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Abstract— Belief propagation decoding of low-density
parity-check codes or one-step majority logic decod-
able codes has been proven to be a very powerful
coding scheme. In this paper an approximation for
the belief propagation algorithm, also known as sum-
product decoding, is presented which uses correction
functions, implemented as precomputed lookup-tables, to
significantly reduce the computational complexity. The
new lookup-sum algorithm requires no multiplications,
divisions, exponential or logarithmic operations in the
iterative process. Already for lookup-tables containing
a single entry simulation results show that the perfor-
mance of non-approximated belief propagation can be
approached by 0.1 dB in

���
/� 0. With slightly larger

tables a performance not noticeably differing from non-
approximated belief propagation can be achieved.

I. INTRODUCTION

Following the discovery of Turbo codes [1], [2], [3]
and the resulting increased interest in iterative decoding
algorithms, low-density parity-check (LDPC) codes,
originally presented in [4], were rediscovered in [5], [6].
LDPC codes were shown to have a performance simi-
larly to Turbo codes. The standard decoding algorithm
for LDPC codes is belief propagation (BP) [7], [6], also
known as sum-product decoding. Since both, LDPC
codes and one-step majority logic decodable (OSMLD)
codes, are based upon orthogonal parity-check sums for
each bit, which can be written in form of a matrix, BP
decoding is also applicable for the latter one [8]. It
was also shown in [8] that for medium block sizes,
difference set cyclic (DSC) codes [9], a sub-class of
OSMLD codes, outperform their corresponding regular
LDPC codes.

In this paper an approximation for the computa-
tionally complex BP algorithm is derived. The pro-
posed algorithm uses correction functions, implemented
by precomputed lookup-tables. Simulations with DSC
codes and a channel with additive white Gaussian noise
(AWGN) show that a performance very similar to the
standard BP algorithm without approximations can be
achieved.

II. BELIEF PROPAGATION

In the following we will shortly review the BP
algorithm to introduce some notations and show the
connection to the box-plus operation defined in [3].

We consider a code with a P×N parity-check matrix
B containing elements Bpn∈{0, 1}, p=1, ... P and
n=1, ... N . The rows of B are the P parity-check
vectors bp. For each column n of B there exists a
sub-matrix Bn of parity-check vectors bp with Bpn =1.
Thus, Bn comprises all rows of B with a one in column
n. Furthermore, no other column of Bn has more than
a single non-zero element. For example if we use

B =









1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1









we get

B2 =

(

1 1 0 1 0 0
0 1 1 0 0 1

)

.

We assume the transmission of the bipolar code word
y=(y1, ... yN ), yn∈{+1,−1}, and the reception of
z=(z1, ... zN), zn∈R, which is distorted by AWGN
of zero mean and variance N0/2.

When using log-likelihood ratios, or L-values [3], for
BP decoding [8], the elements zn of the received word
z are converted to L-values r

(0)
n :=(4/N0)·zn. The

proposed algorithm uses only L-values. Next, a P×N

matrix Z is initialized according to B as Z
(0)
pn =r

(0)
n if

Bpn =1, and Z
(0)
pn =0 otherwise.

The first step of each iteration i is the computation
of a matrix E(i) with E

(i)
pn =0 for Bpn =0, and

E(i)
pn = 2 atanh





∏

j∈supp(bp)\n

tanh(Z
(i)
pj /2)



 (1)

for Bpn = 1, with supp(bp) := {j|Bpj = 1}. Since
the Z

(i)
pj are L-values, (1) can be defined as box-plus

operations � according to [3] and abbreviated by

E(i)
pn =

∑

j∈supp(b
p
)\n

�Z
(i)
pj . (2)

In (1) and (2) always just one element is excluded
from the respective row, j ∈ supp(bp)\n. Thus, it is
obviously more efficient, at least for rows with a not
too small weight, to first compute the result for the
complete row, j ∈ supp(bp), and afterwards exclude



the particular element j =n. Therefore, we divide the
computation of E

(i)
pn into two parts:

• Part 1 contains the computation of a vector s(i)

with values for the complete rows by

s(i)
p =

∏

j∈supp(bp)

tanh(Z
(i)
pj /2). (3)

• Part 2 consists of the extraction of single E
(i)
pn by

E(i)
pn = 2 atanh

(

s
(i)
p

tanh(Z
(i)
pn/2)

)

. (4)

In the next step of each iteration the obtained extrin-
sic information E

(i)
pn is summed for each n

e(i)
n =

∑

p, bp∈Bn

E(i)
pn (5)

and then added to r
(0)
n

r(i+1)
n = r(0)

n + e(i)
n . (6)

Afterwards a component-wise hard decision is made
ŷ(i+1) =sgn(r(i+1)), ŷ(i+1)∈GF (2). If the maximum
number of iterations is reached or if ŷ(i+1) fulfills
the terminating condition (B ·ŷ(i+1)) mod 2=0, the
iterative process is stopped and ŷ(i+1) serves as the
decoding output.

Otherwise the elements Zpn with Bpn = 1 are
updated in the last step by

Z(i+1)
pn = Z(0)

pn +
∑

l, bl∈Bn\bp

E
(i)
ln

= Z(0)
pn + e(i)

n − E(i)
pn (7)

and after increasing the iteration index, i = i+1, the
next iteration starts with (1). In (7) E

(i)
pn is excluded

from the summation for the new Z
(i+1)
pn to mitigate

error propagation.

III. PROPOSED APPROXIMATIONS

In this section we derive approximations using
lookup-tables for a high computational efficiency for
part 1, (3), and part 2, (4), of the first step of each
iteration in BP decoding. To simplify the notation we
will consider L-values Lj = Z

(i)
pj /2 in general. Since

only L-values shall be used, (3) is modified to

s̄(i)
p = 2 atanh





∏

j∈supp(bp)

tanh(Z
(i)
pj /2)



 , (8)

which yields in box-plus arithmetic

2 atanh





∏

j∈supp(bp)

tanh(Z
(i)
pj /2)



 =

J
∑

j=1

�Lj ,LΣ, (9)

assuming supp(bp) has J elements. The box-plus op-
eration for two L-values L1 and L2 is defined as [3]

L1�L2 = log
1 + eL1eL2

eL1 + eL2

. (10)

By
≈

� we will denote the approximation of (10) intro-
duced in [3]

L1�L2≈L1
≈

�L2=sgn(L1) sgn(L2) min(|L1|,|L2|). (11)

Using (11) recursively, (9) can be approximated by

J
∑

j=1

�Lj ≈

J
∑

j=1

≈

�Lj =





J
∏

j=1

sgn(Lj)



· min
j=1...J

|Lj |. (12)

If (12) is used for (1) in decoding, this is called the
min-sum algorithm.

A. Part 1, Approximation of (3)

To find a better approximation of (10) we propose
rewriting (10) as

L1�L2 = L1 + log(e−L1 + eL2)

− log(eL1 + eL2). (13)

For log(eL1 +eL2) it was derived in [10] that

log(eL1 + eL2) =max(L1, L2)+log(1 + e−|L2−L1|)

=max(L1, L2)+f+(|L1 − L2|), (14)

with f+(x)=log(1+e−x) being a correction function.
f+ can be efficiently implemented using a precomputed
lookup-table containing results of f+ for a finite num-
ber of input values. In [11] it was shown that already
with a single entry in the lookup-table of f+, which
then resembles merely a correction factor instead of
a correction function, very good performances can be
achieved in Log-MAP decoding of Turbo codes [10],
where f+ is used once with (14).

Using an approximation, denoted by f̃+, twice when
inserting (14) in (13) results in

L1
∼

�L2 = L1 + max(−L1, L2) + f̃+(| − L1 − L2|)

−max(L1, L2) − f̃+(|L1 − L2|)

= sgn(L1) · sgn(L2) · min(|L1|, |L2|)

+f̃+(|L1 + L2|) − f̃+(|L1 − L2|), (15)

where
∼

� indicates the usage of f̃+. Using (15), (9) can
be computed recursively.

An alternative approach for approximating (13) is
presented in [12]. A single, but more complex correc-
tion factor f̃ c

+(L1, L2), with

f̃ c
+(u, v)=































−c+ if |u+v|>2|u−v|

and |u−v|<xlim
+

+c+ if |u−v|>2|u+v|

and |u+v|<xlim
+

0 otherwise ,

(16)

replaces the two correction factors f̃+ in (13) since

f̃+(|L1 + L2|) − f̃+(|L1 − L2|) ≈ f̃ c
+(L1, L2). (17)

Note that with f̃ c
+ the lookup-table is limited to a single

entry c+.



B. Part 2, Approximation of (4)
For writing (4) using box-plus operations we derive

a new function of the type
J
∑

j=1,j 6=n

�Lj = f





J
∑

j=1

�Lj , Ln



 = f (LΣ, Ln) . (18)

Without loss of generality we assume that Ln was the
last element in the recursive computation of LΣ in (9)

and with the abbreviation Lj 6=n=
J
∑

j=1,j 6=n

�Lj we get

LΣ = Lj 6=n�Ln. (19)

Using (10) this can be transformed to

Lj 6=n = LΣ + log(e−LΣ − eLn) − log(eLΣ − eLn)

= sgn(Ln) · sgn(LΣ) · min(|Ln|, |LΣ|)

+f−(|Ln + LΣ|) − f−(|Ln − LΣ|), (20)

with f−(x) = log(1 − e−x) being a second, new
correction function, again possibly implemented by
another lookup-table function (or correction factor) f̃−.
Since |LΣ| ≤ |Ln| (20) can be reduced with using f̃−
for f− to

L̃j 6=n = sgn(Ln)LΣ + f̃−(|Ln + LΣ|)

−f̃−(|Ln − LΣ|). (21)

C. Summary
Now the matrix E(i) can be computed very effi-

ciently using the lookup-table functions f̃+ and f̃− by
replacing (1), resp. (2), with the two parts introduced
above. First for the complete rows the s̄

(i)
p are computed

with f̃+ as

s̄(i)
p ≈ s̃(i)

p =
∑

j∈supp(bp)

∼

�Z
(i)
pj (22)

by recursively applying (15). Afterwards the matrix
entries E

(i)
pn are extracted from the s̃

(i)
p by using (21)

E(i)
pn ≈ Ẽ(i)

pn = sgn(Z(i)
pn ) · s̃(i)

p + f̃−(|Z(i)
pn + s̃(i)

p |)

−f̃−(|Z(i)
pn − s̃(i)

p |) . (23)

Thus, with the introduced approximations only addi-
tions, subtractions, sign multiplications and min op-
erations have to be performed in the computation of
the elements of matrix E(i). The complete decoding
process will be denoted as lookup-sum algorithm.

IV. COMPLEXITY COMPARISON

In this section the computational complexity of
min-sum decoding (

≈

�) and belief propagation, or sum-
product, decoding (�) is compared to the lookup-sum
algorithm (

∼

�) derived in the previous section.
The algorithms

≈

� and � are separated into
two parts similar to equations (22) and (23),
which are used for

∼

�. For � we considered
(3) and (4) with tanh(x/2)=(ex−1)/(ex+1) and
2 atanh(x)=log((1+x)/(1−x)). The

≈

� algorithm re-
quires the determination of the two L-values with the
smallest amplitude and the product of the signs.

The necessary numbers of operations for one row p
of E(i) are listed in Table I assuming a weight of J
for row p of B. For comparison the values of the log-
likelihood ratio sum-product algorithm (LLR-SPA) with
correction presented in [12] are included in Table I.
This algorithm computes the E

(i)
pn using a lookup-table

in a forward-backward algorithm with three recursions
on the trellis of complete rows. In contrast the lookup-
sum algorithm

∼

� proposed in this paper requires only
a single recursion and an extraction cycle. An efficient
logic circuit implementation for a correction factor (a
lookup-table with a single entry) can be found in [11].

Considering additionally the rest of the decoding
process which is identical for all algorithms, i.e., (5),
(6) and (7), we see that using

∼

�, no multiplications,
divisions, exponential or logarithmic operations are re-
quired anymore in the whole iterative decoding process.

In Table II the in total required weighted operations
(wOp) for the computation of one row with weight
J are given. The operations of Table I are weighted
according to the weights of the ETSI basic operators

TABLE I
REQUIRED OPERATIONS FOR A ROW OF WEIGHT J

≈

�
∼

� LLR-SPA �

part 1 part 2 part 1 part 2 with correction [12] part 1 part 2

sgn(x) · sgn(y) J − 1 - J − 1 - 2 · (J − 1) + J - -

sgn(x) · y 2 J J − 1 J 2 · (J − 1) + J - -

min(|x|, |y|) J − 1 - J − 1 - 2 · (J − 1) + J - -
|̃f±(|x|) → lookup-table - - 2 · (J − 1) 2 · J 4 · (J − 1) + 2 · J - -

+ and − - - 4 · (J − 1) 4 · J 8 · (J − 1) + 4 · J 2 · J 2 · J

∗ - - - - - J − 1 -

/ - - - - - J 2 · J

exp(x) and log(x) - - - - - J J



TABLE II
REQUIRED WEIGHTED OPERATIONS FOR A ROW OF WEIGHT J

weighted operations (wOp)
≈

� (min-sum) 3 · J
∼

� (lookup-sum) 16 · J − 9

LLR-SPA w. corr. [12] 27 · J − 18

� (BP / sum-product) (59 + wexp + wlog) · J − 1

in [13]. These basic operators and their weights al-
low an estimation of the computational demands of a
fixed-point implementation without an actual hardware-
dependent realization. Most operations have a weight of
w = 1 (assuming 16 bit accuracy). The division has a
weight of wdiv = 18. The weights of “exp” and “log”,
wexp resp. wlog, depend on the complexity of their
implementation, e.g., series expansion, since “exp” and
“log” are not basic operators themselves.

V. SIMULATIONS RESULTS

In this section the performance of the three consid-
ered algorithms, � (BP / sum-product),

∼

� (lookup-sum)
and

≈

� (min-sum), is compared using simulations. Since
they show superior performance for medium block
length [8], we used DSC codes instead of standard
LDPC codes. DSC codes also have a unique parity-
check matrix, not requiring any optimization. Both
lookup-tables have T entries, equally distributed for the
input |x| between 0 and xmax. For |x|> xmax we set
f̃+(|x|)= f̃−(|x|)=0. AWGN serves as channel distor-
tion and the maximum number of iterations is 50. The
simulations showed that more iterations will not result
in a noticeable further increase of the performance due
to a usually significantly lower number of in average
required iterations.

Fig. 1 depicts the bit-error rate (BER) and frame-
error rate (FER) performance of the (73,45) DSC code,
which has a row weight of J =9.

∼

� with T =16 shows
no difference for small Eb/N0 and a barely noticeable
degradation at high Eb/N0 with respect to �.

∼

� with
T = 1, i.e., using a single correction factor, has a
very small loss of about 0.05 dB on the whole Eb/N0-
range. This matches the performance degradation for
the more complex LLR-SPA with correction [12]. A
significant deterioration of 0.5 dB is caused by

≈

�.
Fig. 2 shows the average number of iterations executed
by the different algorithms. Despite its superior BER
performance,

∼

� with T = 1 requires approximately
the same number of iterations in average as

≈

�. For
∼

�

with T = 16 only slightly more iterations need to be
executed than for �. In Fig. 3 the average number of
iterations of Fig. 2 and the weighted operations per row
in an iteration of Table II are combined to obtain the
average weighted operations per row. For the weighted
operation of � we set wexp and wlog to the minimum
value wexp =wlog =1. Of course, the actual demands
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are usually higher. A significantly lower complexity of
∼

� compared to � can be observed.
Fig. 4 depicts the BER and FER for the

(273,191) DSC code. Due to the larger row weight,
J =17, the degradation of

≈

� increases significantly to
about 1 dB in BER and FER, since the information of
15 out of J−1=16 other entries in a row is omitted by
the min-operation without correction in the computation
for an element of the matrix E(i). The performances
of

∼

� matches the results found for the (73,45) DSC
code.

∼

� with T = 16 coincides with � while
∼

� with
T =1 shows a small degradation below 0.1 dB. Fig. 5
presents the average number of required iterations for



1 1.5 2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PSfrag replacements

FER

BER

B
E

R
,F

E
R

Eb/N0 [dB]

a) →� sum-product
b) →

∼

� T = 16, xmax = 2

c) →
∼

� T = 1, xmax = 1

d) →
≈

� min-sum

a,b

c

d

Fig. 4. BER and FER for the (273,191) DSC code

i 1 1.5 2 2.5 3 3.5 4 4.5 5
0
5

10
15
20
25
30
35
40
45
50

PSfrag replacements

av
er

ag
e

ite
ra

tio
ns

Eb/N0 [dB]

a) →� sum-product
b) →

∼

� T = 16, xmax = 2

c) →
∼

� T = 1, xmax = 1

d) →
≈

� min-sum

a

b
c

d

Fig. 5. Average iterations for the (273,191) DSC code

i
1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6

PSfrag replacements

av
g.

w
O

p
pe

r
ro

w
[1

0
3

w
O

p]

Eb/N0 [dB]

a) →� sum-product
b) →

∼

� T = 16, xmax = 2

c) →
∼

� T = 1, xmax = 1

d) →
≈

� min-sum

a
b

c

d

Fig. 6. Average weighted operations (wOp) per row for the
(273,191) DSC code

the (273,191) DSC code. Due to the worse BER and
FER performance described above, the values for

≈

�

are not similar
∼

� with T = 1, but lie significantly
above the numbers of the other shown algorithms. In
Fig. 6 it can be observed that

∼

� with T = 16 requires
an approximately similar average number of weighted
operations as

≈

� in an Eb/N0-range from 2.5 dB to 3 dB.
The BER of

∼

� in this Eb/N0-range can be sufficient for
applications such as speech coding.

VI. CONCLUSION

In this paper we presented a low-complexity approx-
imation based on lookup-tables for the belief propa-
gation algorithm. With the proposed lookup-sum al-
gorithm the whole iterative process consists only of
additions, subtractions, sign and min operations and
table-lookups. It was shown that there is no significant
difference in performance compared to standard belief
propagation decoding even if the lookup-table size
is very small. Already for a correction factor, i.e.,
a lookup-table with a single entry, the performance
of the complex, non-approximated belief propagation
algorithm can be approached by less than 0.1 dB in
Eb/N0. Besides the significant complexity reductions
the main algorithmic contributions are:

– Introduction of a new correction function f− and
its approximation by a table-lookup or a single
correction factor

– Efficient decomposition of a length J box-plus
operation
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