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Unequal Error Protection by
Modulation with Unequal Power Allocation

Thomas Brüggen and Peter Vary

Abstract— In digital communication systems for speech, audio
or video signals the individual bits of the transmitted parameters
u exhibit different bit error sensitivities. Usually channel coding
with unequal error protection (UEP) is applied. However, some
transmission systems do not include channel coding for several
reasons. For this situation, a novel concept is proposed which
achieves UEP by allocating different transmission power to
individual bits according to their bit error sensitivities. The
optimization criterion for unequal power allocation is the mean
square of the error between the original parameter u and
the decoded parameter û which has a strong correlation with
subjective perception.

Index Terms— Unequal error protection, unequal power allo-
cation.

I. INTRODUCTION

IN MOST digital transmission systems for speech, audio,
or video signals parameters u are produced by a source en-

coder. As the digital representation of these parameters exhibit
different bit error sensitivities, channel coding with unequal
error protection is often applied. However, some transmission
systems, e.g., DECT and Bluetooth, include only weak or no
channel coding for several reasons. For this situation a novel
concept called modulation with unequal power allocation
(MUPA) is proposed which achieves UEP by periodically
allocating unequal transmission power to individual bits. In
this contribution MUPA is explained in the context of BPSK
modulation. The extension to other modulation schemes is
possible. Before BPSK modulation the individual bits are
weighted differently taking the channel SNR into account.
The least significant bit (LSB) gets less energy than the most
significant bit (MSB), while the average transmitted energy
per bit remains unaffected.

The idea of differently weighted bits in PCM transmission
has already been discussed in [1]. However, in this early
proposal an approximate solution is derived which is based
on the simplifying assumption that only single bit errors
occur. In [2] UEP is achieved by bit-wise control of the
BPSK modulation amplitudes. However, in contrast to our
proposal neighborhood relations between the unquantized and
quantized source parameters are exploited in combination with
Gray or Gray-like bit mappings. Furthermore, the different
amplitude levels are found by ”systematically trying out a
number of energy distributions” [2]. In contrast to [1] and [2],
we present an analytical approach with numerical optimization
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for arbitrary bit mappings. As optimization criterion we
consider the mean square error E{(u(τ) − û(τ))2} in the
parameter domain. The corresponding signal-to-noise ratio
(SNR)

SNR[dB]= 10 log10

(
E{u2(τ)}

E{(u(τ) − û(τ))2}
)

(1)

which has a strong correlation with subjective perception is
used to compare the different solutions.

II. SYSTEM MODEL

The model of the transmission system is shown in Fig. 1.
Instead of any specific signals and source encoders, we use
a zero-mean Gaussian source with variance σ2

u = 1 to
model the parameters u(τ) which are delivered at time τ
by the source encoder. This allows us to conduct precisely
defined experiments. However, without loss of generality
the results can be applied to any real source codecs. Each
u(τ) is quantized to u(τ) ∈ {uκ|κ = 1, 2, ...2M} with the
reproduction levels uκ. The index assignment (IA) maps
the values u(τ) to bit patterns x(τ) ∈ {xκ|κ = 1, 2, ...2M}
with xκ = (x(1)

κ , x
(2)
κ , ...x

(M)
κ ). The bits x

(i)
κ ∈ {−1,+1},

i = 1, 2, ...M , with x
(M)
κ being the LSB. Each value x

(i)
κ is

multiplied with the specific weight wi ∈ R
+ (Sec. III) of

the diagonal matrix W = diag(w1, w2, ...wM ). The obtained
channel symbols (Fig. 2)

y(τ) = W · x(τ) (2)

are transmitted over a channel with additive white Gaus-
sian noise (AWGN) n(τ) = (n(1)(τ), n(2)(τ), ...n(M)(τ)),
n(i)(τ) ∈ R, i = 1, 2, ...M , with N(0, σ2

n), the variance
σ2

n = N0/2, and the noise power spectral density N0. We
assume perfect knowledge of σ2

n at the transmitter.
In case of coherent BPSK modulation we obtain the dis-

turbed vector z(τ) = y(τ) + n(τ) at the receiver. After hard
decision decoding, the estimate û(τ) is produced by table
lookup.

III. OPTIMIZATION OF WEIGHTS

A. Optimization Approach

We consider bipolar channel symbols ±
√

E
(i)
b and E

(i)
b

being the energy for each bit i. If bits in x(τ) are inverted
due to AWGN, a wrong decision x̂(τ) is made at the receiver.
Thus, the distortion d(τ) = u(τ) − û(τ) occurs. We want to
calculate optimal weights in the sense of a minimized expected
value E{d2(τ)}, i.e., the MMSE.

In the following we assume ergodicity. Thus, we calculate
E{d2} taking the different possible values

dκ,η = uκ − ûη (3)
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Fig. 1. Baseband system model of BPSK-MUPA with weight matrix W and hard decision decoding.

and their probabilities of occurrence into account:

E{d2} =
2M∑
κ=1

2M∑
η=1

d2
κ,η · P (xκ, x̂η) (4)

=
2M∑
κ=1

2M∑
η=1

d2
κ,η · P (xκ) · P (x̂η|xκ) (5)

The mean square error (MSE) E{d2} depends on the probabil-
ity of occurrence P (xκ) of the reproduction levels uκ and on
the transition probabilities P (x̂η|xκ) between the transmitted
and received bit patterns xκ to x̂η, respectively.

For the minimization of (5) we start with the bit error rate
(BER) Pb for the uniform case (i.e., wi = 1.0, i = 1, ...M )
[3]

Pb =
1
2

erfc

(√
Eb

N0

)
=

∞∫
√

Eb

1√
2πσn

·exp
(−ξ2

2σ2
n

)
dξ . (6)

Pb depends on the bit energy Eb. With the MUPA concept,
the M different bits are transmitted with different bit energies
E

(i)
b = w2

i · Eb, i = 1, ...M . For wi > 1, the bit error
probability is reduced, if wi < 1, the BER is increased. This
different weighting is illustrated in Fig. 2.

In a frame of M bits the total energy is:

M∑
i=1

w2
i · Eb = M · Eb (7)

resulting in the energy constraint

M∑
i=1

w2
i = M. (8)
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Fig. 2. Channel symbols y(τ) with their amplitudes wi for M = 4 bits,
binary bit representation.

Using the normalization Eb = 1 we get the different bit error
probabilities

P
(i)
b =

∞∫
wi

1√
2πσn

· exp
(−ξ2

2σ2
n

)
dξ . (9)

Our goal is to minimize E{d2} by optimizing the weights wi.
As a consequence, e.g., the number of bit errors in the MSB
positions is reduced, such that the overall quality (parameter
SNR) can be increased. Due to the statistical independence of
the noise samples, the transition probabilities can be calculated
as [3][4]

P
(
x̂η|xκ

)
=

⎛
⎜⎜⎝

M∏
i=1

x(i)
κ �=x̂(i)

η

P
(i)
b

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

M∏
i=1

x(i)
κ =x̂(i)

η

(
1 − P

(i)
b

)
⎞
⎟⎟⎠ . (10)

B. Lagrange Multiplier Method (LMM)

The optimization problem is the minimization of (5) with
the constraint (8). An appropriate approach is to use the
Langrange Multiplier Method (LMM) with the Lagrange
Multiplier λ as follows:

L(w1, ...wM , λ) =⎛
⎜⎜⎝

2M∑
κ=1

2M∑
η=1

d2
κ,η ·P (xκ) ·

⎛
⎜⎜⎝

M∏
i=1

x(i)
κ �=x̂(i)

η

P
(i)
b

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

M∏
i=1

x(i)
κ =x̂(i)

η

(
1 − P

(i)
b

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠

− λ

(
M −

M∑
i=1

w2
i

)
. (11)

This equation is a non-linear function L : R
M+1 → R with

M + 1 unknown variables, i.e., the M weights wi and
the Lagrange Multiplier λ. Next, we need the M + 1 par-
tial derivatives ∂L(w1, ...wM , λ)/∂wj , j = 1, 2, ...M , and
∂L(w1, ...wM , λ)/∂λ of (11). Two cases can occur: if
x

(j)
κ �= x̂

(j)
η , then the first product contains the factor P

(j)
b and

therefore has to be differentiated with respect to wj according
to (9). Otherwise (1 − P

(j)
b ) has to be differentiated.

C. Newton Algorithm

In the next LMM step the roots wj and λ of the M + 1
derivatives have to be calculated. Due to the transcendent
function exp(x), we employ the (M +1)-dimensional Newton
algorithm [5] to calculate the roots. For convenience, we
insert λ into the set of variables by renaming (w1, ...wM , λ)T

to v = (v1, ...vM+1)T with vi = wi for i = 1, 2, ...M ,
and vM+1 = λ. We define L′

j(v) = ∂L(v)/∂vj ,



486 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 6, JUNE 2005

j = 1, 2, ...M + 1, and L′(v) = (L′
1(v), ...L′

M+1(v))T for the
vector of the first partial derivatives. With this notation, the
Newton iteration rule is given by

vk+1 = vk − J−1
L (vk) · L′(vk) (12)

with the iteration counter k and the inverse Jacobian matrix
J−1

L (vk) containing the first partial derivatives of L′(v), i.e.,
the second partial derivatives of L(v), L′′(v) = ∂L′

g(v)/∂vj ,
for all combinations of g, j = 1, 2, ...M + 1. When the exit
condition ||vk+1 − vk|| < ε is fulfilled, the LMM supplies the
extremum v which is a local or a global minimum.

IV. SIMULATION RESULTS: EXAMPLE

The performance of MUPA is confirmed by simulations
with M = 4 bits, natural binary IA, and a source signal
u(τ) (Fig. 1) with the Gaussian probability density function.
An optimal (non-uniform) Lloyd-Max quantizer (LMQ) [6] is
used.

Fig. 3 shows that for very bad channels with
Eb/N0 < −5 dB the weight w1 for the MSB is emphasized
at the cost of all the other ones. Above Eb/N0 = −5 dB also
w2 becomes slightly larger than 1. With further increasing
Eb/N0 all weights approach towards wi = 1. This can be
explained with the extreme sensitivity (gradient) of the
bit error probability in that range with respect to weight
variations. Consequently, the different weights are still
different but close to 1.

In Fig. 4 the horizontal coding gains in terms of Eb/N0 for
transmission with and without MUPA are approximately 1 to
1.5 dB for Eb/N0 values in the range of 3 to 6 dB.

By MUPA, the parameter SNR is improved by the ver-
tical gains or unchanged but never impaired for all Eb/N0

values. The maximum parameter SNR gain of 3.27 dB is
achieved at Eb/N0 = 3 dB. MUPA also outperforms a r = 1/2,
(7,5)-convolutional code with hard decision Viterbi decoding
at most channel qualities and is slightly worse only for Eb/N0

values in the range of 5.2 to 8 dB. The hard decision Viterbi
decoder is much more complex than MUPA which requires
only table lookup decoding.

The results in Fig. 4 are based on weights wi which are
optimized under the assumption that the Eb/N0 is perfectly
known. However, MUPA is quite insensitive to an Eb/N0

mismatch of 3 dB or even more. Therefore a few different
sets of optimal weights, precalculated for different classes of
Eb/N0 ratios, could be applied.

V. CONCLUSIONS AND OUTLOOK

The digital transmission of parameters over a noisy channel
can be improved by allocating unequal power to individual
bits according to their significance. This MUPA approach is
of special interest if the transmission system does not include
channel coding for some reason.

The optimization criterion is the minimum mean square
error of the decoded parameters. By the example of a 4 bit
quantizer and BPSK modulation it is shown that Eb/N0

coding gains (horizontal gains) of up to 1.5 dB, and parameter
SNR gains (vertical gains) of up to 3.27 dB can be achieved in
comparison to transmission systems with constant bit energy.
In comparison to a standard r = 1/2, memory 2, convolutional
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Fig. 3. Weight values wi (LMQ, natural binary).
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encoder with hard decision Viterbi decoding, the MUPA
approach achieves almost comparable or even better results.
However, the MUPA decoder is just a simple table lookup
decoder.

If some additional complexity is allowed, further perfor-
mance improvements can be achieved by combining MUPA
with softbit source decoding (SBSD) [7]. In this case the hard
bit table lookup decoding of MUPA is replaced by parameter
estimation. The MUPA concept can be applied to higher order
modulation schemes.
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