity check matrix is obtained

by removing those columns that are associated to dummy bit

positions from the mother code’s parity check matrix.

For the asymptotic analysis of a shortened code of rate reff

we refer to the variable node degree distribution of the pruned

graph as the effective degree distribution (in node perspective)

Λ[reff](x) =

dv,max∑

i=2

Λ
[reff]
i xi.

Given the original degree distribution Λ(x) and the effective

degree distribution Λ[reff](x), the degree distribution of all

pruned nodes is given by

∆[reff](x) =

dv,max∑

i=2

∆
[reff]
i xi

=

dv,max∑

i=2

(
Λi

1− reff

rm − reff

− Λ
[reff]
i

1− rm
rm − reff

)
xi.

Note that for implementation purpose it is not mandatory to

remove any nodes or edges. Existing decoder implementations

do not have to be changed and are fully compatible to this

rate-matching technique.

B. Rate-Compatibility by Puncturing of Parity Bits

In contrast to information shortening, parity puncturing

achieves higher code rates by discarding some of the parity bits

generated by a fixed rate mother code prior to transmission.

1) Encoding: The (N,K) mother code of rate rm takes K
input bits and generates M = 1−rm

rm
K parity bits at the output.

Then, Mp parity bits are discarded prior to transmission,

resulting in an (N −Mp,K) code with effective block length

Neff = K +Meff and the effective code rate reff = K
K+Meff

.

Any code rate reff ∈ [reff, 1] can be achieved by an accordant

choice of Meff ∈ {0, . . .M} (again only in discrete steps).

2) Decoding: At the receiver, no information about the

punctured bits is available and thus, zeros are inserted into

the received LLR sequence at the punctured positions. LLRs

of zero correspond to complete uncertainty as the binary

values 0/1 are equally likely. For the computation of messages

according to the BP check node update, these messages with

complete uncertainty are dominant in the sense of Li ⊞ 0 = 0
(see, e.g., [7]). Due to this dominance of uncertainty, punctured

nodes first have to be recovered by neighboring unpunctured

nodes before a connected check node can pass non-zero

messages. This behavior degrades the decoding performance

and has to be considered in the design of efficient puncturing

patterns. The theoretical effect of punctured bits was incorpo-

rated into the density evolution (DE) framework [8] by Ha et

al. in [9] and will be used for the joint optimization in Sec. IV.
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In accordance with [9], we define the puncturing polynomial

of the effective rate reff as

Π[reff](x) =

dv,max∑

i=2

Π
[reff]
i xi,

where Π
[reff]
i denotes the fraction of degree i nodes to be

punctured. It should be noted that the coefficients Π
[reff]
i do

not sum up to one, but are related to the mother code by

Π̃[reff](x)
∣∣∣
x=1

=

dv,max∑

i=2

Π̃
[reff]
i =

dv,max∑

i=2

Π
[reff]
i Λi = 1−

rm
reff

. (2)

Again, decoder implementations do not have to be modified.

LLRs of punctured bits are simply initialized with zeros,

before straightforward decoding.

IV. JOINT RATE-COMPATIBLE OPTIMIZATION

Given a set of L target code rates r1 < r2 < · · · rL in an

arbitrary range between 0 and 1, the objective of the proposed

joint rate-compatible optimization is to find a mother code of

rate rm ∈ {r1, . . . rL} and shortening and puncturing rules to

achieve close to capacity performance at all target rates. The

output of the optimization consists of L polynomials:

• Λ[rm](x) = Λ(x): a variable node degree distribution for

the mother code of rate rm ∈ {r1, . . . rL},

• Λ[rl](x): an effective degree distribution for each target

code rate rl ∈ {r1, . . . rm−1} with rl < rm,

• Π[rh](x): a puncturing polynomial for each target code

rate rh ∈ {rm+1, . . . rL} with rh > rm.

Additionally, at all rates, we assume the effective check node

degree distributions to be concentrated (i.e., to consist of at

most two consecutive degrees). This assumption is valid for

puncturing a mother code with concentrated check node degree

distribution. For random shortening, however, this assumption

is not valid. To still achieve near concentrated check node

degree distributions, we select the shortened columns during

code construction such that the shortened check node distri-

butions are as concentrated as possible.

Furthermore, we reorder the matrix columns by moving all

shortened columns to the left and all punctured columns to the

right. This allows to always shorten a code word from left to

right and puncture parity bits from right to left, as suggested

in [4] and depicted in Fig. 1.

A. Cost Function

We assume the performance at each target code rate to

be of equal importance. Thus, a candidate solution of L
valid polynomials is evaluated by computing the mean square

distance of the decoding thresholds (i.e., the lowest channel

SNR at which near error free decoding is possible) to the

Shannon capacity limit at each of the L rates as cost function.

As described in Sec. III-A2, from the decoder’s point of

view, a shortened version of the mother code is equivalent

to an “unshortened” code with the respective effective degree

distribution Λ[reff](x). This allows to compute the decoding

dummy

bits
info
bits

info
bits

parity

bits

parity

bits

punctured

bits

shortening r = 1/2 → reff = 1/3 puncturing r = 1/2 → reff = 2/3

Kd Keff M︸ ︷︷ ︸
transmitted

︸ ︷︷ ︸
discarded

K Meff Mp︸ ︷︷ ︸
transmitted

︸ ︷︷ ︸
discarded

Fig. 1. Exemplary rate 1/2 code word shortened to reff = 1/3 (left) and
punctured to reff = 2/3 (right)

thresholds of the mother code and all shortened versions

by straightforward density evolution (we employed an im-

plementation of discretized density evolution [10] using 9 bit

quantization). To determine the decoding thresholds of the

punctured codes, we adapted the modified density evolution

for punctured LDPC codes as proposed for a Gaussian Ap-

proximation in [9] to the case of discretized density evolution.

By means of the described algorithms, we compute a theo-

retical decoding threshold tk for each rate rk ∈ {r1, . . . rL} of

the candidate solution. Let ck denote the Shannon BIAWGN

capacity at code rate rk. The gap to capacity is then simply

given by gk = tk − ck. Note that all thresholds and gaps are

given in dB. Using this notation, the employed cost function

C can be written as

C
(
Λ[r1](x), . . .Λ(x), . . .Π[rL](x)

)
= 1

L

∑L
k=1 g

2
k.

Using the squared distance ensures a certain “flatness” of

a solution’s sequence of gaps gk, since an improvement at

positions with large gaps is considered more important than

at positions with smaller gaps. By optimizing all rates jointly,

it is possible to accept a degradation at one rate to enable an

improvement at other rates, which might be necessary due to

the constraints between the different rates (see next section).

Unequal importance levels of target code rates (e.g., due to

more or less preferred operating points) can be incorporated

into the optimization by assigning an appropriate weight wk

to each code rate yielding C ′(·) = 1
L

∑L
k=1 wkg

2
k.

B. Constraints

In the following, the five constraints 1) – 5) that are

necessary for the joint optimization to yield a valid rate-

compatible solution are explained. The interrelation of the

involved quantities are visualized in Fig. 2.

1) Since shortening is performed from left to right, the

shortened columns of each rate must be included in the

ones of the next lower rate (for all degrees i):

Λi

1− rm
≥

Λ
[rm−1]
i

1− rm−1
≥ · · · ≥

Λ
[r1]
i

1− r1
.

This is equivalent to ∆
[reff]
i ≥ 0.

2) When shortening from one rate rk to the next lower

one rk−1

(
for k ∈ {2, . . .m}

)
, the number of shortened

nodes of any degree i cannot exceed the total number

of shortened nodes for that specific rate difference:

(1− rk−1) Λ
[rk]
i − (1− rk) Λ

[rk−1]
i ≤ rk − rk−1.

This is equivalent to ∆
[reff]
i ≤ 1.
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Λ[r1] Λ[r2] Λ[rm−1]

Λ

Π[rm+1] Π[rL−1] Π[rL]

1)+2)

1)+2)1)+2)

3)
3)

3)

4)4)4)

5) 5)
5)

puncturing

shortening

HH

Λ

Λ
Λ[rm−1] Λ[r2] Λ[r1]

· · ·· · ·

Π̃[rL]
Π̃[rL−1] Π̃[rm+1]

︸ ︷︷ ︸
information part

︸ ︷︷ ︸
information part

︸ ︷︷ ︸
parity part

︸ ︷︷ ︸
parity part

Fig. 2. Visualization of relevant submatrices and rate-compatible constraints

3) Punctured and shortened nodes must be disjunct and,

thus, the number of punctured nodes of each degree i at

the highest rate rL must be less or equal to the number

of degree i nodes remaining in the degree distribution

of the lowest shortened rate r1:

Π
[rL]
i Λi ≤

1− rm
1− r1

Λ
[r1]
i

4) Since puncturing is performed from right to left, the

punctured nodes of each rate must be included in the

ones of the next higher rate (for all degrees i):

Π
[rm+1]
i ≤ Π[rm+2] ≤ · · · ≤ Π

[rL]
i .

5) For each rate rh ∈ {rm+1, . . . rL} the puncturing poly-

nomial Π[rh](x) in conjunction with the mother code

degree distribution Λ(x) must result in the correct total

number of punctured bits:

Π̃[rh](1) =

dv,max∑

i=2

Π
[rh]
i Λi = 1−

rm
rh

.

A summary of the optimization problem is given in Fig. 3. It

includes the trivial constraints of all coefficients lying between

0 and 1 and the degree distributions’ coefficients summing up

to 1 (cf. constraint 6) in Fig. 3). Furthermore, we also apply

the well known stability condition of Richardson et al. [5]

(cf. constraint 7) in Fig. 3). As stated earlier, all check node

degree distributions are assumed to be concentrated to two

consecutive degrees, which allows to compute them given the

target code rate, the variable node degree distribution, and (1).

C. Optimization Process

Many previously proposed optimization strategies formulate

the problem of finding an optimal degree distribution as linear

program (e.g., [5], [11]) which can be solved efficiently with

existing problem solvers. To achieve a linear program formula-

tion, these strategies are usually based on certain assumptions

1

L

L∑

k=1

(tk − ck)
2
→ min

s.t. 1)
Λ
[rl]
i

1− rl
≥

Λ
[rl−1]
i

1− rl−1
∀ l ∈ {2, . . .m}

2) (1− rl−1) Λ
[rl]
i − (1− rl) Λ

[rl−1]
i ≤ rl − rl−1

∀ l ∈ {2, . . .m}

3) Π
[rL]
i Λi ≤

1− rm
1− r1

Λ
[r1]
i

4) Π
[rh]
i ≤ Π[rh+1] ∀h ∈ {m+ 1, . . . L− 1}

5)

dv,max∑

i=2

Π
[rh]
i Λi = 1−

rm
rh

∀h ∈ {m+ 1, . . . L}

6) Λ[rl](1) = 1, Λ
[rl]
i ≥ 0 ∀ l ∈ {1, . . .m}

7) λ
[rl]
2 <

e
1

2σ2
n

∑
j ρ

[rl]
j (j−1)

, σ2
n=

10
−tl
10

2rl
∀ l ∈ {1, . . .m}

8) tl is the lowest decodable SNR determined by

density evolution for Λ[rl](x), ∀ l ∈ {1, . . .m}

9) th is the lowest decodable SNR determined by

modified density evolution for Λ(x) punctured

with Π[rh](x), ∀h ∈ {m+ 1, . . . L}

Fig. 3. Joint rate-compatible optimization problem

about the probability density functions of the messages that are

passed during decoding. However, these assumptions are not

valid in general. Still, it has been observed that for medium to

high code rates, these optimization strategies yield very good

solutions. However, for low code rates (e.g., lower than 0.5),

the assumptions made by these approaches are considerably

violated and lead to large errors in the predicted achievable

decoding thresholds [11]. Since the multi-rate optimization

proposed in this paper is designed to work well in the whole

range of code rates between 0 and 1, we set aside these kinds

of approximations. Instead we resort to discretized density

evolution for determining the decoding thresholds and use a

Simulated Annealing (SA) [12] strategy to find a solution of

the optimization problem. While SA is only a heuristic that

does not necessarily find the global optimum, very good results

can be achieved for the given problem, though. To reduce the

optimization time, splitting the SA process into two phases as

depicted in Fig. 4 has proven useful:

• Left: Degree distributions Λ[rl] (l ∈ {1, . . .m}) and

puncturing distributions Π[rh] (h ∈ {m + 1, . . . L}) are

jointly optimized at all rates subject to all constraints

in Fig. 3. The current solution vector consiting of all

distributions is randomly modified in each step, and the

cost function C is evaluated. If an improvement was

found, the modified vector will always be accepted as

new current solution, while a degradation by ∆C is only

accepted with probability P = exp(−∆C/(c ·T )), where

T denotes the current “temperature” of the SA process
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Λ[r1] Λ[r2] Λ[rm−1]

Λ

Π[rm+1] Π[rL−1] Π[rL]

1)+2)

1)+2)1)+2)

3)
3)

3)

4)4)4)

5) 5)
5)

being optimized is fixed

Fig. 4. Active constraints of two-phase Simulated Annealing process.

and c an empirically determined constant.

• Right: Starting at rate rk that has the largest current gap

to capacity gk and ending at the rate with the smallest

current gap to capacity, the optimization process tries to

improve each rate without violating any constraints in an

iterative round-robin scheme.

The first phase tries to find the “deepest” local minimum

by slowly cooling down the temperature T to avoid getting

stuck in local minima. In the second phase, only downhill

movements are allowed to make sure the final solution is

maneuvered towards the bottom of the current local minimum.

V. RESULTS

To confirm the effectiveness of the proposed optimization

strategy, we present results for the challenging case of covering

the range of (relevant) code rates reff between 0.1 and 0.9 in

steps of 0.1 using only a single mother code and a maxi-

mum variable node degree of dv,max = 10. For comparison,

we employ two different previous results. Firstly, the rate-

compatible scheme presented in [4] with the same set of code

rates, the same maximum degree, and a mother code rate of

0.5. Secondly, the results of [11, Fig. 10] as a benchmark as to

the best achievable performance for dv,max = 10 if dedicated

degree distributions are optimized for each of the target code

rates without any rate-compatible features.

Using the proposed scheme, we have optimized multi-rate

ensembles based on mother codes with rates between 0.2 and

0.8. Fig. 5 exemplarily shows the performance of five setups:

• M2 (blue +): Proposed optimization with rm = 0.2
• M5 (red �): Proposed optimization with rm = 0.5
• M8 (green ∗): Proposed optimization with rm = 0.8
• Tian (black): Reference results from [4] with rm = 0.5

• Chung (dotted): achievable gaps for independent codes

without rate-compatibility from [11, Fig. 10].

Detailed optimization results of setups M5 and M8 are given

below in Tab. I. In the upper plot of Fig. 5, the gaps

gk = tk − ck of the density evolution thresholds tk to the

corresponding channel capacity ck (in dB) as produced by

the optimization algorithm are depicted for all effective code

rates reff. It can be seen that for the four rate-compatible

setups, the respective minimal gap is achieved at the mother

code rate and the gap increases when moving away from this

rate. The values C (see IV-A) of the mean square gap are

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

 

 
proposed M2

proposed M5

proposed M8
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Chung [11]

g
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p
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/
d
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for N → ∞
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0.18
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

1
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3

4

5

 

 
proposed M2

proposed M5

proposed M8

Tian [4]

effective code rate reff

g
ap

to
ca

p
ac

it
y

/
d
B

sim. for BER 10
−4

and N = 10080

C=8.14

4.14

6.90

2.70

Fig. 5. Top: gaps of density evolution (DE) thresholds to BIAWGN capacity
over code rate. Bottom: gaps of Eb/N0 values for bit error rate 10−4 to
BIAWGN capacity with 100 BP iterations over code rate. Each curve is
labeled with its mean square value according to cost function C in IV-A.

given for all five curves. The proposed setup M5 outperforms

the reference results Tian with the same mother code rate in

terms of the mean square gap and also at each single effective

code rate except 0.9. Setup M2 seems to strongly suffer from

the fact, that a large range of code rates from 0.3 to 0.9
has to be achieved by puncturing. The best performance of

the rate-compatible schemes is achieved by setup M8 with a

mean square gap of only 0.053 which is very close to the

benchmark of 0.044 for the scheme Chung which does not

offer any rate-compatibility. As stated earlier, these results

confirm that the proposed optimization strategy yields close

to optimal performance since it comes very close to the case

of unconstrained individual code optimization.

In addition to the DE results, we have simulated bit error

rates (BER) for each of the rate-compatible setups by using the

Progressive Edge Growth (PEG) algorithm [13] to construct

a parity check matrix of code length N = 10080. The input

degree sequence of the PEG algorithm was sorted in such a

way that the optimized degree distributions and puncturing

fractions are achieved by shortening bits from left to right and
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Fig. 6. Mean gap to capacity achieved by the five investigated setups with
different mother code rates rm. DE thresholds (left) and BER 10−4 (right).

puncturing bits from right to left as shown in Fig. 1. This

way, we also ensure the check node degree distributions of

the shortened codes to be approximately check concentrated.

In the lower plot of Fig. 5, again the gaps gsim
k = tsim

k − ck to

the channel capacity are shown for the four setups. Here, tsim
k

denotes the Eb/N0 ratio for a BIAWGN channel at which a

BER of 10−4 is achieved by a belief propagation (BP) decoder

with 100 iterations. It can be seen that the shape of the curves

roughly matches the shape of the corresponding DE results.

Again, setup M8 shows the best performance in terms of the

mean square gap with a value of only 2.7.

In Fig. 6 the mean gap to capacity for code rates

0.1, 0.2, . . . 0.9 is shown as achieved by the proposed opti-

mization algorithm when different mother code rates are used.

Again, the gaps are shown for the DE thresholds (left) and

the Eb/N0 values at which BER 10−4 is achieved (right).

These results clearly suggest that the proposed optimization

strategy favors mother code rates close to the upper limit of the

supported effective code rate range, i.e., the resulting shortened

codes seem to be more effective than the punctured ones. This

observation is confirmed by the BER simulation results, which

is especially noteworthy since the average effective code length

Neff becomes smaller when the used mother code rate moves

closer to the boundaries of the code rate range. For rm = 0.8
and N = 10080, e.g., the shortened code of effective rate

reff = 0.1 only has a code length of Neff = 2240. Finally, the

fully rate-compatible proposed scheme was shown not only to

outperform setup Tian but even to approach the performance of

the unconstrained optimization of individual codes according

to Chung if a high rate mother code is used.

VI. CONCLUSION

We have presented a novel joint optimization algorithm

that yields a multi-rate LDPC code ensemble supporting an

arbitrarily wide range of code rates, requiring only a single

encoder/decoder hardware implementation. The approach is

based on jointly optimizing the degree distribution of a mother

code, the effective degree distributions of shortened versions

of this code, and the puncturing fractions to be applied to

achieve higher code rates. We have shown that by using a two-

phase Simulated Annealing process, we are able to find such

multi-rate ensembles that have close to capacity performance

over the whole range of relevant code rates and outperform

TABLE I
OPTIMIZED MULTI-RATE ENSEMBLE FOR rm = 0.5 AND rm = 0.8

degree 2 3 4 5 10 tk/dB gk/dB

r
m

=
0
.5

Λ[0.1] 0.669 0.199 0.0 0.053 0.08 -0.43 0.86
Λ[0.2] 0.625 0.242 0.001 0.049 0.083 -0.66 0.30
Λ[0.3] 0.571 0.270 0.005 0.044 0.110 -0.36 0.26
Λ[0.4] 0.529 0.297 0.004 0.039 0.131 -0.02 0.22
Λ 0.490 0.320 0.010 0.035 0.145 0.38 0.19
Π[0.6] 0.205 0.084 0.0 0.292 0.202 0.88 0.20
Π[0.7] 0.349 0.176 0.0 0.486 0.285 1.50 0.24
Π[0.8] 0.435 0.307 0.0 0.595 0.297 2.35 0.31
Π[0.9] 0.531 0.346 0.0 0.824 0.306 3.88 0.68

r
m

=
0
.8

Λ[0.1] 0.687 0.218 0.029 0.001 0.064 -0.90 0.38
Λ[0.2] 0.620 0.235 0.051 0.002 0.092 -0.67 0.30
Λ[0.3] 0.572 0.257 0.045 0.011 0.116 -0.36 0.25
Λ[0.4] 0.532 0.279 0.041 0.014 0.133 -0.02 0.22
Λ[0.5] 0.498 0.297 0.040 0.015 0.150 0.38 0.19
Λ[0.6] 0.460 0.328 0.033 0.012 0.167 0.85 0.17
Λ[0.7] 0.426 0.355 0.026 0.009 0.184 1.41 0.14
Λ 0.390 0.386 0.017 0.006 0.200 2.16 0.12
Π[0.9] 0.136 0.098 0.343 0.034 0.071 3.38 0.19

previously proposed rate-compatible schemes that provide the

same flexibility. The presented results suggest that by choosing

the rate of the mother code close to the upper limit of the code

rate regime, the performance of a system using independent

dedicated codes for each rate can on average be approached

to within about 0.01 dB in terms of DE thresholds.
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