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Abstract

Turbo processing enables appropriately designed sys-
tems to operate close to their capacity limits. In this
contribution we present an upper bound, the optimum
performance theoretically attainable (OPTA), that can
be achieved when transmitting the samples of scalarly
quantized correlated sources. This OPTA limit is based
on the combination of the channel capacity and and
the distortion rate function. To incorporate the effects
of the finite block sizes in real systems, additionally
the inevitable loss is taken into account by the sphere-
packing bound. In a simulation example we present a
multi-mode iterative source-channel decoding scheme
that is based on highly redundant index assignments.
By its Turbo processing at the receiver and due to
its multi-mode flexibility this system can approach the
OPTA limit in a wide range of channel conditions.

1. INTRODUCTION

With the discovery of Turbo codes channel coding
close to the Shannon limit becomes possible with mod-
erate computational complexity. In the past years the
Turbo principle of exchanging extrinsic information be-
tween separate channel decoders has been adapted to
other receiver components. One example is iterative
source-channel decoding (ISCD) for fixed-length coded
sources [1, 2].

The source encoding in today’s communication sys-
tems is often based on the extraction of (fixed-length
coded) parameters such as scale factors or predictor
coefficients. These parameters still contain a large
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amount of residual redundancy. This residual redun-
dancy occurs due to imperfect source encoding, result-
ing for example from the delay constraints of, e.g., 20
ms in GSM. The a priori knowledge on the residual
redundancy, e.g., non-uniform probability distribution
or auto-correlation, can be utilized by ISCD.

In this paper we present the new capacity limits if
the source coding and its residual redundancy is taken
into account. Using the distortion rate function, the
channel capacity, and the sphere-packing bound, the
optimum performance theoretically attainable (OPTA)
for the transmission of correlated scalarly quantized
sources with a finite block size will be derived.

2. OPTIMUM PERFORMANCE
THEORETICALLY ATTAINABLE (OPTA)

The performance limit for the considered problem
is mainly influenced by two factors, the properties of
the channel (or transmission) and the properties of the
source. The properties of the channel are described by
the channel capacity, which gives the maximum infor-
mation (in bit) that can be transmitted without errors.
The properties of the source are described by the distor-
tion rate function, which gives the minimum number of
bits required to obtain a certain quality, i.e., stay below
a certain distortion. Thus, when the minimum num-
ber of bits required by the source equals the maximum
number of bits possible on the channel we obtain the
performance limit OPTA.

For the derivation we consider exemplarily Gauss-
Markov sources which generate zero-mean Gaussian
distributed samples u with a variance σ2

u = 1 and an
auto-correlation ρ. The samples of the source can re-
semble, e.g., parameters generated by source encoders
for speech, audio, or video signals.



2.1. Channel Capacity

The information rate on the channel is limited by
the channel capacity C as defined by Shannon in [3].
In Fig. 1 the channel capacity per channel use is de-
picted for a classic AWGN channel. The well known
results for Gaussian input and different common sig-
nal constellation sets are shown. For details and the
channel capacity of other input and channel types and
we refer to the literature, e.g., [3–6]. Furthermore, the
discussion in the following will be limited to the BPSK
case for simplicity, but the extension to other cases is
straightforward.
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Figure 1: Channel capacity C per channel use for an
AWGN channel and different signal constel-
lation sets.

The channel capacity C gives the maximum amount
of information that can be transmitted over the chan-
nel. In the next step the amount of information pro-
vided by the source, i.e., generated by source encoding,
and the corresponding quality has to be considered.
This is taken into account by the distortion rate func-
tion discussed in the next section.

2.2. Distortion Rate Function (DRF)

To incorporate the effects of the quantization of the
samples u and their auto-correlation ρ, we consider the
DRF [7] of the rate distortion theory. The DRF pro-
vides a lower bound on the distortion D for a given
number of bits M = ld(Q) per quantized source sam-
ple, and hence an upper bound on the achievable pa-
rameter SNR P, the SNR between the original samples
(i.e., parameters) u and the estimated values û at the
receiver. The parameter SNR is a simple but quite ac-
curate and commonly used quality criterion. Note that
M represents the (information) “rate” in the DRF.

2.2.1. Uncorrelated sources

For a memoryless (auto-correlation ρ = 0.0) zero-
mean Gaussian source with variance σ2

u and an optimal
vector quantizer (OVQ) with infinite size, the DRF is
given by [7]

D
[OVQ]
ρ=0.0 (M) = 2−2Mσ2

u . (1)

In the following, we assume for simplicity σ2
u =1. This

DRF has a linear shape in the typical semi-logarithmic
plot in Fig. 2. On the right axis the corresponding
parameter SNR P is given,

P = σ2
u/D = 1/D . (2)

In the case of scalar Lloyd-Max quantization
(LMQ) [7] the maximum attainable parameter SNR
P [max](Q) for quantization with Q quantization levels ū
is with E{|u|2}=1

P
[max]
Q =

E{|u|2}

E{|u − ū|2}
=

1

1 − E{|ū|2}
. (3)

For non-integer values of Q we assume the transmission
with ⌊Q⌋ levels in r⌊Q⌋=Q−⌊Q⌋ of the time instances
and with ⌈Q⌉ levels in r⌈Q⌉=⌈Q⌉−Q of the time in-
stances, r⌊Q⌋+r⌈Q⌉=1. Furthermore, to maximize the
parameter SNR we have to unequally distribute the
energy to the two cases similar to water-filling. By dis-
tribution of the energy we refer to artificially increasing
or decreasing the variance (or energy) σ2

u = Eu of the

source signal u to energies E
[⌊Q⌋]
u and E

[⌈Q⌉]
u . An aver-

age energy of σ2
u =Eu =1 yields the side condition

r⌊Q⌋E
[⌊Q⌋]
u +r⌈Q⌉E

[⌈Q⌉]
u =1 . (4)
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Figure 2: DRF for Gauss-Markov sources with ρ=0.0
and ρ=0.9.



Maximization of (3) yields the maximization of

E{|ū|2}=r⌊Q⌋E
[⌊Q⌋]
u E⌊Q⌋{|ū|

2}+r⌈Q⌉E
[⌈Q⌉]
u E⌈Q⌉{|ū|

2}.
(5)

The values of E⌊Q⌋{|ū|
2} and E⌈Q⌉{|ū|

2} (which as-

sume σ2
u = Eu = 1) are scaled by the energies E

[⌊Q⌋]
u

and E
[⌈Q⌉]
u . Using (3) to replace the E(·){|ū|

2} by the

respective P
[max]
(·) , the maximization of (5) is solved by

E[⌊Q⌋]
u =−

r⌊Q⌋P
[max]
⌈Q⌉

Υ
±

√

√

√

√

√





r⌊Q⌋P
[max]
⌈Q⌉

Υ





2

+
P

[max]
⌈Q⌉

Υ
, (6)

with Υ = (1 − r2
⌊Q⌋)P

[max]
⌊Q⌋ − r2

⌊Q⌋P
[max]
⌈Q⌉ ,

and using the solution of (6) that fulfills

0≤E[⌈Q⌉]
u ≤1≤E[⌊Q⌋]

u ≤1/r⌊Q⌋ . (7)

Since the qualtity in terms of parameter SNR and not
the fixed throughput is the target of the optimization,
the energy for the bad channel, i.e., lower parameter

SNR P [max], has to be increased, E
[⌊Q⌋]
u ≥1.

With this method we obtain the uppermost curve
(LMQ ρ=0.0) in Fig. 2. An impairment compared to
the OVQ can be observed which is constant for higher
values of M .

2.2.2. Correlated sources

Sources with memory, e.g., an auto-correlation
ρ>0, permit greater data compression than memory-
less sources for a given D [7].

For an OVQ and small distortions

D[OVQ]
ρ ≤

1 − ρ

1 + ρ
, (8)

the DRF is described by [7]

D[OVQ]
ρ (M) = (1−ρ2)D

[OVQ]
ρ=0.0 (M) = (1−ρ2)2−2Mσ2

u .
(9)

The term (1−ρ2) is also known as spectral flatness [7].
The region of small distortions corresponds to rates
M ≥ ld(1+ρ).

For distortions D larger than the limit of (8) the re-
lation between distortion D and rate M is given para-
metrically for a zero-mean Gaussian source by [7]

D[OVQ]
ρ (Φ)

∣

∣

∣

∣

∣

D> 1−ρ

1+ρ

=
1

2π

π
∫

−π

min{Φ, Suu(eω)}dω (10)

M [OVQ]
ρ (Φ)

∣

∣

∣

∣

∣

M<ld(1+ρ)

=
1

2π

π
∫

−π

max

{

0,
1

2
ld

Suu(eω)

Φ

}

dω,

(11)

with the power spectral density (PSD) Suu(eω) for an
auto-correlation ρ defined by

Suu(eω) =
1 − ρ2

1 + ρ2 − 2ρ cos ω
σ2

u . (12)

The DRF for an OVQ and ρ=0.9 is depicted in Fig. 2
too.

In the case of an LMQ there exist two different ways
(or a combination of them) to explore the redundancy
caused by an auto-correlation ρ>0.

On the one hand, the redundancy can be used to
decrease the distortion D for a certain rate M by linear
prediction before the LMQ. We denote this approach
by LMQ(D↓). The variance of the source signal u can
be reduced to (1 − ρ2)σ2

u, leading to reduction of the
distortion D by the same factor. This corresponds to a
constant vertical offset in Fig. 2.

On the other hand, the rate M can be reduced by [7]

∆M =
1

2
ld

1

1 − ρ2
(13)

at a constant distortion D. This could be achieved by
an appropriate entropy source encoder after the LMQ
and yields a horizontal offset in Fig. 2.

In the following we use the latter approach denoted
as LMQ(M ↓) because it only affects the digital, i.e.,
quantized values, and does not incorporate any pro-
cessing before quantization. Furthermore, we assume
that the curves are only valid in the small distortions
regime as indicated by the thinner lines for larger dis-
tortions in Fig. 2.

2.3. Performance Limits

Combining the DRF with the well known chan-
nel capacity yields the optimum performance theoreti-
cally attainable (OPTA). This OPTA limit is an upper
bound on the parameter SNR for a certain transmission
scenario. In the examples presented in the following we
assume that M⋆ = 6 bits per source sample are trans-
mitted on the channel. This bit rate is distributed to
the quantization with M =ld(Q) bit and channel cod-
ing with rate rC, M⋆ =M/rC.

In Fig. 3 the OPTA limits for the DRFs in Fig. 2 are
depicted assuming BPSK transmission over an AWGN
channel. BPSK transmission (I = 1 bit per channel
symbol) of M⋆ =6 bits requires M⋆/I =6 channel uses.
With M⋆/I = 6 channel uses available, the combined
channel capacity at a certain Es/N0 is (M⋆/I)C = 6C,
with the respective BPSK capacity C. Thus, we can
assign at maximum M = 6C bit per source sample, or
in general

M =
M⋆

I
C , (14)
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when error-free transmission is desired. This relates via
the DRF to a minimum distortion D, i.e., a maximum
parameter SNR P [max]. The OPTA limit describes the
dependency between this P [max] and the channel qual-
ity Es/N0. It can be observed that the auto-correlation
ρ=0.9 increases the OPTA limit and using a LMQ in-
stead of an OVQ yields a noticeable impairment. Note,
for LMQ and ρ = 0.9 the OPTA limit is exact only in
the small distortions regime (P ≥ 12.787 dB). Never-
theless, the depicted OPTA curve LMQ(M ↓) gives a
loose upper bound for large distortions, i.e., low pa-
rameter SNRs.

2.4. Sphere-Packing Bound

So far infinite information and code block sizes are
assumed. The effects of finite block sizes are incor-
porated in the sphere-packing bound (SPB) by Shan-
non [8]. A detailed discussion can be found in [9]. The
SPB assumes a continuous input alphabet. For a bi-
nary input channel the random coding (upper) bound
by Gallager [9, 10] could be used. However, in [9] it is
shown that the differences are negligible for large infor-
mation block sizes V , V &100, and we restrict the con-
siderations to the simpler SPB. The information block
size V is in this case the number bits required at min-
imum for the quantization of the U source codec pa-
rameters in a frame with Q levels, V =U ld(Q)=UM .

The SPB defines a minimum channel quality

(Eb/N0)
[SPB]
min which is required for error-free transmis-

sion with a information block sizes V at a certain
code rate rC. The limit (Eb/N0)min for an infinite
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block size is often referred to as Shannon limit and
is a lower bound for (Eb/N0)

[SPB]
min . The difference

(Eb/N0)
[SPB]
min −(Eb/N0)min then gives the inevitable im-

pairment for a certain finite block size. In Fig. 4 this
difference is plotted versus the code rate rC for some
arbitrary fixed code block sizes X = V/rC. As well
known, the loss in Eb/N0 decreases for an increasing
block size. With a constant code block size X a smaller
code rate rC corresponds to a smaller information block
size V . On the top axis the number of quantization lev-
els Q = 2rCM⋆

are given when M⋆ = 6 bits per source
sample are transmitted after channel encoding with
rate rC.

When the SPB is applied to the OPTA limit derived
above (see Fig. 3), we denote the emerging bound by
OPTA-SPB.

3. SIMULATION EXAMPLE

In the following we will briefly present a multi-mode
iterative source-channel decoding (ISCD) scheme [11,
12] which closely approaches the derived OPTA-SPB
limit in a wide range of channel conditions. The base-
band model for ISCD in general [1, 2, 13] is depicted in
Fig. 5.

The source codec parameters u of a frame u are
quantized to quantizer levels ξ. These quantizer levels
are mapped by the index assignment (IA) to bit pat-
terns x. The complete frame of bit patterns x is per-
muted by a bit interleaver π to x̃. Afterwards, channel
encoding is applied, yielding in this case bipolar bits ÿ
for a BPSK transmission.
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The receiver features a Turbo process which ex-
changes extrinsic information between the channel
decoder and so-called soft decision source decoding
(SDSD). The latter one exploits the residual redun-
dancy, e.g., the auto-correlation ρ, in the source sam-
ples. In the example of Fig. 6 we assume ρ=0.9. Such
high values of auto-correlation still occur for certain
source codec parameters in today’s communication sys-
tems such as GSM or UMTS. For further details on the
ISCD algorithm we refer to the literature, e.g., [1, 2, 13]
and especially to [11, 12] for the considered multi-mode
scheme.

A crucial design element for ISCD is the IA. In [11]
a powerful and flexible multi-mode ISCD (MM-ISCD)
scheme is presented, which is based on highly redun-
dant IAs. With these IAs the relation between quan-
tizer levels Q and assigned bits M is flexible. In the
example, M =M⋆ =6 bits are assigned to Q={2, ... 32}
levels by versatile block code (BC) based IAs [12, 14]
and a rate rC =1 recursive convolutional code with gen-
erator polynomial G=( 1

1+D+D2+D3 ) is used. Instead
of using any specific speech, audio, or video encoder, we
model U =250 statistically independent source codec
parameters u by U independent Gauss-Markov pro-
cesses with σ2

u =1. Each Gauss-Markov process has an
auto-correlation of ρ = 0.9. The U =250 source codec
parameters at one time instance form a frame u. Thus,
the code block size is X =UM⋆ =1500.

As visible in Fig. 6 the MM-ISCD system performs
very close to the OPTA-SPB limit over a wide range of
channel conditions if the optimum number of quantizer
levels is chosen at the transmitter. Also depicted is
the performance of a classic, non-flexible ISCD system,
with rC = 1/2 channel coding and an EXIT optimized
(EO) [13] IA from Q = 8 levels to M = 3 bits. This
scheme comes close to the OPTA-SPB limit only in a
small Es/N0 region.
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When taking a close look, the MM-ISCD system
actually exceeds the OPTA-SPB limit in a few cases.
This can be explained by the exploitation of the cor-
relation between adjacent frames in the SDSD. Using
the knowledge from previous time instances somewhat
increases the effective frame (or block) size. The OPTA
limit considering only an infinite information block size
is an upper bound in any case.

4. CONCLUSIONS

In this paper we presented a bound on the optimum
performance theoretically attainable (OPTA) for the
transmission of scalarly quantized correlated sources.
This OPTA limit is based on the interaction of the
channel capacity with the respective distortion rate
functions we derived. Furthermore, we additionally in-
corporated the effects of a finite block size by applying
the sphere-packing bound (SPB). With a simulation
example of a novel, versatile multi-mode ISCD system
we demonstrated that the OPTA-SPB limit can be ap-
proached for a wide range of channel conditions with a
carefully designed system.
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