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Abstract— In this paper a novel interpretation of encoding and
decoding of recursive convolutional codes is presented. By means
of Galois field arithmetic a code is separated into sub-codes with
a single delay operator. One of these simple sub-codes is sufficient
for encoding and decoding with the equivalent Trellis diagram.
This paper is not targeted at performance improvements but
at new insights for the analysis of recursive convolutional codes
resulting in novel, possibly less complex approaches for their
implementation, e.g., on a chip.

I. SEPARATION OF RECURSIVE CONVOLUTIONAL CODES

We consider exemplarily a typical rate 1/2 recursive sys-

tematic convolutional (RSC) encoder with L = 4 memory

elements, i.e., constraint length L+1=5. The method itself is

applicable to all recursive convolutional codes. A systematic

output bit y1 and a non-systematic output bit y2 are computed

for each input bit x. With z−1 =D, the generator polynomial

G2 for y2 can be written as

G2(z)=
GFF

2 (z)

GFB
2 (z)

=
1+D+D2+D4

1+D3+D4
=

1+z2+z3+z4

1+z+z4
. (1)

The denominator GFB
2 (z) of (1) is identical to the min-

imal polynomial M(z) = z4 + z + 1 of the cyclotomic

coset {α, α2, α4, α8} in the GF(24) [1, 2]. For the GF(24)

(with primitive polynomial P (z)=z4+z+1) and the minimal

polynomials we refer to, e.g., [1, 2]. Using the factorization

of M(z) into its respective conjugates, one (not unique)

possibility to separate G2(z) by partial fraction expansion is

G2(z) = 1 +
α11

z + α
+

α7

z + α2
+

α14

z + α4
+

α13

z + α8
. (2)

Each of the partial fractions in (2) resembles an elementary

filter and can be considered as a separate sub-generator poly-

nomial G
(g)
2 (z) with only a single non-binary delay operator

D and the non-binary output y
(g)
2 ∈GF(24). We get

G2(z) = 1 +
3∑

g=0

(α11)2
g

z + α2g and y2 = x +
3∑

g=0

y
(g)
2 . (3)

Note, despite all of the sub-encoders operating in the GF(24),

the output y2 of (3) is still a single bit, i.e., y2∈{0, 1}=GF(2).

II. COMPLEXITY REDUCTION BY CYCLOTOMIC COSETS

For the chosen partial fraction expansion in (2) the numer-

ators (or output coefficients) {α7, α14, α13, α11} as well as

the denominators (or feedback coefficients) {α, α2, α4, α8} of

the sub-encoders g=0...3 in (2) and (3) each belong to the

same cyclotomic coset A and are in their “natural” order1. It
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i).

TABLE I

MAPPING OF THE CYCLOTOMIC COSETS A TO ΣA .

cyclotomic coset A ΣA
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2
, α

4
, α

8}, {α5
, α

10} 0

{α3
, α

6
, α

12
, α

9}, {α7
, α

14
, α

13
, α

11} 1

D
x

y1

y2

v
(0)
0 v

(0)
1

α

α11

x
y
(0)
2

A �→ΣA

ΣA

Fig. 1. Simplified RSC encoder with a single sub-encoder.

can be shown that this holds also for the states v
(g)
0 and v

(g)
1

and the output y
(g)
2 of all sub-encoders. Thus, it is sufficient

to compute only the values for one sub-encoder, e.g., G
(0)
2 .

The other values can be determined by using the consecutive

elements of the respective A (with wrap-around). Furthermore,

we only need the summed output ΣA of the four sub-encoders

g=0...3 and not the internal values. With G2 of (3) we get

ΣA =
3∑

g=0

y
(g)
2 =

3∑
g=0

(
y
(0)
2

)2g

=
3∑

g=0

(
α11 · v

(0)
1

)2g

. (4)

Thus, after determining the cyclotomic coset A of the sub-

encoder output y
(0)
2 , a simple mapping of A(y

(0)
2 ) to ΣA is

sufficient. For each A of the GF(2m), m=4, ΣA∈{0, 1} is

ΣA =

m/|A|∑
1

∑
αi∈A

αi . (5)

The left sum to m/|A|, with |A| being the number of elements

in A, ensures that also for cyclotomic cosets A containing

less elements than sub-encoders, the correct number m of

conjugates are summed up in the second sum. The complete

mapping is given in Table I. The simplified encoder using only

a single non-binary delay element D is depicted in Fig. 1.

III. SUMMARY

Using Galois field arithmetic we separated a recursive

convolutional encoder into sub-encoders with only a single

delay element. We showed that the complete code can be

described by only a single sub-encoder with an appropriate

mapping applied to the output. With the corresponding Trellis

diagram for the simplified new encoder, easy decoding by well

known algorithms is possible. Perhaps these new insights allow

better encoder or decoder implementations on a chip or reveal

unknown properties of convolutional codes.
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