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Abstract- A well known technique to protect bits with differ-
ent sensitivities against channel errors is unequal error protection
(UEP) by selective channel coding. However, some transmission
systems such as Bluetooth and DECT include only weak or no
channel coding. For those systems modulation with unequal power
allocation (MUPA) is an appropriate technique to realize UEP
without channel coding. MUPA allocates different transmission
power to the modulation symbols according to the individual bit
error sensitivities. In this paper we apply the MUPA concept
to systems with softbit source decoding and soft demodulation,
and enhance the MUPA approach by taking a 1st order Markov
model in terms of lst order a priori knowledge (AKI) into account
(MUPA-AK1).

I. INTRODUCTION

Digital communication systems transmit the digital rep-
resentations of the source encoded parameters of speech,
audio, or video signals by bits which exhibit individual bit
error sensitivities. The most significant bits (MSBs) are more
sensitive than the least significant bits (LSBs). At the receiver
an MSB, which has been inverted by channel noise, causes
a larger distortion in the output signal than an inverted LSB.
For this reason, unequal error protection (UEP) is applied and
often realized by selective channel coding [1] protecting the
MSBs stronger against bit errors than the LSBs.
Due to the higher effort for encoding and decoding, UEP by

channel coding is not specified for systems such as Bluetooth
and DECT, which are designed to ensure low costs. The
modulation with unequal power allocation (MUPA) [2][3][4]
achieves UJEP by periodically allocating unequal transmission
power to the individual bits. Less energy is assigned to
the LSB than to the MSB, while the average transmitted
energy per bit remains the same. For this purpose, a set of
weights wi is calculated once in advance for a representative
selection of channel signal-to-noise ratios (SNRs). Before
BPSK modulation, the individual bits are weighted differently
at the transmitter taking the channel SNR into account. This
multiplicative weighting causes only a small additional effort.
MUPA for BPSK modulation has already been described in

[3] and [4]. In these proposals MUPA is only used for BPSK
systems with hard decision decoding at the receiver. In [2] the
MUPA concept has been transferred to a transmission system
using a 16-QAM scheme and exploiting a priori knowledge
(AK) at the receiver. However, the MUPA technique for the
16-QAM system in [2] does not utilize the autocorrelation of
the source encoded parameters. In contrast to [2], [3] and
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[4], in this paper we apply the MUPA concept for the first
time to BPSK systems which exploit different orders of AK
at the receiver with softbit source decoding (SBSD) [5] or soft
demodulation (SDM). In addition, we present a novel approach
which enhances MUPA at the transmitter by considering a 1 St
order Markov model of the source encoded parameters. The
resulting approach is called MUPA-AKI (a priori knowledge
of 1St order). In contrast to the MUPA concept described in
[4], [3] and [2], MUPA-AKI takes the autocorrelation of the
source encoded parameters into account for the calculation of
the weights wi.

In [6] the technique of differently weighted bits has already
been discussed for PCM transmission. However, in [6] an
approximate solution is derived which is based on the sim-
plifying assumption that only single bit errors occur. In [7]
UEP is achieved by bit-wise control of the BPSK modulation
amplitudes. In contrast to our proposal, neighborhood relations
between the unquantized and quantized source parameters are
exploited in combination with Gray or Gray-like bit mappings
to calculate the discrete symbol amplitudes. In contrast to [6]
and [7], MUPA and MUPA-AKI are analytical approaches
with rigorous optimization of the weights wi allowing contin-
uous BPSK symbol amplitudes, arbitrary bit mappings, and
taking multiple bit errors into account. Besides, the MUPA-
AKI technique developed in this paper considers AKI at the
receiver and enhances the basic MUPA concept.

II. SYSTEM MODEL
The model of the transmission system is shown in Fig. 1.

Instead of any specific signal and source encoder, we use a
zero-mean Gaussian source with variance o2 = 1 to model the
parameters u(r) which are delivered at time r by the source
encoder. This allows us to conduct precisely defined experi-
ments. However, without loss of generality the results can be
applied to any real source encoded for speech, audio, or video
siganals. Each u(r) is quantized to 'U(T) G {hUjIr = 1, 2, ...2M}
with the reproduction levels Ti4. The index assignment (IA)
maps the values ii(r) by the one-to-one mapping function
r to bit patterns x(T) = F(r7(7)) of the bit pattern set
Q-{x, = 1, 2,...2m with x, = , x( x(M)) The
bits x() E {-1, +±}, i = 1, 2, ...M, contain the MSB x
and the LSB x(M). Each value x(i) is multiplied with the
specific weight w C ItR+ (Sec. IV) of the diagonal matrix
W - diag(wi, w2, . ..wM). A vector of BPSK channel symbols

y(r) = W x(T) . (1)
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Fig. 1. Baseband system model of BPSK-MUPA with weight matrix W, A: conventional hard decision decoding, B: soft decoding

with y(r) c {y = 1, 2,...2M} and the channel symbols
y = (y(1) y(2) (M)), y(i) Wi, +Wi, i = 1, 2, M,

is obtained. Each y(i) represents the bit at position i of a
specific x(-r) = x, with BPSK. The symbols are trans-
mitted over a channel with additive white Gaussian noise
(AWGN) n(r) = (n(l)C(r),n(2) (r),...n(M)(r)), n(')C(r) eR,
i = 1,2, ...M, with N(O,a2), the variance c2 = No/2, and
the noise power spectral density No. We assume perfect
knowledge of a2 at the transmitter.

In case of coherent BPSK modulation we obtain
z(r) = y(r) + n(r) as disturbed vector at the receiver with
Z(T) = (Z(1)(r),Z(2)(r) ...Z(M)N(7)). If the switch of Fig. 1
is in position A, hard decision decoding is performed and
the estimate U(Tr) E {T4Uj I' = 1, 2, ...2M} is produced by table
lookup. If the switch is in position B, SBSD or SDM is utilized
to estimate the output value fi(r) E R. In this paper we focus
on SBSD and SDM. Hard decision decoding is only used
to calculate the weights for MUPA-AKI and as reference to
clarify performance improvements.

III. SOFT DEMODULATION (SDM)
In the following we shortly review the concept of soft

demodulation for BPSK, which was developed in [2] for 16-
QAM and is based on softbit source decoding (SBSD). For a
detailed derivation of SBSD we refer to the literature [5].
The soft estimation of LL(r) at the receiver requires a pos-

teriori probabilities providing information about all possibly
transmitted bit patterns x(7) E Q given the received z(r).
With a 1st order Markov model for the source encoded param-
eters and a memoryless channel, the a posteriori probabilities
P(Y (r) z(i-), Z(T - 1)) can be calculated as

P(Y (r) Z(r), Z(r- 1))
= C * p(Z(Tr) YK (Tr)) * P(YK (T) Z(Tr- 1)) (2)

with Z(i---1) = (z(T--1), (Tr-2)...) consisting of the history
of received values from the beginning of the transmission until
the time instant 7 - 1. C is a normalization constant.

For SBSD the bit-wise estimation of the parameter tran-
sition probability p(Z(T) y (T)) can be accomplished
by the so-called L values. In contrast to SBSD, in SDM
the Gaussian probability for the absolute distance be-
tween the received symbol z(i) (r) and the transmitted
BPSK modulated symbol y()(r) E {I-w, +wi} is taken for
p(Z(Tr) y (T)). We consider the real-valued Euclidean dis-
tance D = 2z(i)(r)-y$i9Cr)72 between the received
value z(i) and the possibly sent value y(i)(Cr) for the bit at

position i. The AWGN of the channel causes the distance
-Z(i) Y(i) and the conditional probability density p(z(i) y()
becomes

p(Z(i) (T) 8(t) (T)) =p(Dz(i)Y(i) )

exp ( 'SI. (3)

With (3) the parameter transition probability is
M

p(z(r) &,(T)) = fIp(z(i)r() y(i)
i=l

(4)

with . = 1, 2, ...2m.
The probabilities P(y_ (r) Z(r- 1)) in (2) are determined

with the available a priori knowledge. If no a priori knowledge
(NAK) is used, the probability density p(z(Tr) y (7)) of (4)
is proportional to the a posteriori probability [5]:

P(y(Cr) Z(T)) =C p(Z(r) y (r)) (5)
with the normalization constant

0= 1 (6)
Ek=1 P((T) II Y'k(r))

In the following we will use the factor C to normalize
the a posteriori probabilities P(y (T) z(r),...) such that
Z, P(y_ (r) z(r), ...) = 1 is fulfilled. Note, that C does not
have to equal the term given in (6) in all cases.

With a priori knowledge of O'h order (AKO, i.e., histogram
knowledge), the probabilities of occurrence P(y,T,) of the
signal points YK,r E Y determine the a posteriori probabilities.
Since r is a one-to-one mapping function, it holds

P(y(_r)) = P(F(uC (r))) (7)
with the probabilities of occurrence P(iT, (T)), r, = 1, 2, ...2',
of the quantizer reproduction levels Th, (r) mapped to the
symbols y,(r) e Y. For (2) it holds

P(Y (T) Z(T)) = C * P(Z(r) y (r)) - P(r(Th(-r))) (8)
For Ist order a priori knowledge (AKI) the correlation of

the source parameters uT (Fig. 1) is exploited. The a posteriori
probabilities can be calculated recursively, because the source
parameters can be modelled as a Ist order Markov process [5]:
P(y (r) Z(T),Z(T- 1)) = C p(z(r) Y (T))

2A1

*EP(Y,(-r)ly,(-- 1)) -P(y,}(-T- 1)|Z(Tr- 1), Z(-r- 2)).
l9=1

(9)
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The minimum mean square error (MMSE) between Vu, and
UT is an appropriate and established error criterion [5, 8]. The
last step of the soft demodulation algorithm is the mean square
(MS) estimator [5]:

2AI

Ui(Tr)=-,U,SP (r 1(Y (r)) Z(T)' (10)

IV. BPSK WITH UNEQUAL POWER ALLOCATION

In the following we assume ergodicity and omit the time
index 7 for convenience. We consider the bipolar channel
symbols ± E with E(i) being the energy for each bit i. If
bits in x. are inverted due to the AWGN, the specific distortion
d<tZ = un-ul occurs. The basic MUPA approach [4],[3],[2]
is based on the mean squared error (MSE)

2M1 2M
E{d2} = Zd ,.P(X).P(,.jXK) (11)

,c=1 r=1

with the probability of occurrence P(x) and the transition
probabilities P(xqLx) between the transmitted and received
bit patterns x, and i, respectively. MUPA with all wi = 1.0,
i = 1,...M, is identical to BPSK with equal bit error rates
(BER) Pb for all bits [9]

Pb2 erfc( -j ] exp( 2) dX. (12)

Pb depends on the bit energy Eb. With MUPA, the Ml different
bits are transmitted with different bit energies E() -w Eb,
i = 1, ...M, according to their bit error sensitivities. If wi > 1,
the bit error probability is reduced due to the higher amplitude,
i.e., higher energy for bit i. Otherwise, if wi < 1, the BER is
increased. With the normalization of the average energy per
bit Eb = 1 the different bit error probabilities are

P( J-/ nA expe(2x 2 ) dQ (13)
Wi

The approach (11) includes the probability of occurrence
P(x,j) (i.e., AKO), but no autocorrelation of the source en-
coded parameters (i.e., AK1). However, in case of residual
parameter correlation, this 1St order a priori knowledge is
significant information, which can be exploited at the receiver
by SBSD or SDM. Consequently, it might be beneficial to
extend the approach (11) by 1" a priori knowledge (AK1) to
MUPA-AKI. This technique is a signal processing step at the
transmitter site and allows to support SBSD and SDM with
AKI at the receiver site to increase system robustness.

SBSD and SDM calculate the estimated value uL from
z by soft decoding. However, for the computation of the
weights, we restrict our following considerations to hard
decision ut = u() (switch in position A, Fig. 1) to keep the
effort manageable. These weights will then be used in the
system with SDM or SBSD (switch in position B, Fig. 1).
The difference between (1 1) and the novel extended approach
developed in the following is the consideration of AKI, i.e.,
P(X(7) XT- 1)). From now on, we denote the bit pattern
at the previous time instant r- 1 by the additional index "-":
x,- E Q for the bit pattern transmitted at r-- and i. XQ
for the estimated one.
We assume, that the MSE E{d2} ofMUPA-AKI depends on

the transmitted and the estimated bit pattern at time r, i.e., x,,
and x,, respectively, and on the transmitted and the estimated
bit pattern at T-1, i.e., x,;_ and x , respectively. However,
it can be shown that E{d2} is independent from y.- due to

2All
Z-=1 P(x,7_ x, = 1. Consequently, instead of (11) we

have:
2 A2 A2

E{d2}=ZZEE d2_ P(x,7xKlx_)
K=1 ,=1 V-=1

with the squared distortion

d2 7_=(7-- )2

(14)

(15)
The estimated value ,i,,-, which depends on the presently

estimated xn and on the previously sent x is the result of
an MS estimator as used in SBSD and SDM, which calculates
the expected value over all possibly transmitted quantizer
reproduction levels Tm. m = 1, 2, ...M:

2Al

77,K- = E Um P(Xm i, x,,-)
m=l

(17)

with xm = r(Um) C Q. We apply the Bayes theorem and
the chain rule for probabilities to P(I ,,X). With
P(xT xm, xn) = P(Qq7jxm) due to the memoryless channel
and P(xm x,_) = P(x,mKx,-) due to the 1It order Markov
property, it holds

PG!2m .Tq.Ih) = Z1P( 77 mx) P(Im l )

En=1 P(XrI? Xn) * P(ln I !,,-)
(18)

Analogously, the joint probability in (14) can be splitted
with the chain rule into the probabilities:

P(x,n, xK X,x) = P(xn xJ P(x,, xr_) * P(x_.) . (19)

We combine (17), (18), (19) and (14) to the MSE with 1St
order a priori knowledge, the MUPA-AKI approach (16).

2A1 2A1 2X1
E{d2}=ZEE E

rc-1 77=1 K-=1

E Im * P(X77 Xm) * P(Xm X,-)

2AU_, I= PX X.s) * P(xec Xe,-) * P(xe,_)

EP- I)P) ( P(xP(Ix(-)
I n=l i
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As the noise samples are statistically independent, the
channel transition probabilities can be expressed as [4],[9],[10]

P (nIl) = p(i) (

C0) jjii)

M

n$1
i=l

x(i) _X(i)WS 77

- p(i)))

with s E {m,n,r,I} and P (i) from (13).
In most transmission systems the energy budget is limited

or additional signal energy increases interference as, e.g., in
code division multiple access (CDMA) systems. We restrict
the transmission energy by normalizing the average bit energy
Eb to 1. With the different bit energies E(i) = w2 the energy
constraint is M

Zw2 = Ni (21)
i=l1

A. Lagrange Multiplier Method (LMM)
Our goal is to minimize the MSE E{d2} of (16) by optimiz-

ing the weights wi under the constraint (21). An appropriate
approach to find a solution for this optimization problem is
the Langrange Multiplier Method (LMM) with the Lagrange
Multiplier A. The Lagrange equation is built by the MSE (16)
and the energy condition (21):

L = E{d2} _(-AI jw;)? .

i=l /

This equation is a non-linear function L : IRM+ R
with M + 1 unknown variables, i.e., the NI weights wi
and the Lagrange Multiplier A. Next, we need the NI + 1
partial derivatives &L(wl, ...WM, A)/Owj, j = 1, 2, ...NI, and
OL(w1,...WM, A)/&A of (22). Note, that only the channel
transition probabilities P(L, xI), s C {m, n, n}, depend
on wi and have to be differentiated with respect to wj.
B. Newton Algorithm

In the next LMM step the roots wj and A of the M + 1
derivatives have to be calculated. Due to the transcendent
function exp(x), we employ the (Ml + 1)-dimensional Newton
algorithm to calculate the roots. For convenience, we insert
A into the set of variables by renaming (w1, ...wM, A)T
to v=(vi,...vi+i)T with vi = w1 for i = 1,2,...MI,
and vm+l = A. We define LX,(v) = L(v)/9vj,
j 1,2, ...I±+ 1, andL'(v) = (L'(v), ...LM+1Q ))T for the
vector of the first partial derivatives. With this notation, the
Newton iteration rule is given by

Vk+l = Vk- JEL(Vk) * k'(Vk) (23)
with the iteration counter k and the inverse Jacobian matrix
JL (Vk) containing the first partial derivatives of L'(V), i.e.,
the second partial derivatives of L(v), L"(v) = OL1(v)/0v;,
for all combinations of g,j 1, 2, ... + 1.
When the exit condition IIV±k+1 -VkII < e (here: e = 10-10)

is fulfilled, the LMM supplies the weights wi as optimized
solution. It is very difficult to check this solution for minimum

analytically due to the non-linearity of (16) and (21). For
simplification, we take other sets of weights with Wi fulfilling
(21) and which are close to wi. If the E{d2} of (16) is larger
with the w'i than with the wi, we suppose that the optimized
w, are the solution for a local or a global minimum. The
simulation results (Sec. V) show that this strategy is successful.

V. SIMULATION RESULTS
The new MUPA-AKI approach is compared with the ba-

sic MUPA approach [4],[3] and with systems with constant
symbol energy. All simulations are carried out with

. a source signal with zero-mean Gaussian probability
density function (pdf), the variance o'2 = 1, and correlated
source parameters (a = 0.9),

. a symmetric Lloyd-Max quantizer (LMQ) which is pdf-
optimized for the source signal u,

. index assignment r: Gray
* BPSK modulation with SDM or SBSD, and AKI or AKO,

respectively.
The simulation results are evaluated in terms of the parameter
signal-to-noise ratio (SNR)

SNR[dB]= 10 logl0 E (u(r)-u(T))2} (24)

which has a strong correlation with subjective perception.
Figs. 2 and 3 show the performance improvements by SDM

and SBSD, respectively, in combination with no weighting
(i.e., wi = 1.0 V i, dashed lines), and MUPA or the new
MUPA-AKI technique (solid lines). The curves for hard deci-
sion decoding (switch in position A in Fig. 1) are also depicted.
As example, a maximum parameter SNR gain (vertical gain)
of 2.61 dB at Eb/No = 2 dB is achieved by MUPA with hard
decision decoding compared to the corresponding system with
constant symbol energy. MUPA at the transmitter with hard
decision decoding even outperforms systems using SDM or
SBSD with AKO at the receiver without MUPA (Fig. 2 for
SDM and Fig. 3 for SBSD), although SDM and SBSD with
AKO need more computational effort for decoding the simple
table lookup in the case of hard decision decoding.

With SDM and AKO, parameter SNR gains of 1.12 to
2.26 dB in the Eb/No range of 1 to 6 dB are achieved

20 - : MUPA or MUPA-AKI

.... ..........., ,,
m Z: AKI, T: MUPA-AKI

2 16 -Z AK1, T. i- 3 LV

Z 14 -

.....

E 10
X 8.X

IZ: AKO, T: MUPA

-3 -2 -1 0 1 2 3 4 5 6 7 8 9
Eb/NO [dB]

Fig. 2. Soft demodulation (SDM), 7R: receiver site, T: transmitter site
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'3~~~~~~~~~~~~~~~~~~~~~~~~~~~.. 8........
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6- I -- jrs;' -,w' -- Z: AKO, T: w =-l .0 V i
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7?: hard dec., T: wi -1 QO Vi

-3 -2 -1 0 1 2 3 4 5 6 7 8 9
Eb/No [dB]

Fig. 3. Softbit source decoding (SBSD), 7: receiver site, T: transmitter site

Eb/No [dB]
Fig. 4. MUPA-AKI weight values wi (LMQ, r: Gray)

W0(MSB)0.6- -e- 'W2
~0.4 0 4 0 0 ; ^ ~~W3
0.2 - W4 (LSB)

-2 0 2 4 6 8 10 12 14 16

Eb/No [dB]
Fig. 5. MUPA weight values wi (LMQ, I: Gray)

compared to systems with hard decision decoding (Fig. 2).
MUPA combined with SDM and AKO increases the parameter
SNR by 1.35 to 2.7 dB in the Eb/No range of 1 to 6 dB
compared to the corresponding system without MUPA. Even
if transmitter and receiver choose the wrong set of weights
(within certain limits) due to imprecise estimation of the
Eb/No, MUPA improves the parameter SNR, but with gains
less than the maximum gains.

Fig. 2 shows a large performance improvement for systems
using SDM with AKI compared to a system with hard decision
decoding: a maximum parameter SNR gain of 8.73 dB at
Eb/No- 1 dB. However, the novel MUPA-AKI approach,
which is developed in this paper and takes AKI into account,
even outperforms SDM with AKI. The gains in terms of
parameter SNR are of 0.5 to 0.1 dB in the Eb/No range of
1 to 5 dB, while the maximum gain of 0.81 dB is reached
at Eb/No = -2 dB. As the exploitation of AKI at the receiver
leads already to high parameter SNR values, the gains achieved
by MUPA-AKI are smaller than the ones for systems with
AKO or hard decision decoding as described above. With neg-

ligible additional computational effort, MUPA-AKI achieves
a further improvement of systems with SDM and AKI. Note,
that all weights wi can be calculated once in advance.

Analogously, Fig. 3 shows similar parameter SNR gains for
systems using SBSD [5] instead of SDM at the receiver. A
comparison of Figs. 2 and 3 shows that SDM outperforms
SBSD. MUPA improves SBSD with AKO by parameter SNR
gains between 1.41 to 2.59 dB in the Eb/NO range of 1 to 6 dB
compared to the corresponding system without MUPA. The
parameter SNR gain of 7.75 dB achieved at Eb/No = 1 dB
by SBSD with AKI compared to systems with hard decision
decoding is outperformed by the novel MUPA-AKI by 0.65
to 0.24 dB in the Eb/No range of 1 to 5 dB.

Figs. 4 and 5 clarify the main difference between the
weights wi of MUPA and MUPA-AKI. For Eb/No > 4 dB
the MUPA-AKI weights are closer together than the ones for
MUPA. Consequently, MUPA causes a higher BER for the two
LSBs than MUPA-AKI. For Eb/No < 4 dB the LSB weight
W4 decreases to 0 very fast in the case of MUPA-AKI.

VI. CONCLUSIONS
The modulation with unequal power allocation (MUPA)

varies the transmission power of each modulation symbol
according to its significance and the channel quality by weights
calculated once in advance. In this contribution, MUPA at
the transmitter is applied for the first time to BPSK systems
exploiting AK with SDM or SBSD at the receiver. In addition,
the novel approach MUPA-AKI is developed, which takes the
autocorrelation of the source encoded parameters (i.e., AKi)
into account. In the case of SDM and AKO, the parameter
SNR gains by MUPA are between 1.35 and 2.7 dB in the
Eb/No range of 1 to 6 dB compared to systems with constant
symbol energy. Even systems using SDM with AKI are further
improved by MUPA-AKI, but with smaller parameter SNR
gains due to the already high parameter SNR values of SDM
with AK1. MUPA at the transmitter has to be adapted to the
specific receiver and the exploited a priori knowledge.
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