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Abstract

A key design element of bit-interleaved coded modula-
tion with iterative decoding (BICM-ID) is the mapping
of the bit patterns to the elements of the signal constel-
lation set (SCS). Recently, we proposed mappings and
new non-regular SCSs with superior asymptotic per-
formance, i.e., lower error floors. These proposed map-
pings use signal constellation sets with less elements
than the number of bit patterns to be transmitted and
an appropriate assignment of the bit patterns to them.
The puncturing introduced by the not one-to-one rela-
tion between assigned bit patterns and the elements of
the SCS is compensated by the usage of extrinsic infor-
mation obtained in the iterations. We further show the
theoretical limits for the improvement of BICM-ID by
this technique. Based on the mutual information con-
cept of EXIT charts, a method is presented allowing
easy determination of the achievable gains by different
mappings for different kinds of channels. The results
are confirmed by simulations.

1. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1], [2] is
a band-width efficient coded modulation scheme which
increases the time-diversity and consequently is espe-
cially suited for Rayleigh fading channels. The key ele-
ment of BICM is the serial concatenation of channel en-
coding, bit-interleaving, and multilevel modulations at
the transmitter. In order to increase the performance
of BICM in [3], [4] a feedback loop is added to the de-
coder, which results in a turbo-like decoding process.
This new scheme is known as BICM with iterative de-

coding (BICM-ID). Another key element of BICM-ID
is the usage of non-Gray mappings in the modulator.
With these a significant improvement by the iterations
can be achieved. By mapping we denote the whole de-
sign process of locating the possible positions of the
channel symbols in the signal space, the signal constel-

lation set (SCS), and assigning the possible bit patterns
to these symbols.

In this paper we analyze the fundamentally new
mappings with non-regular SCSs, which we proposed
in [5]. These mappings owe their superior perfor-
mance, i.e., their lower error floor, to a not one-to-
one relation between channel symbols and assigned bit-
patterns and, where appropriate, unequally distributed
positions of the channel symbols in the signal space.
The achievable performance gains are demonstrated
by simulations and the convergence behavior is veri-
fied by EXIT charts [6], [7]. Additionally, a theoretical
limit for the improvement of BICM-ID by the proposed
technique is derived. Finally, the asymptotic perfor-
mance, and consequently the achievable gains, of dif-
ferent mappings is analyzed using the concept of mutual

information inherent in EXIT charts. In order to ob-
tain these gains easily for different kinds of channels, a
suitable method is presented.

2. THE BICM-ID SYSTEM
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Figure 1: Baseband model of the BICM-ID system.

Fig. 1 depicts the baseband model of the BICM-ID
system used in this paper. The data bits u are encoded
by a convolutional encoder. The resulting encoded bits
x are permuted by a pseudo-random bit-interleaver π
to x̃. The modulator maps an interleaved bit pattern

x̃t =[x̃
(1)
t , ... x̃

(I)
t ] of I bits, e.g., I =3 in case of 8PSK,

according to a mapping rule µ to a complex channel
symbol yt∈C out of the SCS Y

yt = µ(x̃t) . (1)

The respective inverse relation is denoted by µ−1, with

x̃t = µ−1(yt) = [µ−1(yt)
(1), ... µ−1(yt)

(I)] . (2)
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The channel symbols are normalized to an average
energy of Es =E{‖yt‖2}=1. The transmitted sym-
bols yt are faded by the Rayleigh distributed coef-
ficients at with E{‖at‖2}=1. In this paper we as-
sume that these coefficients are known at the re-
ceiver, i.e., perfect knowledge of the channel state in-
formation (CSI). Next, complex white Gaussian noise
nt =n′

t+jn′′
t with a known power spectral density of

σ2
n =N0 (σ2

n′ =σ2
n′′ =N0/2) is added. Thus, the received

channel symbols zt can be written as

zt = atyt + nt . (3)

At the receiver the demodulator (DM) computes

extrinsic probabilities P
[ext]
DM (x̃) for each bit x̃

(i)
t being

b∈{0,1} according to [4]

P
[ext]
DM (x̃

(i)
t =b) ∼

∑

ŷ∈Yi

b

P (zt|ŷ)P
[ext,i]
CD (ŷ) , (4)

with P
[ext,i]
CD (ŷ) ,

I
∏

j=1,j 6=i

P
[ext]
CD

(

x̃
(j)
t =µ−1(ŷ)(j)

)

. (5)

Each P
[ext]
DM (x̃) consists of the sum over all channel sym-

bols ŷ for which the ith bit of the corresponding bit pat-
tern x̃=µ−1(ŷ) is b. These symbols form the subset Y i

b

with Y i
b ={µ([x̃(1), ... x̃(I)])|x̃(i) =b}. In the first itera-

tion the feedback probabilities P
[ext]
CD (x̃) are initialized

as equiprobable. With the channel used in (3), P (zt|ŷ)
is given by

P (zt|ŷ) =
1

πσ2
n

exp

(

−‖zt − atŷ‖2

σ2
n

)

. (6)

After appropriately deinterleaving the P
[ext]
DM (x̃) to

P
[ext]
DM (x), the P

[ext]
DM (x) are fed into a Soft-Input Soft-

Output (SISO) channel decoder (CD), which computes

both extrinsic probabilities P
[ext]
CD (x

(i)
t ) of the encoded

bits x
(i)
t ={0, 1} in addition to the preliminary esti-

mated decoded data bits û. For the next iteration the
P

[ext]
CD (x) are interleaved again to P

[ext]
CD (x̃).

3. PERFORMANCE ANALYSIS

Since for non-iterative BICM Gray mappings are
optimal [2], we concentrate on the analysis of the per-
formance in the iterative case with BICM-ID. If the
channel is sufficiently good and enough iterations are
carried out we can assume error-free feedback (EFF) [4],

i.e., we assume that the feedback P
[ext]
CD (x̂) for all bits

except the one currently considered is correct with per-
fect reliability (best case). Using the perfectly reliable

extrinsic information in the EFF results in a BPSK de-
cision between the two channel symbols y and y̌, which
posses identical bit patterns except for the position i
of the currently considered bit. On the right side of
Fig. 2 the resulting BPSK decisions are depicted for
the 8PSK-SSP (Semi-Set-Partitioning) mapping [4].

For a Rayleigh fading channel the performance
bound for the bit-error rate (BER) Pb of BICM-ID is
derived in [4]. The asymptotic behavior, i.e., the error

floor, of the BER can be described by

log10 Pb≈
−dHam(C)

10

[

(

R·ď 2
h (µ)

)

dB
+

(

Eb

N0

)

dB

]

+const.

(7)

The minimum Hamming distance dHam(C) of the chan-
nel code C with rate r defines the slope of the bound.
Whereas ď 2

h (µ) is the harmonic mean of the squared

Euclidean distances of the BPSK decisions with EFF.
The product of the information rate R = rI and the
harmonic mean ď 2

h(µ) determines an Eb/N0 offset of
the bound, i.e., a horizontal offset in a BER vs. Eb/N0

plot. Eb =Es/R is the energy per information bit. For
a mapping with I bits the harmonic mean ď 2

h (µ) is
given by

ď 2
h (µ) =

(

1

I2I

I
∑

i=1

1
∑

b=0

∑

y∈Yi

b

1

‖y − y̌‖2

)

-1
. (8)

In case of non-iterative BICM, i.e., no feedback, ď 2
h (µ)

has to be replaced by the harmonic mean d̄ 2
h(µ). d̄ 2

h (µ)
is computed similar to ď 2

h(µ), except that y̌ is replaced
by ȳ, where ȳ denotes the nearest neighbor y with an
inverted bit at position i, whatever the rest of the bit
pattern contains.

The ratio G(µ)=(ď 2
h (µ)/d̄ 2

h (µ)[max])dB is called off-

set gain [4] and describes the possible gain of BICM-ID
with a certain mapping with respect to the op-
timum mapped non-iterative BICM. The optimum
mapping for the BICM is usually a Gray map-
ping, i.e., for I = 3 the 8PSK-Gray mapping with
d̄ 2

h (µ)[max] = d̄ 2
h (8PSK-Gray)=0.766. The offset gain

G(µ) and the corresponding ď 2
h (µ) serve as key indi-

cators for the evaluation of the theoretically achiev-
able performance of mappings in the error floor re-
gion with BICM-ID [4], [5]. Note, the offset gain

G(µ) is independent of the channel code and can con-
sequently be achieved by any code. Mappings with
regular 8PSK SCS were investigated in [4]. Semi-Set-
Partitioning (SSP) mapping depicted in Fig. 2 has the
largest ď 2

h (8PSK-SSP)=2.877, which yields an offset

gain of G(8PSK-SSP)=5.74 dB.
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Figure 2: 8PSK-SSP with signal-pair distances ‖y−y̌‖.

4. NON-REGULAR

SIGNAL CONSTELLATION SETS

In order to increase the offset gain, i.e., lower the
error floor, we proposed in [5] the usage of new map-
pings µ with SCSs with less than the usual 2I different
channel symbols y for bit patterns x̃ with I bits and,
where appropriate, an unequal distribution of the chan-
nel symbols in the signal space.

4.1. α-6PSK mapping for I = 3

As example in this paper we consider the
α-6PSKI=3 mapping depicted in Fig. 3, which maps
2I=3 = 8 different bit patterns x̃ to 6 channel sym-
bols y. The angle α defines the angle between cer-
tain channel symbols on the unit circle with respect
to the origin. Thus, by changing α different map-
pings can be obtained. With this α-6PSKI=3 map-
ping twice two bit patterns x̃ are mapped to the same
channel symbol y, i.e., x̃1,2 =[010], [100]⇒y=−1 and
x̃1,2 =[011], [101]⇒y=+1. In the first iteration this
results in an automatic partial puncturing of these ad-
dends in (4). At the bit positions i where the bit pat-

terns differ, x̃
(i)
1 6= x̃

(i)
2 , the addends with ŷ1,2 =µ(x̃1,2)

are distributed equally weighted to P
[ext]
DM (x̃(i) =0) and

P
[ext]
DM (x̃(i) =1), since P

[ext,i]
CD (ŷ1)=P

[ext,i]
CD (ŷ2). This

partial puncturing of the addends implies a severe
degradation of the performance in the initial iteration.
We still have R = rI , but without the feedback loop
the demodulator cannot obtain all the transmitted in-
formation of the 3 encoded bits per channel symbol y,
even for Eb/N0→∞.

However, if the Eb/N0 is sufficiently high the
decoder can cope the introduced puncturing and

generates improving feedback P
[ext,i]
CD (ŷ). This

feedback will be different for x̃1 and x̃2, i.e.,

P
[ext,i]
CD (µ(x̃1)) 6=P

[ext,i]
CD (µ(x̃2)), and thus it improves

the computation of P
[ext]
DM (x̃) by compensating (or re-

ducing) the partial puncturing. With EFF the demod-
ulator for the α-6PSKI=3 mapping is able to extract the
complete information of the 3 encoded bits per channel
symbol y, similar to any 8PSK mapping. Note, all x̃
mapped to one y must differ in at least two bits, be-
cause otherwise for a single different bit i, we would
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Figure 3: α-6PSKI=3 with signal-pair distances ‖y−y̌‖.

have y̌ = y at this bit, resulting in ď 2
h (µ) = 0. The ex-

trinsic feedback information for the single different bit
being 0 or 1 would be always identical.

At high Eb/N0 and a sufficient number of itera-
tions the feedback may finally converge to EFF, the
necessary assumption for the computation of ď 2

h (µ)
in (8). For the angles α=60◦ and α=45◦ we can
obtain offset gains of G(60◦-6PSKI=3)=6.30 dB and
G(45◦-6PSKI=3)=6.71 dB, which are higher than the
one of 8PSK-SSP mapping. Thus, the two α-6PSKI=3

mappings will outperform 8PSK-SSP mapping by
0.56 dB resp. 0.97 dB when the Eb/N0 is such high
that in both cases the bound is reached. Note, in case
of a relatively high target BER, the mapping with the
largest offset gain may not be the best choice, since it
might only be superior at a BER below the target BER.
However, the goal of non-regular SCSs is to lower the
error floor, which corresponds to higher offset gains.
More non-regular SCSs are presented in [5].

4.2. BPSK mapping for I ≥ 2

Reducing the number of possible channel symbols
y to 2, i.e., using a regular BPSK SCS, is not feasible
since no bit pattern assignment for I≥2 exists which
does not violate one of the two necessary conditions
for the bit patterns x̃ of the channel symbols y. On
the one hand the bit patterns assigned to one channel
symbols must differ in at least 2 positions. On the other
hand the assigned bit patterns must have common bits
for at least for some channel symbols. Otherwise all
bits are automatically punctured in the first iteration
and no usable feedback can be generated. Note that
these conditions are contrary for all non-regular SCSs.
With a better fulfillment of the first one, i.e., more
than 2 different bits in the bit patterns assigned to one
channel symbol, the asymptotic performance can often
be improved. But consequently these bit patterns have
less common bits, resulting in a worse performance in
the first iteration.

4.3. Theoretical Limit

In this section we derive the theoretical maximum
offset gain. First a system with I = 3 bits per chan-
nel symbol is considered. The extreme case of α → 0
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in Fig. 3 results on the one hand in the Euclidean dis-
tance d1 → 0, meaning that Eb/N0 →∞ is required to
have improving feedback. On the other hand, look-
ing at the asymptotic performance with EFF, we have
d2 → 2 which yields in ď 2

h (µ) → 4. The correspond-

ing OG is G[max]
I=3 =7.18 dB. With EFF all signal-pairs

resemble now a BPSK SCS with y = ±1. This is ob-
viously the best possible case for a symbol energy of
Es = 1 and therefore a bound for the obtainable OG
with BICM-ID and I = 3. Due to the similarity of
the SCSs we will denote this bound in the following
as BPSK bound [5]. Obviously, the value ď 2

h (µ) = 4
marks also an upper limit for systems with I 6=3. The

corresponding maximum achievable offset gain G [max]
I ,

however, additionally depends on d̄ 2
h (µ)[max], which dif-

fers depending on I and is usually achieved with Gray
or near-Gray mappings.

5. BER SIMULATION RESULTS

Table 1 lists ď 2
h(µ) and the respective offset gains

G(µ) for the considered mappings with I = 3. Fig. 4
depicts the results of bit-error rate (BER) simulations
comparing the different mappings for a block size of
12000 information bits per frame and 30 iterations. An
8-state, rate-1/2, feed-forward convolutional code with
generator polynomials {15, 17}8 and dHam(C)=6 serves
as channel code. As expected, the waterfall region
of the α-6PSKI=3 mappings occurs at higher Eb/N0

due to the automatic puncturing in the first itera-
tion. However, the error floors of the α-6PSKI=3 map-
pings show the superior performance predicted by their
larger offset gains. Below a BER of ∼ 10−5 the
60◦-6PSKI=3 mapping outperforms 8PSK-SSP by ap-
proximately the difference between their offset gains.

Table 1: ď 2
h and G for mappings with I =3 bits.

mapping µ ď 2
h
(µ) offset gain G(µ)

8PSK-SSP [4] (Fig. 2) 2.877 5.74 dB

60◦-6PSKI=3 (Fig. 3, α=60◦) 3.273 6.30 dB

45◦-6PSKI=3 (Fig. 3, α=45◦) 3.589 6.71 dB

BPSK bound (Fig. 3, α→0◦) 4 7.18 dB

6. EXIT CHART ANALYSIS

EXIT (extrinsic information transfer) charts [6], [7]
are a powerful tool to analyze the convergence behavior
of iterative systems utilizing the Turbo principle, i.e.,
systems exchanging and refining extrinsic information.
The capabilities of the components, in our case the de-
modulator (DM) and the SISO channel decoder (CD),
are analyzed separately. The extrinsic mutual infor-
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Figure 4: BER for I =3 with a 8-state, rate-1/2 code.

mation I [ext] obtained by each component for a cer-
tain a priori mutual information I [apri] is determined.
Both, I [ext] and I [apri], are calculated on the basis of
the actual data and the available information, extrinsic

or a priori, for the data. Since the extrinsic information
of one component serves as input a priori information
for the other component, the two resulting EXIT char-
acteristics are plotted in a single graph with swapped
axes. The EXIT characteristic of the demodulator, i.e.,
of the considered mapping, depends on the Eb/N0 of the
channel. Contrariwise, the EXIT characteristic of the
channel decoder is independent of the Eb/N0 since it
has no access to the received channel symbols z.

6.1. Analysis of the Convergence Behavior

The EXIT chart in Fig. 5 depicts the EXIT char-
acteristics for the mappings and the channel decoder
used in Fig. 4 for Eb/N0 =6 dB. As visible the EXIT
characteristic of 8PSK-Gray mapping is almost hori-
zontal, which prohibits any significant gain by itera-
tions. The EXIT characteristics of the other mappings
exhibit noticeable slopes, allowing improvement by nu-
merous iterations. The depicted EXIT trajectory for
the 60◦-6PSKI=3 mapping proves that despite the in-
troduced non-regular SCS the proposed mappings fea-
ture the usual iterative convergence behavior.

6.2. Analysis of the Asymptotic Behavior

The performance analysis in Section 3 and the de-
velopment of the non-regular SCSs in Section 4 are not
based on the convergence behavior but on the asymp-
totic behavior. To compute the achievable offset gains

the assumption of error-free feedback (EFF) is made.

In the EXIT charts this EFF corresponds to I [apri]
DM =1.

Accordingly, information on the asymptotic behavior,
i.e., the error floor, is available on the right vertical

axis I [apri]
DM =1. The area under the EXIT character-
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istics of the mappings with non-regular SCSs is obvi-
ously smaller than the one of the mappings with reg-
ular SCSs, indicating a loss of information during the
convergence process when using non-regular SCSs [8].
However, as visible in the enlargement in Fig. 5 the

order of I [ext]
DM of the mappings reverses for I [apri]

DM ≈1.
Thus, with EFF, i.e., when the error floor is reached,
the presented non-regular SCSs provide more extrinsic

mutual information than the regular SCSs.

With the used demodulator the values of I [ext]
DM for

I [apri]
DM =1 can be calculated numerically. The EFF at

I [apri]
DM =1 consists of P

[ext,i]
CD (y)∈{0.0, 1.0} and taking

the Rayleigh fading into account the mutual informa-

tion I [ext]
DM (I [apri]

DM =1) can be determined by [7]

I [ext]
DM (I [apri]

DM =1) =
1

I2I

I
∑

i=1

∑

y∈Y

∞
∫

0

P (a)

∞
∫∫

−∞

P (z|y, a)

· ld P (z|y, a)

P (z)
dz′dz′′da , (9)

with z=z′+jz′′, the Rayleigh distribution
P (a)=2a exp(-a2), the two-dimensional conditional
probability density function

P (z|y, a) =
1

πσ2
n

exp

(

−‖z − ay‖2

σ2
n

)

(10)

and P (z)= 1
2 (P (z|y, a) + P (z|y̌, a)). As introduced in

Section 3 the channel symbol y̌ posses the same bit
pattern as y except for an inverted bit at position i.
Since with EFF the signal space degenerates to one-
dimensional BPSK modulations, the double integral on

z in the computation of I [ext]
DM (I [apri]

DM =1) can be simpli-
fied to a single integral on z′ by modifying (10) with
ď=‖y−y̌‖ to

P (z′|ď, a) =
1√

2πσn′

exp

(

−|z′ − aď/2|2
2σ2

n′

)

. (11)
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For an increasing Es/N0 the value of

I [ext]
DM (I [apri]

DM =1) converges towards 1. For better

visualization we plotted 1 − I [ext]
DM (I [apri]

DM =1) versus
Es/N0 in Fig. 6. As visible at high Es/N0 the almost
constant horizontal offsets between the different map-
pings match the differences between the offset gains

G listed in Table 1. The numerically obtained curves
coincide with the curves obtained when evaluating the

simulated EXIT characteristics at I [apri]
DM =1.

Since the presented procedure described above to

obtain I [ext]
DM (I [apri]

DM =1) either by numerical calculation
or Monte-Carlo simulation is independent of the chan-
nel features this technique to acquire the achievable
performance gains of BICM-ID is also applicable for
other channels than the considered Rayleigh channel.
For a numerical calculation the conditional probabil-
ity density function of the channel has to be known.
Fig. 7 depicts the results of Monte-Carlo simulations
for a non-fading AWGN channel.
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6.3. Analysis of the Non-Iterative Behavior

Furthermore, not only at I [apri]
DM =1 the feedback is

predetermined, also at I [apri]
DM =0 the feedback values

P
[ext]
CD (x̃) are perfectly known, i.e., P

[ext]
CD (x̃)=0.5 for

equiprobable bits and consequently P
[ext,i]
CD (y)=1/2I−1.

Modifying (9) appropriately I [ext]
DM (I [apri]

DM =0) can be
determined by

I [ext]
DM (I [apri]

DM =0) =
1

2I

I
∑

i=1

1
∑

b=0

∞
∫

0

P (a)

∞
∫∫

−∞

PΣ(z|y, a)

· ld PΣ(z|y, a)

PΣ(z)
dz′dz′′da , (12)

with

PΣ(z|y, a)=
∑

y∈Yi

b

P (z|y, a)P
[ext,i]
CD (y)=

1

2I−1

∑

y∈Yi

b

P (z|y, a)

(13)

and

PΣ(z) =
1

2I

∑

y∈Y

P (z|y, a) . (14)

In Fig. 8 the values for I [ext]
DM (I [apri]

DM =0) are de-
picted for the different mappings and a Rayleigh chan-
nel. Again the curves coincide with the ones ob-
tained by Monte-Carlo simulations. As expected the
curves for the α-6PSKI=3 mappings converge towards
2/3 due to in average 1/3 of the bits being automati-
cally punctured without feedback as explained in Sec-
tion 4. Moreover, 8PSK-Gray mapping always exhibits

the highest values I [ext]
DM (I [apri]

DM =0) identifying it as the
optimum mapping for the non-iterative case. For low
Es/N0 the curves of the α-6PSKI=3 mappings and the
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Figure 8: I [ext]
DM for mappings without feedback, i.e.,

I [apri]
DM =0, and a Rayleigh channel.

8PSK-SSP mapping approach each other. This behav-
ior can also be found in Fig. 4, in which these three
mappings exhibit an alike performance in the first it-
eration at low Es/N0 while 8PSK-Gray mapping is sig-
nificantly superior.

7. CONCLUSION

In this paper the improved capabilities of BICM-ID
when using fundamentally new mappings with non-

regular signal constellation sets are analyzed. These
mappings have less channel symbols than possible bit
patterns. Thus, more than one bit pattern may be as-
signed to one channel symbol. Also the position of the
channel symbols are not necessarily equally distributed
anymore. By this technique larger offset gains for ideal
feedback are achievable in comparison to previously
known mappings. Simulations demonstrate that the
theoretically predicted performance of the novel map-
pings can be achieved. Furthermore a bound for the
achievable improvement by this technique is derived.
Based on the concept of mutual information in EXIT
charts a method is presented to easily obtain the possi-
ble offset gains with BICM-ID by either numerical cal-
culation or simulation. This proposed method is not
restricted to Rayleigh channels, but it is applicable to
other kinds of channels.
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