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Abstract—Insertion convolutional codes and the underlying
principles attract more and more attention, e.g., in iterative
decoding, joint channel coding and cryptography or even in chan-
nel estimation. Known bits (dummy bits) are inserted into the
information bit sequence before convolutional (turbo) encoding.
These bits support the decoding of the information bits resulting
in an improved decoding quality. Although this concept is widely
employed, there does not exist any theoretical evaluation of these
codes. We provide a basis for such an evaluation by means of
their EXIT charts. We will analytically derive their EXIT charts
as a function of the EXIT charts associated with the underlying
convolutional code for a transmission over a BEC as well as a
binary input/continuous output AWGN channel. These results
can be adopted to all applications where perfect information is
exploited by a SISO decoder and provide an excellent basis for
the analytical prediction of the expected gains.

I. I NTRODUCTION

Insertion convolutional codes (ICCs) have been introduced
by Xu and Romme in [1] as a novel technique for adapting
the rate or for constructing lower rate codes by inserting
known bits (dummy bits) into the information bit sequence
before convolutional encoding. It has been observed that the
information provided by the dummy bits highly supports the
decoding of the information bits.

Besides the application of rate matching, ICCs and the
underlying principles attract more and more attention in recent
studies. In [2] we consider a packet-switched multimedia
transmission based on cross-layer communication where all
header bits are fed back after error-free decoding to the SISO
channel decoder. These bits are exploited as dummy bits within
the turbo decoding resulting in an improved decoding of the
payload. The underlying concept has further been applied
to joint channel coding and cryptography [3], [4] where
iterative decryption is performed based on two information
blocks which are individually encrypted but jointly encoded
by the channel encoder. After error-free decryption of the
first block, this information can be exploited as perfecta
priori information at the SISO decoder during the iterative
decryption process of the second block. In [5], one information
block is even substituted by dummy bits which are known in
advance and can be exploited at once. In channel estimation,
pilot symbols are mostly used for estimation of the current
channel state. However, instead of inserting pilots at the
modulation stage, in pilot symbol assisted coding schemes,
a predetermined fraction of dummy bits is inserted into the
information bit sequence before encoding [6]–[8]. These pilots
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Fig. 1. Structure of an insertion convolutional encoder.

are sometimes calledencoded pilots. All these applications
have in common that perfect information about a fraction of
bits is exploited to improve the decoding of the rest of the bits
relying on the concepts presented in [1].

Although there exist many application scenarios for ICCs
or their principles, no information theoretical evaluation of
their fundamentals has been performed so far. However, a
comprehensive theoretical evaluation might be extremely use-
ful to quantify the expected performance gains dependent
on the fraction of inserted dummy bits. Such an evaluation
can further lead to a deeper understanding of the effect of
the dummy bit insertion enabling the analytical optimization
of such schemes. Today’s transmission systems commonly
employ turbo codes consisting of two either parallel or serially
concatenated convolutional codes. A widely used tool for the
prediction of the convergence behavior of these codes is the
EXIT chart analysis which has firstly been introduced by
ten Brink in [9]. EXIT charts illustrate the flow ofextrinsic
information through the constituent SISO decoders. For turbo
codes, this might be an appropriate measure to quantify the
gains achievable by ICCs.

In what follows, EXIT charts for parallel concatenated
ICCs are derived based on the EXIT charts of the underlying
convolutional code. This enables a theoretical evaluationof
the expected gains given by ICCs and provides a basis for
mathematical system optimizations.

II. I NSERTIONCONVOLUTIONAL CODES

The structure of an insertion convolutional encoder is de-
picted in Fig. 1. The multiplexed vectorb′ = [b d] containing
the dummy bitsd = (d1 . . . dℓ . . . dL) (1 ≤ ℓ ≤ L) and the
information bitsb = (b1 . . . bm . . . bM ) (1 ≤ m ≤ M ) is
either deterministically or even randomly interleaved by an
interleaverΠ. The resulting sequencex = (x1 . . . xk . . . xK)
of length K = M + L is then encoded by a convolutional
encoder with generator polynomial(s)GCC and code raterCC

obtaining the output vectory⋆ = (y⋆1 . . . y
⋆
n . . . y

⋆
N⋆) of length

N⋆ = K · r−1
CC . If GCC is systematic and if the ICC is either

a component code of aparallel concatenated convolutional
code (PCCC) or the inner code of aserially concatenated
convolutional code (SCCC), puncturingΛ is introduced in
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Fig. 2. Information theoretical decoding model for one of the components of a parallel concatenated turbo code.

order to eliminate all systematic dummy bits. These bits are
known in advance and, thus, do not have to be transmitted over
the channel saving energy and bandwidth. Accordingly, the
length of the output vectory = (y1 . . . yn . . . yN ) is reduced
by the number of dummy bitsL resulting inN = K ·r−1

CC−L.
For non-systematic convolutional codes,Λ is neglected, i.e.,
y = y⋆ and N = N⋆. Please note that there are some
applications where the transmission of the systematic dummy
bits are reasonable (e.g. pilot symbols for channel estimation).

Hence, the code rate of the insertion convolutional encoder
amounts to

rICC =

{
M

M+L
· rCC : GCC non-systematic

M

(M+L)·r−1

CC
−L

: GCC systematic
. (1)

III. EXIT C HART FUNDAMENTALS

In order to analyze the flow of mutual information through
a SISO decoder, a general decoding model has been presented
in [10] and is shown in Fig. 2. A successful application to
randomly punctured convolutional codes is given in [11]. In
what follows, capital letters are applied for random variables
and small letters signify their realizations. For the sake of sim-
plicity, the puncturing introduced in Fig. 1 is not considered
explicitly in the following information theoretical evaluation
since no additional information is provided by the transmission
of the systematic dummy bits. Throughout this contributionwe
considerparallel concatenated convolutional codes (PCCCs).
Nevertheless, all results can easily be adapted to serially
concatenated convolutional codes (SCCCs) as we will describe
in Sec. VI.

The SISO decoder receivesextrinsic log-likelihood ratios
(LLRs) AB = (AB1

, . . . , ABm
, . . . , ABM

) about the infor-
mation bits B = (B1, . . . , Bm, . . . , BM ) from the other
component of the PCCC which can be exploited by the SISO
decoder asa priori information. This can be modeled by an
extrinsic channel with capacityIAB

. Furthermore, channel-
related LLRs AY = (AY1

, . . . , AYn
, . . . , AYN

) about the
output bitsY = (Y1, . . . , Yn, . . . , YN ) are provided to the
SISO decoder by the communication channel with capacity
IAY

. Note that the output bits may contain also the informa-
tion bits if systematic component codes are employed. Both
types of information are then exploited in order to determine
the extrinsic LLRs EBm

as well as thea posteriori LLRs
L(Bm|AY , AB) of the input bitsBm. According to [9], the
extrinsic LLRs EBm

for PCCCs are given by means of thea
posteriori LLRs and thea priori LLRs:

EBm
= L(Bm|AY , AB)−ABm

− ZBm
. (2)

For systematic PCCCs, the LLRZBm
corresponds to the chan-

nel observation regarding the information bitBm provided

by the underlying communication channel. For non-systematic
PCCCs, there is no channel observation, i.e.,ZBm

= 0.
By means of the mutuala priori information

IAB
:= I(ABm

;Bm) and (3)

IAY
:= I(AYn

;Yn), (4)

the EXIT characteristicTB(IAB
|IAY

) can be defined accord-
ing to

TB(IAB
|IAY

) = I(EBm
;Bm) =: IEB

, (5)

whereIAY
in (5) is considered as arbitrary but fixed. Since all

bitsBm andYn can be assumed as i.i.d., we skip the subscripts
in what follows unless there is a risk of confusion.

In order to obtain the desired EXIT characteristics
TB(IAB

|IAY
), at first, the mutuala priori information IAB

is computed analytically by choosing an appropriateextrinsic
channel. Then theextrinsic information IEB

is determined.
In general, the computation ofIEB

is impractical needing
to rely on Monte Carlo simulation. In this contribution we
focus on thebinary erasure channel (BEC) and thebinary
input/continuous output additive white Gaussian noise channel
(BIAWGNC) for the communication channel as well as the
extrinsic channel. The evaluation of thebinary symmetric
channel (BSC) is out of our scope but can be easily derived
from the results given in what follows.

Mutual A Priori Information for the BEC and the BIAWGNC

The following considerations are valid for the communica-
tion channel as well as theextrinsic channel. Therefore, we
will skip the subscript associated with the respective channel
unless there is a risk of confusion.

In the BEC case, the capacityC = IA is simply given by
means of the erasure probabilityPe as

IA = 1− Pe. (6)

Considering a transmission over a BIAWGNC, the distri-
bution of the LLRs at the input of the SISO decoder can be
modeled by an independent Gaussian random variableA with
conditional probability density function

pA(A = ξ|B = b) =
1√
2πσA

· exp
{

− (ξ − σA

2 b)2

2σ2
A

}

. (7)

Hence, the mutual informationIA between the transmitted
bipolar information bitsB and the LLRsA can be expressed
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according to [12]:

IA := I(A = ξ;B = b)

=
1

2
·

∑

b=−1,1

∞∫

−∞

pA(A = ξ|B = b)·

· log2
2 · pA(A = ξ|B = b)

pA(A = ξ|B = −1) + pA(A = ξ|B = 1)
dξ. (8)

Substituting (7) into (8) results in ten Brink’s well knownJ-
function

J(σA) := IA = 1−
∞∫

−∞

exp
{

− (ξ−
σA

2
)2

2σ2

A

}

√
2πσA

·log2
(
1 + e−ξ

)
dξ,

(9)
which cannot be expressed in closed-form and, thus, has to be
numerically approximated. This function provides an interre-
lation between the mutual informationIA and the varianceσA

of the related LLRs. Hence, Monte-Carlo simulations can be
carried out for approximating the flow ofextrinsic information
by simply varyingσA.

IV. EXIT F UNCTIONS FORICCS

In order to derive analytically an expression for the EXIT
function of the insertion convolutional decoder by means ofthe
EXIT function of the pure convolutional decoder, we assume
a random interleaver in Fig. 1. It can easily be shown that this
EXIT function slightly underestimate that one associated with
an ICC employing a deterministic interleaver. However, this
is out of the scope of this paper.

The transformed information theoretical decoding model for
an insertion convolutional decoder with random interleaving is
depicted in Fig. 3. In the ICC decoding model, the vectorX
rather than the information bit vectorB is considered since
dummy bit insertion using a random interleaverΠ has been
employed before convolutional encoding. Theextrinsic chan-
nel models the distribution of theextrinsic LLRsAB regarding
the information bitsB provided by the other component of the
considered PCCC. They are exploited asa priori information
in the SISO decoding process. However, no information is
given by theextrinsic channel about the dummy bitsD. The
perfecta priori information provided by the dummy bits can
be modeled by a parallel concatenated BEC with erasure
probability

Pe = 1− PD = 1− L

K
=

M

K
(10)

and capacityCD according to (6). The BEC secures that
only the dummy bit fractionPD = L/K is exploited by the
SISO decoder as perfecta priori informationAD, while no
additional information is generated for the information bitsB.
Consequently,AB equals zero at each dummy bit position and
AD equals zero at each information bit position. Hence, the
vectorsAB andAD can be added resulting in the vectorAX

which is exploited as overalla priori information by the SISO
decoder.

However, in order to obtain the mutuala priori information
IAX

:= I(AB AD;X) at the input of the SISO decoder, a
simple addition of the mutual informationIAB

:= I(AB ;X)
andIAD

:= I(AD;X) is not possible. According to [13] the

mutual a priori informationIAX
at the output of two parallel

concatenated channels is given in general by

IAX
:= I(AB AD;X)

= I(AB ;X) + I(AD;X)− I(AB ;AD)

= IAB
+ IAD

− I(AB ;AD), (11)

whereI(AB ;AD) is called theinformation defect with respect
to IAX

≤ IAB
+ IAD

.
In this contribution, the extrinsic channel as well as the

communication channel is either a BEC or a BIAWGNC.
For these types of channels (11) can be computed using the
following proposition.

Proposition 4.1: Consider the parallel concatenation of two
channels, where the first channel corresponds to a BEC with
mutual informationIAD

= PD and the second one either
to a BEC or to a BIAWGNC with mutual informationIAB

.
Then, the mutual InformationIAX

at the output of the parallel
concatenated channels can be expressed as

IAX
= IAB

+ IAD
− IAB

· IAD
(12)

= PD + (1− PD) · IAB
. (13)

Proof: See [13] for the BEC case.
Proof for the BIAWGNC case:
The conditional probability density functionpAX

(AX =
ξ|X = x) =: pAX

(ξ|x) of the informationAX at the output
of the parallel concatenation is given by

pAX
(ξ|x) = (1− PD) · pAB

(ξ|x) + PD · δx·∞, (14)

with δx·∞ being the Dirac-delta function shifted toξ → x ·∞
andpAB

(ξ|x) given according to (7). The first term describes
the influence of theextrinsic channel which is modeled as
BIAWGNC, while the second term accounts for the effect of
the dummy bit insertion. Due to the symmetry ofpAX

(AX =
ξ|X = x), IAX

is given by (8) according to

IAX
=

∞∫

−∞

pAX
(ξ|x = 1)

· log2
2 · pAX

(ξ|x = 1)

pAX
(ξ|x = −1) + pAX

(ξ|x = 1)
︸ ︷︷ ︸

=:g(ξ|x)

dξ. (15)

The contribution ofg(ξ|x) to the integration result can be
determined by computing the auxiliary function

g(ξ|x)− log2
2 · pAB

(ξ|x = 1)

pAB
(ξ|x = −1) + pAB

(ξ|x = 1)
(16)

= log2
pAX

(ξ|x = 1) · (pAB
(ξ|x = −1) + pAB

(ξ|x = 1))

(pAX
(ξ|x = −1) + pAX

(ξ|x = 1)) · pAB
(ξ|x = 1)

= log2
f1(ξ|x) + f2(ξ|x)
f1(ξ|x) + f3(ξ|x)

. (17)

From a pure mathematical viewpoint, the Dirac-delta functionis not strictly
a function, but can be formally defined as an irregular distribution. For the
sake of simplicity, we use the notationδx·∞ := lim ǫ→0

ξ0→∞
δǫ(ξ − x · ξ0),

whereδǫ(•) is sometimes called a nascent delta function.
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Fig. 3. Transformed information theoretical decoding model for the insertion convolutional decoder.

The auxiliary functionsf1(ξ|x), f2(ξ|x) and f3(ξ|x) can be
computed by means of (14) to

f1(ξ|x) = (1− PD) · pAB
(ξ|x = 1)

· (pAB
(ξ|x = −1) + pAB

(ξ|x = 1)) (18)

f2(ξ|x) = PD · δ∞ · (pAB
(ξ|x = −1)

+ pAB
(ξ|x = 1)) = 0 (19)

f3(ξ|x) = PD · δ∞ · pAB
(ξ|x = 1)

+ PD · δ−∞ · pAB
(ξ|x = 1) = 0, (20)

wheref2(ξ|x) andf3(ξ|x) can easily be derived by using the
suppression property of the Dirac-delta function. This results
in

g(ξ|x)− log2
2 · pAB

(ξ|x = 1)

pAB
(ξ|x = −1) + pAB

(ξ|x = 1)
= 0 (21)

Hence, Equation (15) simplifies to

IAX
=

∞∫

−∞

pAX
(ξ|x = 1)·

· log2
2 · pAB

(ξ|x = 1)

pAB
(ξ|x = −1) + pAB

(ξ|x = 1)
dξ

=

∞∫

−∞

((1− PD) · pAB
(ξ|x = 1) + PD · δ∞) · log2(•)dξ

= PD + (1− PD) · IAB
(22)

= IAD
+ IAB

− IAD
· IAB

, (23)

exploiting the Dirac-delta property again.

Proposition 4.1 provides the desired expression for the
equivalent mutual informationI(CC)

AB
exploited by the SISO

decoder in the system with no dummy bit insertion asa priori
information:

I(CC)
AB

:= IAX
= IAB

+ IAD
− IAB

· IAD
(24)

= IAB
+ PD · (1− IAB

) ≥ IAB
. (25)

Consequently, dummy bits provide additional mutuala priori
information to the SISO decoder resulting in a more reliable
decoding.

In both systems, the same SISO decoder is used. Conse-
quently, both systems generate equala posteriori LLRs and
extrinsic LLRs if assuming equal input information.

Hence, the EXIT function of the insertion convolutional
decoder can be constructed from the EXIT functions of the

applied convolutional decoder according to

T (ICC)
B (IAB

|IAY
) = T (CC)

B (I(CC)
AB

|I(CC)
AY

), (26)

with I(CC)
AY

= IAY
and 0 ≤ IAB

, IAY
≤ 1. Obviously, the

dummy bit insertion entails a shift in the operation point
towards higher mutuala priori information, namely from
(IAB

, IAY
) to (I(CC)

AB
, I(CC)

AY
).

V. EVALUATION

As an example, the systematic rate-1/2 component code
of the UMTS-LTE turbo encoder with generator polynomials
GCC = (1, 15/13)8 is employed as convolutional code by
the insertion convolutional encoder. The EXIT function of the
resulting ICC is then analytically computed by means of (26)
for different channels:
(a) Communication channel andextrinsic channel are mod-

eled by a BEC.
(b) Communication channel andextrinsic channel are mod-

eled by a BIAWGNC.
The corresponding EXIT functions are depicted in Fig. 4.
They are analytically derived for the insertion convolu-
tional decoder (bold lines) according to (26) and compared
with their measured EXIT functions (dashed lines with
filled squares) for different dummy bit fractionsL/K ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The communication channel
is either a BEC with erasure probabilityPe = 0.7 or a
BIAWGNC with channel qualityEs/N0 = −6dB.

As we have stated in the previous section,T (ICC)
B (IAB

|IAY
)

can be derived by means of the EXIT function related to the
underlying convolutional decoder by shifting the operation
point from (IAB

, IAY
) to (I(CC)

AB
, I(CC)

AY
). This leads to a

stretching of the diminished interval[L/K, 1] to [0, 1] due
to the mapping ofIAB

to I(CC)
AB

.
Considering Fig. 4, it has been observed for the BEC case

that the analytically derived EXIT functions exactly match
their measured versions, while for the BIAWGNC case the
analytical derivation provides a very close approximation. The
condition for the consistency of both curves is the equalityof
the amount of mutuala priori information and the consistency
of the underlying probability distribution. However, the latter
condition is not fulfilled due to the increasing divergence of
both distributions for an increasing number of dummy bits
(c.f. Equation (14)). For a high number of dummy bits, the
parallel concatenation of theextrinsic BIAWGNC and the
BEC modeling the dummy bit insertion converges to a BEC
providing a lower bound for the measured EXIT function
according to [13]. Nevertheless, both EXIT functions match
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Fig. 4. Comparison of analytically derived (bold lines) and measured EXIT functions (dashed lines with filled squares) of the insertion convolutional
encoder based on the systematic rate-1/2 UMTS-LTE component code with generator polynomialsGCC = (1, 15/13)8 for different dummy bit fractions
L/K ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Transmission has been performed over a BEC with erasure probability Pe = 0.7 and a BIAWGNC with channel
quality Es/N0 = −6 dB.

almost perfectly for a dummy bit fraction of up to 40 % of the
block size and, thus, for many relevant application scenarios.

In order to optimize ICCs with respect to the inserted
fraction of dummy bits, many time-consuming EXIT chart
simulations have to be carried out so far. However, using the
expressions derived in the previous section, this issue canbe
solved analytically in less time and with higher accuracy.

VI. EXTENSION TO SERIALLY CONCATENATED
CONVOLUTIONAL CODES

The results in previous sections can easily be adapted to
serially concatenated convolutional codes (SCCCs). In this
case it has to be distinguished between inner codes and outer
codes of SCCCs. Inner codes obey the same decoding model as
PCCCs and, consequently, the same mathematical expressions.
Only outer codes has to be analyzed separately. For these
codes, no channel information is provided and only extrinsic
information about the output bits is delivered by the inner
decoder yieldingAB = 0. Furthermore, these codes have
to generateextrinsic information about the output bits rather
than the input bits, because the output bits generated by the
outer code serves as input for the inner code. However, a full
derivation of the corresponding EXIT function for outer codes
in SCCCs is out of the scope of this paper.

VII. C ONCLUSION

An information theoretical derivation and evaluation based
on EXIT functions for insertion convolutional codes employed
in parallel concatenated turbo codes has been presented. This
provides a basis for the prediction of the expected gains
achieved by the insertion of known bits (dummy bits) into
the information bit sequence before convolutional encoding.
The corresponding EXIT functions were analytically derived
for random dummy bit insertion as a function of the EXIT
functions of the pure convolutional code and were compared
to their measured versions. A transmission over the BEC as
well as the binary input/continuous output AWGN channel was

considered. This provides a great basis for evaluating analyt-
ically the expected gains achieved by insertion convolutional
codes with respect to the inserted dummy bit fraction avoiding
extensive simulations.
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