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Abstract

The speech quality is one of the most important features of a digital communication system. The
intelligibility and the naturalness of the speech are decisive for the user’s acceptance. In this paper
we present a scheme for unequal error protection (UEP), which is based on modulation with
unequal power allocation (MUPA). The MUPA technique allocates different transmission power to
the modulation symbols according to the individual bit error sensitivities of the assigned bits. This
corresponds to an intentional increase of the average bit error rate, but improves the speech quality,
as the bit error rates of the most important bits are reduced. The average transmitted energy per
bit remains unaffected, while the average channel capacity is decreased by MUPA.

1. Introduction

In digital transmission systems for speech, au-
dio, and video signals source encoders extract
parameters which are quantized and converted
into a digital representation. As the individual
bits of this representation exhibit different bit
error sensitivities, usually channel coding with
UEP is applied [1]. However, some transmis-
sion systems do not include channel coding
for several reasons (e.g., DECT, Bluetooth).
In this situation the MUPA concept [2], [3]
can be applied to introduce implicit UEP.
MUPA distributes the transmission energy un-
equally in a periodically time-varying manner
to the modulation symbols by the weights wi,
i = 1, 2, ...M with M being the number of
bits of an encoded source parameter, e.g., the
bits assigned to a quantizer reproduction level.
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Fig. 1: Baseband system model of BPSK-MUPA with the weight matrix W and hard decision
decoding.

The weights increase the distances between
modulation symbols, which differ in the most
significant bit (MSB), while other distances
between modulation symbols differing, e.g.,
in the least significant bit (LSB) are made
smaller. For each channel Eb/N0 a set of
weights is calculated once in advance.
UEP by differently weighted bits has been
discussed, e.g., in [4] and [5]. In [4], differently
weighted bits in pulse code modulation (PCM)
transmission have been described. However,
only for PCM an approximate solution is de-
rived based on the simplifying assumption that
only single bit errors occur. In [5] discrete
symbol amplitudes are calculated for BPSK
with a fixed step size. In contrast to [4] and [5],
the MUPA approach allows rigorous optimiza-
tion of the continuous symbol amplitudes [2],
[3]. As optimization criterion we consider the
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mean square error (MSE) E{(u(τ) − û(τ))2}
between the original source parameter u(τ),
e.g., a prediction coefficient or a gain factor
or even a PCM sample, and its reconstruction
û(τ) (Fig. 1). The corresponding signal-to-
noise ratio is given by the parameter SNR

pSNR[dB] = 10 log10

(

E{u2(τ)}
E{(u(τ) − û(τ))2}

)

,

which especially has a strong correlation with
subjective perception for most of the model
based coding schemes such as CELP codecs.

2. BPSK-MUPA System Model

The baseband model of the BPSK transmission
system is shown in Fig. 1. The parameters
u(τ) delivered at time τ by the source encoder
are modeled here by a zero-mean Gaussian
source with the variance σ2

u = 1. This ap-
proach allows to conduct investigations under
precisely defined conditions and independent
from any specific codec standard. Each u(τ) is
quantized to u(τ) ∈ {uκ|κ = 1, 2, ...2M} with
the reproduction levels uκ. The index as-
signment (IA) utilizes the one-to-one map-
ping function Γ and maps the values u(τ)
to the bit patterns x(τ) ∈ {xκ|κ = 1, 2, ...2M}
with xκ = (x

(1)
κ , x

(2)
κ , ...x

(M)
κ ): x(τ) = Γ(u(τ)).

The bits x
(i)
κ ∈ {−1, +1}, i = 1, 2, ...M , are

ordered from the MSB x
(1)
κ to the LSB x

(M)
κ .

Each value x
(i)
κ is multiplied with the spe-

cific weight wi ∈ R
+ (Sec. 3) of the di-

agonal matrix W = diag(w1, w2, ...wM). The
obtained channel symbols y(τ) = W · x(τ) are
transmitted over a channel with additive white
Gaussian noise (AWGN) n(τ) having the
variance σ2

n = N0/2 with the noise power
spectral density N0. In the case of coherent
BPSK modulation we obtain the disturbed
vector z(τ) = y(τ) + n(τ) at the receiver.
After hard decision decoding, the estimate
û(τ) ∈ {uκ|κ = 1, 2, ...2M} is produced by in-
verse IA (table lookup).

3. Unequal Power Allocation

We consider bipolar channel symbols ±
√

E
(i)
b

with E
(i)
b being the energy for each bit i. If bits

in the transmitted bit pattern xκ are inverted
due to AWGN, an erroneous bit pattern x̂η is
received. Thus, the distortion dκ,η = uκ − ûη

occurs. We want to calculate optimal weights
wi in the sense of a minimized expected value

E{d2} =
2M
∑

κ=1

2M
∑

η=1

d2
κ,η · P (xκ) · P (x̂η|xκ). (1)

The MSE E{d2} depends on the probability
of occurrence P (xκ) of the reproduction levels
uκ = Γ−1(xκ) and on the transition proba-
bilities P (x̂η|xκ) between the transmitted and
received bit patterns xκ to x̂η, respectively.
The transmission energy is normalized to the
average bit energy Eb to 1. With E

(i)
b = w2

i · Eb

the energy constraint is given by
M
∑

i=1

w2
i = M. (2)

The minimization problem (1) with the energy
constraint (2) is solved by the Lagrange and
Newton algorithms [2], [6].

4. Analysis of BPSK-MUPA

4.1 Bit Error Rate (BER)

Due to the variation of the bit energy E
(i)
b by

MUPA the different bits experience different
channel qualities and bit error rates character-
ized by the E

(i)
b /N0 ratio. According to the

significance of the bits, the bit specific BERs
are distributed above (LSB) and below (MSB)
the average BER curve (Fig. 2). Due to the high
BER of the LSB weighted by w4, the average
BER is worse for MUPA than for conventional
BPSK, i.e., wi = 1.0 ∀ i. However, for the
typical model based speech codecs, the hearing
impression becomes better with MUPA (Fig. 3:
compare the dashed line and the line marked
with “◦”). Even if PCM audio samples are
considered as parameters u(τ), MUPA gives
a significant perceptual improvement. If the
transmitter has imprecise estimation of the
Eb/N0 (channel mismatch, Fig. 3), the weights
of a higher Eb/N0 should be chosen to reduce
the performance loss.
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Fig. 2: Bit error rates of BPSK-MUPA
(Γ: Gray) compared to a conventional BPSK
system.

4.2 Channel Capacity

The different bit energies according to the sig-
nificance of the bits also influence the channel
capacity C [7]. A BPSK-MUPA transmission
of M bits can be modeled by subdividing the
channel into M different subchannels. The bit
at position i, i = 1, 2, ...M , in x(τ) is trans-
mitted over the subchannel i with the specific
capacity C(i) and the channel quality E

(i)
b /N0.

The following derivation of the channel capac-
ities C(i) assumes a BPSK transmission system
with optimized MUPA weights wi and a mem-
oryless and symmetric AWGN channel with
binary input y ∈ {−wi, +wi} and the random
variable Y , and the continuous output z with
the random variable Z. The average mutual
information I(Y ; Z) is defined as [7], [8]

I(Y ; Z) = H(Y ) −H(Y |Z). (3)

with the entropy H(Y ) of Y and the condi-
tional entropy H(Y |Z). In general, the channel
capacity C is defined as the maximum of the
average mutual information I(Y ; Z)

C = max
P (y)

I(Y ; Z). (4)

with respect to all possible choices of the
input distribution P (y). The equal distribution
P (y = −wi) = P (y = +wi) = 1/2 results in
H(Y ) = 1, i.e., the maximum value of the first
part of (3). This is fulfilled, e.g., by the natural
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Fig. 3: Comparison of BPSK (Γ: Gray)
with and without MUPA, and cases of weight
mismatch (weights optimized for the Eb/N0

values -3, 0, 3, 5, and 10 dB are used for all
channel qualities).

binary index assignment with the Lloyd-Max
quantizer (LMQ) and a symmetric probability
distribution of u(τ). The second term in (3) is
the conditional entropy H(Y |Z). In the special
case of a discrete channel input value y and a
continuous output value z it holds

H(Y |Z) =

−
∑

y

P (y) ·
∞
∫

−∞

p(z|y) · log2(P (y|z)) dz (5)

Next, the a posteriori probabilities P (y|z) are
replaced by applying the Bayes theorem in
mixed form taking the two possible BPSK
symbols −wi and +wi for y into account:

P (y = +wi|z) =
p(z|y = +wi) · P (y = +wi)

p(z)
(6)

and analog for P (y = −wi|z). With equal
distribution of P (y), (6) can be written as

P (y|z) =

(

1 +

(

p(z|y = −wi)

p(z|y = +wi)

)sgn(y)
)

−1

(7)

for y ∈ {−wi, +wi} with the sign function sgn.
Since an AWGN channel with zero-mean white
Gaussian noise and the variance σ2

n = N0/2 is
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Fig. 4: Channel capacity CMUPA of BPSK-
MUPA compared to the conventional BPSK
system with CBPSK (M = 4, Γ: natural binary).

considered, the channel transition probability
density p(z|y) in (7) can be calculated by

p(z|y) =
1√

2πσn

· e−
(z−y)2

2σ2
n (8)

leading to the a posteriori probabilities

P (y|z) =

(

1 + e
−4zy · sgn(y)

2σ2
n

)

−1

. (9)

The sum over y in (5) consists of two addends
due to y ∈ {−wi, +wi}. Since the channel
probability density function is symmetrical,
i.e., p(z|y) = p(−z| − y), these two addends
are equal. Thus, the sum can be eliminated by
taking the addend with y = −wi twice. With
(8) and (9) in (5), and with (3) in (4), the
capacity C(i) of the subchannel i becomes

C(i) = 1 − 1√
2πσn

·
∞
∫

−∞

e
−

(z+wi)
2

2σ2
n · log2

(

1 + e
2zwi

σ2
n

)

dz. (10)

In the baseband BPSK-MUPA transmission
system (Fig. 1), the bit at position i is transmit-
ted only in every M th pulse. Consequently, in
the case of MUPA the channel capacity CMUPA

is the average value of the M capacities C(i)

CMUPA =
1

M
·

M
∑

i=1

C(i), (11)

which can be compared to the channel ca-
pacity CBPSK of conventional BPSK, i.e.,
wi = 1.0 ∀ i. Fig. 4 depicts the channel ca-
pacity C for a conventional BPSK system and
BPSK-MUPA with M = 4 bits and a natural
binary index assignment. In the case of MUPA,
the channel capacity CMUPA is reduced com-
pared to CBPSK for the unweighted conven-
tional BPSK system.

5. Conclusions

Although the average BER is increased and the
channel capacity is reduced, the speech quality
in terms of the parameter SNR is improved by
up to 2.6 dB for BPSK-MUPA compared to
systems with constant symbol energy. In this
paper we consider hard decision decoding, but
MUPA can also be extended with soft demod-
ulation using a priori knowledge 1st order [9].
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