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Abstract— For iterative decoding of Turbo codes and low-
density parity check (LDPC) codes quite often log-likelihood
ratios called L-values are used. A major role in the decoding
algorithms plays extrinsic information which is obtained as
L-value of a modulo 2 combination of several bits. This leads
in the L-domain to the so-called box-plus operation. In this
paper we introduce a complementary box-minus operation. Based
on it paper a low-complexity but powerful belief propagation
algorithm for decoding of LDPC codes is described. This lookup-
sum algorithm uses lookup-tables for correction functions to
efficiently approximate box-plus and box-minus operations and
its capabilities are demonstrated by complexity comparisons and
simulation results.

I. INTRODUCTION

With the discovery of Turbo codes [1],[2],[3] and
the (re)discovery of low-density parity check (LDPC)
codes [4],[5],[6] channel coding close to the Shannon limit
becomes possible with moderate computational complexity.
To further simplify the computations log-likelihood ratios
(LLR), i.e., L-values [3], are frequently used, e.g., in decod-
ing of Turbo processes [1],[2],[3],[7] and belief propagation
decoding of LDPC codes [5],[8],[9],[10]. Using L-values the
multiplicative decoding algorithms based on probabilities are
transformed into usually less complex additive algorithms in
the L-value domain.

We present the new arithmetic operation box-minus �
for L-values, which is the complementary to the box-plus
operation � [3]. For each operation two approximations are
presented, the better ones using a lookup-table for a correction
function. Box-plus, box-minus and their approximations can
be, e.g., used for low-complexity belief propagation decoding
of LDPC codes by the lookup-sum algorithm [10]. Simulation
results show a significant reduction of the computational com-
plexity, approaching the complexity of the min-sum algorithm,
with none or only a marginal loss in performance with respect
to the non-approximated sum-product algorithm.

Belief propagation decoding is the most common decoding
technique for LDPC codes. Very recently LDPC codes have
been standardized as channel codes for new wireless communi-
cation systems, e.g., for the second generation of digital video
broadcasting via satellite (DVB-S2) [11],[12] and as option
in the IEEE 802.16 standard for wireless metropolitan area
networks (WirelessMAN) [13]. This indicates the importance
of LDPC codes in future communication systems and the
resulting demand for powerful but low-complex decoding
algorithms.

II. THE BOX-PLUS AND THE BOX-MINUS OPERATOR

A. L-values and Soft-Bits

An L-value Li is the natural logarithm of the ratio of
the probabilities for the two realizations of a binary random
variable xi, possibly conditioned on other variables [3]:

Li � L(xi|... ) = log
P (xi = +1|... )
P (xi = −1|... ) . (1)

The sign of an L-value sgn(Li) is the hard decision for the
variable while the magnitude |Li| indicates the reliability of
the decision.

In the context of L-values also soft-bits [14],[15] x̆i can be
defined:

x̆i = E{xi} = P (xi =+1)−P (xi =−1) = tanh(Li/2) (2)

and P (xi =±1) = (1 + xix̆i)/2 . (3)

B. The Box-Plus Operator � and its Approximations
∼

�,
≈

�

Besides the regular addition in R, using L-values often
requires the second arithmetic operation box-plus � [3]:

L1 � L2 = log
1 + eL1eL2

eL1 + eL2
(4)

= 2atanh
(
tanh(L1/2) · tanh(L2/2)

)
, (5)

with L1�∞=L1, L1�−∞=−L1, and L1�0=0. In [3] also
the well known approximation, denoted by

≈

�, is presented:

L1

≈

� L2 = sgn(L1) sgn(L2)min(|L1|, |L2|) (6)

In [7] it was shown that the correction function
f+(x)=log(1+e−x) of the Jacobian logarithm can be effi-
ciently implemented by a lookup-table f̃+. Using f̃+ (4) can
be approximated [10] by

L1

∼

� L2 = sgn(L1) sgn(L2)min(|L1|, |L2|)
+ f̃+(|L1 + L2|) − f̃+(|L1 − L2|) , (7)

which improves the approximation in (6).

C. The Box-Minus Operator � and its Approximations
∼

�,
≈

�

As complementary operation to box-plus � we introduce the
box-minus operation �

L3 � L4 = log
1−eL3eL4

eL3−eL4
(8)

= 2atanh
(

tanh(L3/2)
tanh(L4/2)

)
, (9)
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with L3� ∞= L3, L3� −∞=−L3, and 0� L4 = 0. Thus,
∞ is the identity element and 0 the “infinity” element for �
as well as for �. Note that � is only defined if

|L3| < |L4| . (10)

This is somewhat similar to the regular subtraction in R
+

where the minuend has to be larger than the subtrahend and
it can be interpreted such that with � only a more reliable
L-value can be subtracted from a less reliable one. However,
if L4 was part of a, e.g., recursive box-plus summation to
obtain L3, the condition of (10) is always fulfilled. Further
note that, e.g., in consequence of (10), � is not commutative,
i.e.,

L3 � L4 �= L4 � L3 . (11)

There exists an approximation
≈

� for � similar to (6)

L3

≈

� L4 = sgn(L3) sgn(L4)min(|L3|, |L4|) (12)

= sgn(L4)L3 . (13)

(13) results from (12) due to (10).
An approximation

∼

� comparable to (7) using a lookup-table
f̃− for a correction function is also available for �:

L3

∼

�L4 = sgn(L4)L3 + f̃−(|L3+L4|) − f̃−(|L3−L4|). (14)

The lookup-table f̃− represents the correction function
f−(x)=log(1−e−x).

D. Combination of Box-Plus � and Box-Minus �

When combining the � and � operation in a single equation
the order may make the result defined or undefined as a
consequence of (10), e.g., (L5� L6)� L6 =L5 in any case
while (L5� L6) � L6 =L5 is only possible for |L5|< |L6|.

Using the soft-bits x̆i =tanh(Li/2) in (5) and (9), equations
with multiple � and � can be simplified or rearranged, e.g.,

L1... � Li... � LI1 � LI1+1... � LI2

= 2atanh

(
(

I1∏
i=1

x̆i)/(
I2∏

i=I1+1

x̆i)

)
(15)

=

(
I1∑

i=1

�Li

)
�
(

I2∑
i=I1+1

�Li

)
, (16)

if the condition (10), i.e., |
I1∑
1

�Li|< |
I2∑

I1+1

�Li|, is fulfilled.

III. APPLICATION TO BELIEF PROPAGATION DECODING

For belief propagation (BP) [16] decoding we consider an
LDPC code with a P×N parity-check matrix B containing
elements Bpn∈{0, 1}, p=1, ... P and n=1, ... N . The rows
of B are the P parity-check vectors bp. For each column n
of B there exists a sub-matrix Bn of parity-check vectors bp

with Bpn =1. Thus, Bn comprises all rows of B with a one

in column n. No other column of Bn has more than a single
non-zero element. For example if we use

B =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1




we get

B2 =
(

1 1 0 1 0 0
0 1 1 0 0 1

)
.

We assume the transmission of the bipolar code
word y=(y1, ... yN ), yn∈{+1,−1}, and the reception of
z=(z1, ... zN ), zn∈R, which is distorted by AWGN of zero
mean and variance N0/2.

A. Belief Propagation Decoding with L-Values

When using L-values for BP decoding [8], the elements zn

of the received z are converted to L-values r
(0)
n :=(4/N0)·zn.

Next, a P ×N matrix Z is initialized according to B as
Z

(0)
pn =r

(0)
n if Bpn =1, and Z

(0)
pn =0 otherwise.

The first step of each iteration i is the computation of a
matrix E(i) with E

(i)
pn =0 for Bpn =0, and

E(i)
pn =2atanh


 ∏

j∈supp(bp)\n

tanh(Z(i)
pj /2)


=

∑
j∈supp(bp)\n

�Z
(i)
pj (17)

for Bpn =1, with supp(bp) :={j|Bpj =1}.
In the next step of each iteration the obtained extrinsic

information E
(i)
pn is summed for each n

e(i)
n =

∑
p, bp∈Bn

E(i)
pn , (18)

and then added to r
(0)
n

r(i+1)
n = r(0)

n + e(i)
n . (19)

Afterwards a component-wise hard decision is made
ŷ(i+1) =sgn(r(i+1)), ŷ(i+1)∈GF(2). If the maximum number
of iterations is reached or if ŷ(i+1) fulfills the terminating con-
dition (B ·ŷ(i+1))mod 2=0, the iterative process is stopped
and ŷ(i+1) serves as the decoding output.

Otherwise, if the terminating condition is not fulfilled, the
elements Zpn with Bpn =1 are updated in the last step by

Z(i+1)
pn = Z(0)

pn +
∑

l, bl∈Bn\bp

E
(i)
ln , (20)

and after increasing the iteration index, i = i+1, the next
iteration starts with (17). In (20) E

(i)
pn is excluded from the

summation for the new Z
(i+1)
pn to mitigate error propagation.



B. Efficient Decomposition

In (17) and (20) always just one element is excluded from
the summation. Thus, it is obviously more efficient, at least for
rows or columns with a not too small weight, to first compute
the result for the complete row or column and afterwards ex-
tract the particular element [10]. Since (20) contains a regular
summation the decomposition is straightforward. Actually, the
sum of the complete column e

(i)
n is already given by (18), and

consequently (20) is modified to

Z(i+1)
pn = Z(0)

pn + e(i)
n − E(i)

pn . (21)

The decomposition of the box-plus summation in (17) re-
quires the complementary operation to box-plus, i.e., the box-
minus operation � introduced in Section II-C. Based on (16)
we can write for a box-plus summation excluding a single
element

K∑
k=1,k �=j

�Lk =

(
K∑

k=1

�Lk

)
� Lj (22)

and using this for the decomposition of (17) yields

E(i)
pn =

∑
j∈supp(bp)\n

�Z
(i)
pj =

( ∑
j∈supp(bp)

�Z
(i)
pj

)
� Z

(i)
pj . (23)

C. Computational Complexity Comparison

The difference in complexity between the different com-
pared algorithms consists mainly in the computation of (23).
Table I lists the required operations for a row of weight J . The
last line gives the total operations, weighted according to the
weights of the ETSI basic operators [17]. Most operations have
a weight of w=1 (assuming 16 bit accuracy). The division has
a weight of wdiv =18. The weights of “exp” and “log”, wexp

resp. wlog, depend on the complexity of their implementation,
e.g., series expansion, since “exp” and “log” are not basic
operators themselves. For simplicity we set wexp, wlog ≥ 1,
although usually wexp, wlog � 1 will be the case.

The algorithms compared in Table I are the min-
sum (

≈

�,
≈

�) algorithm, the lookup-sum (
∼

�,
∼

�) algorithm [10]
using efficient lookup-tables f̃±, the log-likelihood ratio
sum-product algorithm (LLR-SPA) with correction [9],
which uses a forward-backward algorithm without

TABLE I

REQUIRED OPERATIONS FOR A ROW OF WEIGHT J
≈

�,
≈

�
∼

�,
∼

� LLR-SPA �, �
sgn(x) sgn(y) J−1 J−1 3J−2 -

sgn(x)y J+2 2J−1 3J−2 -
min(|x|, |y|) J−1 J−1 3J−2 -

f̃±(|x|) - 4J−2 6J−4 -
+ and − - 8J−4 12J−8 4J

∗ - - - J−1

/ - - - 3J

exp(x), log(x) - - - 2J

weighted Op. 3J 16J−9 27J−18 ≥ 61J−1

decomposition, and the exact sum-product (�, �)
algorithm with tanh(x/2)=(ex−1)/(ex+1) and
2 atanh(x)=log((1+x)/(1−x)).

D. Simulation Results

Fig. 1 depicts the simulation results for the (273,191) DSC
(difference set cyclic) code [8],[18] with a row weight of
J =17. AWGN serves as channel distortion and the maximum
number of iterations is 50. The lookup-tables f̃± of the lookup-
sum algorithm have T entries, equally distributed for the input
|x| between 0 and xmax. For |x|> xmax we set f̃±(|x|)=0.
These values of the lookup-tables can be optimzed for a
specific code. But for simplicity we used identical sized input
bins for each table, with the correction factor of the center of
a bin as output value.

The bit-error rate (BER) and frame-error rate (FER) of sum-
product and lookup-sum with T = 16 coincide. Lookup-sum
with T = 1 shows a negligible degradation below 0.1 dB,
while the penalty of min-sum of above 1 dB. The center plot
depicts the iterations executed in average. For the bottom
plot these average iterations are combined with the weighted
operations (wOp) in Table I (wexp =wlog =1). For the relevant
Eb/N0 (BER 10−3... 10−5) the complexity of lookup-sum
approaches the one of min-sum, with lookup-sum significantly
outperforming min-sum in terms of BER.
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Fig. 1. Simulation results for the (273,191) DSC code
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Fig. 2. Simulation results for the (73,45) DSC code

In Fig. 2 similar simulation results are depicted for the
(73,45) DSC code with J = 9. Again the BER and FER
curves sum-product and lookup-sum (LS) with T =16 mostly
coincide and a barely noticeable detriment of lookup-sum with
T =1 can be observed. The penalty of the min-sum algorithm
decreases to ≈0.7 dB due to the smaller row weight. Only the
information of 7 out of J−1 = 8 other entries is omitted by
the min-operation without correction, compared to 15 out of
J−1=16 entries for the (273,191) DSC code in Fig. 1.

For the simulation results presented in Fig. 3 we used a
LDPC code defined in the DVB-S2 standard [11]. We choose
the (64800,32400)-LDPC code with code rate r=1/2. This is
an irregular LDPC code [19] with column weights of 2, 3, and
8 for the parity-check matrix [12]. The row weight is J = 7,
except for a single row with weight 6. As visible in Fig. 3
this long and irregular LDPC code approaches the channel
capacity (Eb/N0)min≈0.2 dB for a r = 1/2 code and BPSK
transmission by ≈0.7 dB. The performance loss of lookup-sum
with a single correction factor, i.e., T =1, is about 0.1 dB and
lookup-sum with T =16 still almost coincides with the sum-
product algorithm. The penalty of the min-sum algorithm is
again ≈0.7 dB.
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Fig. 3. Simulation results for the r=1/2 LDPC code of DVB-S2 [11]

IV. CONCLUSION

We introduced the novel arithmetic operation box-minus �
for L-values as complementary operation to the well-known
box-plus operation �. Additionally, two approximations are
presented for both operations. Using the operators and their
approximations the low-complexity belief propagation algo-
rithm lookup-sum is described, and its capabilities in terms of
a significantly reduced computational complexity with almost
no loss in performance are analyzed by simulations. It was
shown that there is no significant difference in performance
compared to standard belief propagation decoding even if the
lookup-table size is very small. Already for a correction factor,
i.e., a lookup-table with a single entry, the performance of the
complex, non-approximated belief propagation algorithm can
be approached by less than 0.1 dB in Eb/N0.
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