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ABSTRACT

The quality of digital transmission of speech, audio and video sig-
nals over a noisy channel can be improved in many cases by er-
ror concealment, specifically by softbit source decoding (SBSD).
It applies parameter estimation exploiting a priori knowledge on
parameter level and reliability information on bit level. In this con-
tribution we present a novel soft demodulation (SDM) method for
higher order digital modulation schemes based on SBSD. The soft
demodulator makes a soft decision on signal point level using a
mean square (MS) estimator and can also exploit a priori knowl-
edge about the source. Furthermore, we present a novel concept
for unequal error protection (UEP) by higher order modulation
with unequal power allocation (MUPA). Usually, the bits repre-
senting the quantized source codec parameters are protected by
channel coding with UEP according to the individual bit error sen-
sitivities. For communication systems where channel coding is not
applicable, we propose the MUPA method with periodically time-
varying power allocation. The average transmitted energy per bit
remains unaffected. The significant SNR gains of the SDM com-
bined with MUPA in comparison to systems with hard decision
and a fixed signal constellation are demonstrated by simulation.

1. INTRODUCTION
In digital transmission systems the digital representations of the

source encoded parameters of speech, audio, or video signals are
transmitted over a channel using digital modulation, e.g., 16-QAM
as specified in the ITU-T recommendation V.32. The demodula-
tion process influences the transmission quality significantly. An
optimized demodulator with the capability to conceal errors due to
channel noise is an important step to a robust transmission system.

In this paper we introduce a soft demodulation (SDM) method
(Sec. 3) which is based on the error concealment by softbit source
decoding (SBSD) [1]. SBSD requires reliability information about
each bit. Besides, SBSD can exploit a priori knowledge (AK) on
parameter level which is, e.g., determined by the correlation be-
tween the source parameters. In the literature (e.g., [1]) SBSD has
been applied to binary phase shift keying (BPSK) as example using
log-likelihood values (�-values), i.e., reliability information on bit
level. However, in transmission systems with higher order modu-
lation schemes a single channel output value is not associated to
a specific bit exclusively. The inphase and the quadrature compo-
nent of the complex channel symbols are assigned to bit patterns
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Figure 1: Baseband system model with hard decision demodulation

of � bits. Consequently, a bitwise estimation of the transmitted
bit pattern at the receiver is difficult. The SDM adopts the princi-
ples of SBSD, but estimates the source encoded parameters on the
level of the signal points, which are the modulation symbols in the
signal space.

Furthermore, we present the novel concept called modulation
with unequal power allocation (MUPA) with periodically time-
varying power allocation for unequal error protection (UEP) in
higher order modulation schemes (Sec. 4). MUPA is based on a
modulation scheme with Gray mapping, e.g., QPSK or 16-QAM
and changes the distances between the signal points of the mod-
ulation constellation. According to the mapping of the bit pat-
terns, the distance between modulation signal points which differ
in the most significant bit (MSB) is made larger, other distances be-
tween signal points differing, e.g., in the least significant bit (LSB)
are made smaller. For each channel SNR a set of weights exists,
which is calculated once in advance and determines the distances
between the modulation signal points.

Hierarchical modulation and coding is examined in [2] with re-
spect to the design of wireless systems. In [3] differently weighted
bits in pulse code modulation (PCM) transmission have been dis-
cussed. However, an approximate solution only for PCM is derived
which is based on the simplifying assumption that only single bit
errors occur. In [4] the desired behavior is achieved by bitwise
control of BPSK modulation amplitudes. This approach called
source-adaptive power allocation is based on the neighborhood
relations between the unquantized and quantized source parameter
values. A fixed step size is used for the calculation of the discrete
symbol amplitudes. In contrast to [3] and [4], we present an ap-
proach with rigorous optimization of the weights 	� to reduce the
mean square error (MSE) and allowing continuous signal point
amplitudes for higher order modulation schemes. As example we
consider 16-QAM-MUPA with � = 4 bit quantizers. The per-
formance improvements by SDM (Sec. 5.1) and MUPA (Sec. 5.2)
compared to systems with hard decision demodulation and a fixed
signal constellation are verified by simulation.

2. SYSTEM MODEL

The baseband model of the transmission system is shown in
Fig. 1. The source generates zero-mean Gaussian distributed
values �� with time instant 
 and variance ��� � �. These source
parameters are correlated by a 1st order recursive low-pass filter
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with the coefficient � and can be modeled as 1st order Markov
process. Next, �� is quantized to ���� � ����� � �� �� ������
with the reproduction levels ��. The index assignment (IA)
utilizes the one-to-one mapping function � and maps each value
���� to a unique bit pattern ���� � ����� � �� �� ������ with

�� � ��
���
� � �

���
� � ����

���
� �:

���� � ������ � � (1)

The bits �
���
� � �������, � � �� �� ���� , contain the MSB

�
���
� and the LSB �

���
� . The modulator assigns each bit pat-

tern ���� by the one-to-one mapping function � to a complex
modulation signal point 	��� of the signal constellation set
� � �	��� � �� �� ������:

	��� � ������ � � 	������ � j	���
��� (2)

with the inphase (I) component 	������ and the quadrature (Q) com-
ponent 	���

��� of 	��� . The transmission of the obtained complex
symbols 	��� � � is described by a complex channel with zero-
mean additive white Gaussian noise (AWGN) 
� � 


���
� � j
���

�

with 

���
� � � in the inphase dimension and 


���
� � � in the

quadrature dimension. We consider an AWGN channel with in-
dependent transmission of the two components with the variance
��� � ��
� in each dimension and the noise power spectral den-
sity ��. As we set the energy per bit�� to 1, the channel symbols
are normalized to an average energy of E���	��� ���� �� .

At the receiver, the symbol is estimated from the disturbed com-
plex samples �� � �	

���
��� � 


���
� � � j�	���

��� � 

���
� �. After hard

decision demodulation, the inverse IA returns the estimated �����
corresponding to the estimated quantized value ���� by a code-
book table lookup. The hard demodulator and the inverse IA can
be replaced by a soft demodulator.

3. SOFT DEMODULATION (SDM)
In the following we develop the soft demodulation according to

the SBSD. For a detailed derivation of SBSD we refer to the liter-
ature, e.g., [1]. The estimation of the transmitted quantized source
codec parameter of SBSD is replaced for soft demodulation by
an estimation on signal point level. Consequently, the estima-
tion of a modulation symbol at the receiver requires a posteriori
probabilities providing information about all symbols 	� � � ,
� � �� �� ����� , which have possibly been sent. With a 1st order
Markov model for the source codec parameters, the a posteriori
probabilities � �	��� ��� � can be calculated as

� �	��� ��� � ����� � � � ���� �	��� � � � �	��� ������ (3)

with ���� � ������ �������� consisting of all received values
from the beginning of the transmission until the time instant ���.

The channel transition probabilities ���� �	��� �, � � �� ������ ,
are calculated on symbol level, since the two channel output val-
ues are associated to one symbol. We utilize the real-valued ge-
ometric distance �	� �
� � ���� � 	��� between the complex re-
ceived symbol �� and all signal points 	� � � . The AWGN of the
channel causes the distance �	� �
� , and the conditional probabil-
ity density ���� �	��� � becomes

���� �	��� � � ���	� �
�� �
��
����

� �	

����

	� �
�

����

�
� (4)

The probabilities � �	��� ������ in (3) are determined by the
available a priori knowledge. If no a priori knowledge (NAK)
is used, the probability density ���� �	��� � of (4) equals the a pos-
teriori probability [1]:

� �	��� ��� � � � � ���� �	��� � (5)

with the normalization constant

� �
����

��� ���� �	��� �
� (6)

In the following we will use the factor � to normalize the a poste-
riori probabilities � �	��� ��� � ���� that

�
� � �	��� ��� � ���� � � is

fulfilled. Note, that � does not have to equal the term given in (6)
in all cases.

With a priori knowledge of �th order (AK�), the probabilities of
occurrence � �	��� � of the signal points 	��� � � determine the
a posteriori probabilities. Since � and � are one-to-one mapping
functions, it holds

� �	��� � � � ��������� ��� (7)

with the probabilities of occurrence � ����� �, � � �� �� ����� ,
of the quantizer reproduction levels ���� mapped to the symbols
	��� � � . For (3) it holds

� �	��� ��� � � � � ���� �	��� � � � ���������� (8)

For 1st order a priori knowledge (AK1) the correlation of the
source parameters �� (Fig. 1) is exploited. The a posteriori prob-
abilities can be calculated recursively, because the source parame-
ters can be modelled as a 1st order Markov process [1]:

� �	��� ��� � ����� � � � ���� �	��� �

�
���
���

� �	��� �	������ � � �	����������� ����� � (9)

The minimum mean square error (MMSE) between �� and ��� is
an appropriate and established error criterion [1, 5]. The last step
of the soft demodulation algorithm is the estimation of the source
parameter by a so-called mean square (MS) estimator which is
based on the MMSE [1]:

��� �

���
���

�� � �
�
��������	��� ����� � ���

�
� (10)

4. UNEQUAL POWER ALLOCATION

In this section we develop the modulation with unequal power
allocation (MUPA) for higher order modulation schemes. MUPA
distributes the transmission energy unequally to the modulation
signal points by applying the so-called weights ��, � � �� �� ���� ,
which determine the distances between the signal points. In the ex-
ample of Fig. 2 a conventional 16-QAM scheme with Gray label-
ing (Fig. 2 a)) [6] is compared to the modified scheme (Fig. 2 b))
with unequal weights ��, � � ��� �� �� 
�. The distances of the
signal points are changed by the weights �� such that, e.g., ��

is responsible for the error events of the MSB (e.g., signal points
labeled 1001 and 0001).

From now on, we skip the time index � , because the following
calculations are independent of � . We assume perfect knowledge
of ��� at the transmitter and at the receiver.

4.1. Approach
If a hard decision demodulator selects the wrong signal point
out of � due to AWGN, the distortion � between the quantized
source sample and the estimated sample occurs. Our goal is to
minimize the expected value E����, i.e., the MSE, by optimizing
the weights ��, � � ��� �� �����. The specific distortion with
regard to the quantizer representation levels is ���� � ��� � ����,
�� � � �� �� ����� . With the focus on the modulation, E����
depends on the probability of occurrence � �	�� of the signal
points in the signal constellation set and on the probability that
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�� � �������� � � was sent and ��� � ��������� � � is re-
ceived, i.e., the transition probability � ��������. Consequently,
the MSE

E���� �
���
���

���
���

����� � � ���� � � �������� (11)

has to be minimized. The probability of occurrence � ���� equals
� ���������� of the quantizer reproduction levels. The transition
probability � �������� is the probability, that the channel noise ex-
ceeds the real-valued geometric distance from �� to the decision
bound between �� and ��� , i.e., the weight ��. In this case, the
demodulator selects ��� due to the channel noise although �� was
sent. Consequently, for AWGN channels � �������� can be calcu-
lated as Gaussian probability:

� �������� �
��

��

��
����

� exp

����
����

�
d� (12)

with �� corresponding to ��� and ��. If the upper limit of the inte-
gral is set to infinity, only the nearest neighbor of �� is considered.
Otherwise, the upper limit has to be adjusted according to the spe-
cific signal constellation set.

The minimization of (11) is constrained by the transmission en-
ergy. As additional signal energy increases interference, e.g., in
transmission systems for mobile communications, we restrict the
transmission energy by normalizing the average bit energy to 1.
Hence, the average energy E�	�� per complex symbol �� � �
has to be normalized to 
 :

E�	�� �
���
���

	���
� � � ���� � 
 � (13)

with the energy 	
���
� � �������, � � �
 �
 ����� , depending on

the weights ��, � � �
 �
 ���
 . Recapitulating, the problem to
calculate weights �� minimizing the mean square error E���� is
described by the non-linear system of the two equations, (11) and
the energy constraint (13).

4.2. Lagrange Multiplier Method (LMM)
An approach to solve a minimization problem with a constraint is
the LMM with the Lagrange Multiplier �. For this purpose we set
up the Lagrange equation combining (11) with (13)

����
 ��
 ����� 
 �� �

�
� ���
���

���
���

����� � � ���� � � ��������
�
�

� � �
 � E�	��� � (14)

This equation describes a non-linear function � � ���� � �

with 
�� unknown variables, i.e., the 
 weights �� and the ad-
ditional Lagrange multiplier �. Next, we calculate the
+1 partial
derivatives �����
 �����

 ������ and �����
 �����

 �����
of (14).

4.3. Newton Algorithm
In the next LMM step the roots �� and � of the 
 � � deriva-
tives have to be calculated. Due to the transcendent function
	
����, we employ the (
 � �)-dimensional Newton algo-
rithm [7] to calculate the roots. For convenience, we insert
� into the set of variables by renaming ���
 ����� 
 ��� to
� � ���
 ��������

� with �� � �� for � � �
 �
 ���
 , and
���� � �. We define ������ � ���������, � � �
 �
 ���
 � �,
and ����� � �������
 ����

�

�������
� for the vector of the first

partial derivations. With this notation, the Newton iteration rule is
given by

�	�� � �	 � ���
 ��	� � ����	� (15)
with the iteration counter � and the inverse Jacobian matrix
���
 ��	� containing the first partial derivations of �����, i.e., the
second partial derivations of ����, ������ � ����������� , for all
combinations of �
 � � �
 �
 ���
 � �. The number of iterations
can be reduced by adapting � in each iteration � according to the
difference between �	�� and �	.

When the exit condition ���	�� � �	�� � � is fulfilled, the LMM
supplies the weights �� as optimized solution. It is very difficult
to check this solution for minimum analytically due to the non-
linearity of (11) and (13). For simplification, we take other sets
of weights with ��� fulfilling (13) and close to ��. If the E����
of (11) is larger with the ��� than with the ��, we suppose that
the optimized �� are the solution for a minimum. The simulation
results in the next section show that this strategy is successful.

5. SIMULATION RESULTS
In this section, the performance of soft demodulation (SDM)

(Sec. 5.1) and MUPA (Sec. 5.2) is evaluated in terms of the param-
eter signal-to-noise ratio (parameter SNR) between the original
codec parameters �� (Fig. 1) and its reconstruction ��� . As the pa-
rameter SNR is an important measure for, e.g., the audio or video
quality, we utilize it to compare the performance of SDM and
MUPA with hard decision demodulation and modulation schemes
with fixed signal constellations. We use

	 a source signal with the Gaussian probability density
function (pdf), ��
 = 1, and correlated source parameters
(� = 0.9),

	 a symmetric Lloyd-Max quantizer (LMQ) which is pdf-
optimized for the source signal,

	 Natural Binary (NB) as IA function �,

	 the 16-QAM modulation scheme of Fig. 2 with �: Gray.

5.1. Soft Demodulation (SDM)
At first, we set�� � ��� 
 �. The exploitation of the source param-
eter correlation in the SDM working on signal point level causes
performance improvements in a wide range of 	���� values (see
Fig. 3). As example, we specify the maximum parameter SNR
gain of 6.52 dB which is achieved at 	���� = 4 dB by SDM with
1st order a priori knowledge (AK1) in comparison to hard deci-
sion demodulation. SDM with no or �th order a priori knowledge
(NAK and AK0, respectively) still attains parameter SNR gains of
0.8 to 0.9 dB and 1.5 to 1.8 dB, respectively, for 	���� values in
the range of 3 to 6 dB.
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Figure 2: a) Gray mapped bit patterns of 16-QAM signal points
b) first quadrant of a) but with unequal weights �� as
example for all quadrants
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Figure 3: Parameter SNR for soft demodulation with different or-
ders of a priori knowledge compared to hard decision demodula-
tion (LMQ, 4 bits, �: NB, �: Gray (Fig. 2), �� � ��� � �)

5.2. Weighted Signal Points
According to (13) the 16-QAM of Fig. 2 is constrained by

���

���

����
� � � ���� � � � (16)

The calculation of � �������� in (12) is executed only with the
nearest neighbors of each signal point �� to reduce the computa-
tional complexity of the LMM. However, this simplification could
cause computational problems at very low ����� values.

If the LMM/Newton algorithm provides a local minimum instead
of a global minimum, the MSE of (11) is minimized in the sense of
the local minimum. Although the algorithm could provide subopti-
mal solutions in the sense of minimum MSE and we only consider
the next neighbors of each signal point, significant performance
improvements can be reached with the optimized weights com-
pared to transmission systems without weighted signal points.

SDM with AK1 reaches the highest performance in terms of pa-
rameter SNR (Fig. 3), but can still be improved by MUPA. Al-
though the weights�� are calculated with the assumption of a hard
decision demodulator, Fig. 4 demonstrates the higher performance
of SDM with MUPA in case of AK1 by unequal power allocation
of the signal points. As example, the maximum parameter SNR
gain of 1.82 dB is achieved for SDM with AK1 at ����� = 2 dB.
The performance of SDM with less a priori information (NAK and
AK0) or hard decision demodulation is also improved by MUPA
(Fig. 5). The parameter SNR gains outperform the ones for AK1.
Compared to the corresponding system with a fixed signal con-
stellation, i.e., �� � ��� � �, and with the focus on the maximum
values, SDM with AK0 is improved at most by 4.32 dB at �����

= 4 dB, SDM with NAK by 4.39 dB at ����� = 4 dB, and hard
decision demodulation by 3.55 dB at ����� = 5 dB.

Further simulations have shown, that even if transmitter and re-
ceiver choose the wrong (but the same, due to, e.g., a small feed-
back) set of weights because of an imprecise estimation of the
�����, the MUPA technique improves the parameter SNR. In this
case the performance loss is reduced, if the weights of a higher
����� are chosen instead of weights for a lower �����.

6. CONCLUSIONS

The soft demodulation (SDM) presented in this paper enhances
the SBSD for the use with higher order modulation schemes by
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Figure 4: 16-QAM (SDM, AK1) with �� � ��� � � (dashed line)
and with MUPA (solid line)
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Figure 5: 16-QAM with �� � ��� � � (dashed lines) and with
MUPA (solid lines)

source parameter estimation on modulation signal point level. Pa-
rameter SNR gains of up to 6.52 dB are achieved for SDM with
AK1 with 16-QAM and 4 bit LMQ compared to systems with hard
decision demodulation. MUPA adjusts the energy of the modula-
tion symbols by varying the distances between the signal points
according to the differing bits of the assigned bit patterns. MUPA
combined with SDM outperforms systems solely based on SDM
by up to 1.82 dB with AK1 and up to 4.39 dB with NAK.
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