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Abstract— Two key design aspects regarding the source coding
part of iterative source-channel decoding (ISCD) are the index
assignment and the quantizer. While the conventional index
assignments are not suited for ISCD the so far presented op-
timized index assignments do only consider zeroth order a priori
knowledge or optimize the parameter SNR only indirectly. In this
paper we present a new cost function which directly optimizes the
parameter SNR incorporating the first order a priori knowledge.
With the same cost function we can also optimize the code book
of the quantizer. Simulation results show the excellent perfor-
mance the new parameter SNR optimized index assignments and
quantizers exhibit.

I. INTRODUCTION

With the discovery of Turbo codes channel coding close

to the Shannon limit becomes possible with moderate com-

putational complexity. In the past years the Turbo principle

of exchanging extrinsic information between separate channel

decoders has been adapted to other receiver components.

To exploit the residual redundancy in source codec param-

eters such as scale factors or predictor coefficients for speech,

audio, and video signals in a Turbo process, iterative source-

channel decoding (ISCD)1 has been presented in [1,2]. This

residual redundancy occurs due to imperfect source encoding

resulting, e.g., from the delay constraints. The a priori knowl-

edge on the residual redundancy, e.g., non-uniform probability

distribution, auto-correlation, or cross correlation, is utilized

for error concealment by a derivative of a soft decision source

decoder (SDSD) [3], which exchanges extrinsic reliabilities

with a channel decoder.

One key design aspect for ISCD systems is the index

assignment. The well-know conventional index assignments

for the non-iterative case such as natural binary or Gray have

only a limited suitability for ISCD since they do not consider

the possible feedback available in the Turbo process. In [5,4]

This work has been supported by the Deutsche Forschungsgemeinschaft DFG.
1Note, the term iterative source-channel decoding is used in the literature

also with a different meaning, i.e., for the iterative evaluation of variable-
length source codes and channel codes. Here ISCD serves for a proper
segmentation of the reconstructed bit stream after channel decoding into bit
patterns of specific length.

index assignments are presented which are optimized for ISCD

with respect to a non-uniform probability distribution, i.e.,

zeroth order a priori knowledge. However, first order a priori

knowledge, e.g., auto-correlation, is not incorporated in the

optimization process. Such first order a priori knowledge is

part of the design of the EXIT optimized index assignments

introduced in [6]. Here, the optimization is based on the

extrinsic information transfer (EXIT) characteristic [7,6] of

the SDSD, which depends on the index assignment and the

first order a priori knowledge. However, there is no direct

relation between the extrinsic mutual information and the

typical quality criterion, the parameter SNR. Thus, the latter

is optimized only indirectly.

In this paper we present a novel cost function, which directly

represents the parameter SNR and incorporates the first order

a priori knowledge. Using this cost function we develop new

index assignments. The simulation results show that these

index assignments are noticeably superior to the ones in [5,4],

which only consider zeroth order a priori knowledge, and even

slightly outperform the EXIT optimized index assignments

derived in [6].

Another element of the ISCD system, which has been

usually ignored so far in the design, is the quantizer. Typically,

a Lloyd-Max quantizer (LMQ) [8] was used [1,2,3,4,5,6],

which is designed with respect to the non-uniform probability

distribution. In [9] a quantizer optimization algorithm for

ISCD is presented. Similarly to the EXIT optimized index as-

signments it is based on the EXIT characteristic of the SDSD.

Using the underlying general design process in conjunction

with our new cost function which represents the parameter

SNR and includes first order a priori knowledge, we develop

a parameter SNR optimized quantizer. Again, the simulation

results show that it is slightly superior to the EXIT optimized

quantizer in terms of parameter SNR.

II. ITERATIVE SOURCE-CHANNEL DECODING

In Fig. 1 the baseband model of iterative source-channel

decoding is depicted. At time instant τ , a source encoder

determines a frame uτ of K source codec parameters uκ,τ

with κ=1, ...K denoting the position in the frame. The
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Fig. 1. Baseband model of iterative source-channel decoding

single elements uκ,τ of uτ are assumed to be statistically

independent from each other. Each value uκ,τ is individ-

ually mapped to a quantizer reproduction level ū
(ξκ)
κ,τ with

index ξκ =0, ... Qκ − 1. The number of quantizer levels is

Qκ =2Mκ . To each quantizer level ū
(ξκ)
κ,τ a unique bit pattern

xκ,τ of Mκ bits is assigned according to the index assignment

Γ, xκ,τ =Γ(ξκ). For simplicity we assume Mκ =M for all κ.

The single bits of a bit pattern xκ,τ are indicated by x
(m)
κ,τ ,

m=1, ...M . The frame of bit patterns is denoted by xτ . The

bit interleaver π scrambles the incoming frame xτ of data

bits to x̃τ in a deterministic manner. To simplify the notation,

we restrict the interleaving to a single time frame with index

τ and omit the time frame index τ in the following where

appropriate.

For channel encoding C of a frame x̃ of bits x we can

use, e.g., a standard terminated recursive (non-)systematic

convolutional code of constraint length J +1 and rate rC. In

general, any channel code can be used as long as the respective

decoder is able to provide the required extrinsic reliabilities.

For the termination of the convolutional code, J tail bits are

appended to x̃. The resulting codeword is denoted by y with

bits y, which are mapped to bipolar bits ÿ∈{±1} for BPSK

transmission with symbol energy Es =1.

On the channel additive white Gaussian noise (AWGN) n
with a known power spectral density of σ2

n =N0/2 is applied,

i.e., z̈= ÿ+n.

The received symbols z are evaluated in a Turbo process,

which exchanges extrinsic reliabilities between the channel

decoder (CD) and the soft decision source decoder (SDSD).

Such reliability information can either be evaluated in terms

of probabilities P (·) or log-likelihood ratios (L-values) L(·).
The ISCD receiver is described in detail in [1,2,6]. For

convolutional codes the equations for the computation of the

extrinsic probabilities or their respective L-values are well

known [10,11]. The SDSD determines extrinsic information

mainly from the natural residual source redundancy which

typically remains in the bit patterns xκ,τ after source encoding.

Such residual redundancy appears on parameter-level, e.g.,

in terms of a non-uniform distribution P (ūκ,τ ), in terms of

correlation, or in any other possible mutual dependency in

time τ . The latter terms of residual redundancy are usu-

ally approximated by a first order Markov chain, i.e., by

the conditional probability distribution P (ūκ,τ |ūκ,τ−1). These

source statistics can usually be measured once in advance

for a representative signal data base. Furthermore, we can

likewise use P (xκ,τ ) and P (xκ,τ |xκ,τ−1) instead of P (ūκ,τ )
and P (ūκ,τ |ūκ,τ−1) due to the one-to-one index assignment.

The technique how to combine this a priori knowledge

P (xκ,τ |xκ,τ−1) on parameter-level with the soft-input values

P [ext]
CD (x) on bit-level is also well-known in the literature. The

algorithm how to compute the extrinsic P [ext]
SDSD(x) has been

detailed, e.g., in [1,2,6]. For quality evaluation we consider

the parameter signal-to-noise ratio (SNR)

P = 10 · log10(E{|u|
2}/E{|u − û|2}) . (1)

III. INDEX ASSIGNMENT OPTIMIZATION

The index assignment is a key factor regarding the perfor-

mance of ISCD systems. There exist numerous well-known

index assignments such as natural binary (NB), folded binary

(FB), and Gray (GR) [8,12]. However, these index assignments

are suited only for the non-iterative case [6,4,5]. In Table I all

the index assignments considered in this paper are listed. We

concentrate for the results on the case of bit patterns with

M = 3 bits being assigned to Q = 2M = 8 quantizer levels.

Nevertheless, the algorithms are directly applicable to other

values of M and Q ≤ 2M . Similar to [6] we give as short-

hand notation for the index assignment Γ : ξ �→x the decimal

representations {x}10 for the bit patterns x for an increasing

level ξ, e.g., for FB

ξ = 0 �→ ({x}10 = 7 ⇒ {x}2 = 111)

ξ = 1 �→ ({x}10 = 6 ⇒ {x}2 = 110)
...

ξ = 7 �→ ({x}10 = 3 ⇒ {x}2 = 011) .

A. Optimization with zeroth order a priori knowledge (AK0)

In [5,4] index assignments for ISCD are presented, which

are optimized with respect to a large Euclidean distance

between quantizer levels whose bit patterns differ by only a

single bit. The optimization process includes the non-uniform

quantizer level (or parameter) distribution by weighting each

squared Euclidean distance with its probability of occurrence

P (ū). Since this method aims at optimizing the parameter

SNR and uses zeroth order a priori knowledge (AK0), we

denote these index assignments as SNR optimized (SOAK0).

The cost function to be maximized can be written as [5,4]

D[SOAK0] =
1

QM

∑

ū∈U

M∑

m=1

P (ū)‖ū − ˇ̄u‖2 → max (2)

By ˇ̄u we refer to the quantizer level with the same bit pattern

as ū, except for an inverted bit at position m. The bit patterns

of the compared channel symbols ū and ˇ̄u differ in a single

bit, because the optimization is aimed at good channels with

very few bit errors. For a numerical approach with reasonable

complexity the optimization (to a possibly local optimum) can
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be performed for large values of Q and M by the binary

switching algorithm (BSA) [13,5,6]. For small values, e.g.,

M ≤4, an exhaustive search of all possible index assignments

is possible, yielding a global optimum. The SOAK0 index

assignment for Q = 8 quantizer levels and M = 3 bits is

given in Table. I. Nevertheless, a major drawback is the fact

that the first order residual redundancy P (ūτ |ūτ−1) in terms

of, e.g., an auto-correlation ρ, is still not incorporated in the

optimization of the index assignments.

B. New optimization with first order a priori knowledge (AK1)

In the following we will derive novel index assignments

which also take into account the exploitation of first order

a priori knowledge in the SDSD. Similar to (2) we consider

the squared Euclidean distance (or noise energy) ‖ūτ − ˇ̄uτ‖
2

between the correct quantizer level ūτ at time instance τ and

the erroneous quantizer level ˇ̄uτ , whose assigned bit pattern

differs only at bit position m. Furthermore, we assume that

the quantizer level ūτ−1 of the previous time instance has

been correctly estimated. This is a valid assumption because

the optimization shall take place for good parameter SNRs,

i.e., a high channel quality. Based on the probability P (ūτ−1)
we can incorporate the first order a priori knowledge by the

conditional probabilities P (ūτ |ūτ−1) and P (ˇ̄uτ |ūτ−1) and

weight the squared Euclidean distance ‖ūτ − ˇ̄uτ‖
2 according

to its probability of occurrence, i.e., the joint probability

P (ˇ̄uτ , ūτ , ūτ−1). Note, ūτ and ˇ̄uτ are statistically indepen-

dent. The resulting cost function

D[SOAK1] = (3)

1

QM

∑

ūτ∈U

M∑

m=1

∑

ūτ−1∈U

P (ˇ̄uτ , ūτ , ūτ−1)‖ūτ − ˇ̄uτ‖
2 → min

with P (ˇ̄uτ , ūτ , ūτ−1) = P (ˇ̄uτ |ūτ−1)P (ūτ |ūτ−1)P (ūτ−1)

includes an additional sum over the possible previous quantizer

levels ūτ−1. Note that in contrast to (2) this cost function

has to be minimized. In the derivation of (2) it was assumed

that the SDSD requires a large Euclidean distance to be able

to distinguish between the quantizer levels ūτ and ˇ̄uτ using

the first order a priori knowledge [5,4]. However, for (3) this

exploitation of the residual redundancy is included in the index

assignment and the noise ‖ūτ−ˇ̄uτ‖
2 generated by an erroneous

decision for ˇ̄uτ shall be as small as possible. Thus, (3) must

be minimized, e.g., by an exhaustive search or the BSA. The

emerging index assignments are denoted by SOAK1 and vary

in dependence of the residual redundancy in terms of, e.g.,

an auto-correlation ρ. For some values of ρ the SOAK1 index

assignments are given in Table I for Q = 8 quantizer levels

and M =3 bits.

C. EXIT optimized index assignments

Another optimization method for index assignments which

considers the first order residual redundancy P (ūτ |ūτ−1) is

presented in [6]. This algorithm is based on EXIT charts [7].

EXIT charts visualize and analyze the exchange of extrinsic

mutual information in a Turbo process. Each component is

TABLE I

INDEX ASSIGNMENTS Γ : ξ �→x FROM Q=8 QUANTIZER LEVELS ū(ξ) ,

ξ=0, ... Q−1, TO BIT PATTERNS x WITH M =3 BITS.

index assignment Γ {x}10 =Γ(ξ)

natural binary (NB) 0,1,2,3,4,5,6,7

Gray, (GR) 0,1,3,2,6,7,5,4

folded binary (FB) 7,6,5,4,0,1,2,3

parameter SNR optimized (SOAK0) 7,1,2,4,6,5,3,0

parameter SNR optimized (SOAK1)

ρ = 0.4 0,1,3,2,6,4,5,7

ρ = 0.7 0,1,3,2,6,4,5,7

ρ = 0.8 0,5,7,3,2,6,4,1

ρ = 0.9 0,6,5,1,3,2,4,7

re-optimized for SOQ (SOAK1Q) ρ = 0.9 0,6,7,1,2,4,5,3

EXIT optimized (EO)

ρ = 0.4 7,1,2,4,3,5,6,0

ρ = 0.7 7,4,2,1,5,6,3,0

ρ = 0.8 5,6,3,0,7,4,1,2

ρ = 0.9 4,7,1,2,5,6,0,3

characterized by an EXIT characteristic, which describes the

generated extrinsic mutual information in dependence on the

input a priori mutual information, but independent of the other

component. The actual convergence in the iterative processing

is depicted by a decoding trajectory. For more details we refer

to the literature, e.g., [7,6].

The optimization algorithm for the index assignments makes

use of a special property of the EXIT characteristics of SDSD.

Accordingly, we denote the outcome of the optimization

as EXIT optimized (EO) index assignment. The maximum

extrinsic mutual information I [ext,max]
SDSD at I [apri]

SDSD≈1 bit depends

on the index assignment and the auto-correlation. For a good

iterative performance the I [ext,max]
SDSD should be as large as

possible. To be exact, actually the intersection with the EXIT

characteristic of the second component defines the perfor-

mance. But with an appropriately designed second component

this stopping intersection will reside usually at values close to

I [apri]
SDSD≈1 bit. Thus, the value

D[EO] = I [ext,max]
SDSD = I [ext]

SDSD(I [apri]
SDSD ≈ 1 bit) → max (4)

is a quite suitable indicator for the possible performance of

the respective ISCD system [6] and serves as cost function

for a maximization.

Furthermore, the value of I [ext,max]
SDSD can be calculated numer-

ically without extensive simulations, because with I [apri]
SDSD ≈

1 bit the a priori information is perfectly reliable and not

defined by a random process [14,6]. Similar to the parameter

SNR optimized index assignments in the previous section a

full search for small M and the BSA for large M can be used

to obtain a (for the BSA local) maximum for I [ext,max]
SDSD [6].

For Q=8 quantizer levels and M =3 bits the resulting EXIT

optimized index assignments EO for four different values of

the auto-correlation ρ are given in Table I.
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Fig. 2. Parameter SNR performance of optimized index assignments.

D. Simulation results

In Fig. 2 the parameter SNR performance of ISCD with

the optimized index assignments is compared to the one with

the conventional natural binary index assignment. Instead of

using any specific speech, audio, or video encoder, we model

K =250 statistically independent source codec parameters u
by K independent Gauss-Markov processes with σ2

u = 1
and auto-correlation ρ = 0.9. Even such high values of

auto-correlation occur for certain source codec parameters

in today’s communication systems such as GSM or UMTS.

Each parameter uκ is scalarly quantized by a Q = 8 level

Lloyd-Max quantizer (LMQ) using M = 3 bits/parameter,

resulting in X = 750 uncoded bits per frame. For channel

encoding C a memory J = 3, rC = 1/2 recursive non-

systematic convolutional (RNSC) code with generator poly-

nomials G
C
RNSC = {138/178, 158/178} is applied. In [6] is

has been shown that for ISCD RNSC codes are superior to

their systematic counterparts. 10 iterations are executed at the

receiver. An EXIT chart analysis reveals that more iterations

are not beneficial. For comparison we assume a reference

parameter SNR of P [ref] =12.5 dB.

All ISCD systems are clearly superior to the non-iterative

reference, for which the residual redundancy is explored only

once in the SDSD. Already the system with the SOAK0

index assignment significantly outperforms the conventional

NB index assignment despite the SOAK0 index assignment

being optimized only for zeroth order a priori knowledge.

Nevertheless, with the index assignments optimized with first

order a priori knowledge, SOAK1 and EO, further noticeable

improvements can be realized. The performance of the ISCD

systems with SOAK1 and EO index assignment is almost

identical with the SOAK1 index assignment being negligible

better. However, the optimization for SOAK1 is very simple

and does not require the computation or measurements of

extrinsic mutual information as the optimization for the EO

index assignments does.
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Fig. 3 contains the corresponding EXIT chart at

Es/N0 =−4 dB. The indicator regarding the convergence

behavior is the first intersection between the EXIT char-

acteristics of the channel code T (GC
RNSC) and the SDSD.

T (Γ). NB index assignments yields the stopping intersection

at the lowest mutual information followed by SOAK0 index

assignment. Again, SOAK1 and EO index assignment exhibit

an almost identical behavior. However, despite the difference

being negligible in terms of optimization, the situation is

vice versa with respect to the parameter SNR performance

of Fig. 2. The EO index assignment provides a slightly

higher mutual information at the intersections as well as

for I [ext,max]
SDSD = I [ext]

SDSD(I [apri]
SDSD ≈ 1 bit). This shows that the

parameter SNR and the extrinsic mutual information are only

indirectly related, because a mapping of extrinsic mutual

information to parameter SNR would have to take the index

assignment into account. Nevertheless, the differences are

negligible.

The depicted decoding trajectory for SOAK1 index assign-

ments confirms that 10 iterations are sufficient. The decoding

trajectory exceeding the EXIT characteristic of the SDSD

T (Γ) is typical for ISCD. The reason is the additional knowl-

edge, refined by the iterations, from the previous frames in the

SDSD. But the intersection of the EXIT characteristics is still

the limiting factor.

IV. QUANTIZER OPTIMIZATION

The design of the conventional Lloyd-Max Quantizer

(LMQ) [8] assumes error-free channel conditions and yields

a quantizer code book U with the minimum mean squared

error (MMSE) E{|u−ū|2} between the original source signal

u and its quantized representation ū. However, similar to the

non-optimized index assignments, an LMQ does not reflect the

specifics of the iterative processing in ISCD, e.g., a residual
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TABLE II

QUANTIZER CODE BOOKS U AND U
� WITH Q=8 QUANTIZER LEVELS,

P [TARGET] =13.5 dB, AUTO-CORRELATION ρ=0.9.

LMQ ū ∈ {±2.1519, ±1.3439, ±0.7560, ±0.2450}

SOQ (Γb=SOAK1) ū ∈ {±2.7127, ±1.7656, ±1.0141, ±0.3348}

EOQ (Γb=EO) ū ∈ {±2.7127, ±1.7656, ±1.0141, ±0.3348}

redundancy in terms of an auto-correlation and its exploitation

at the ISCD receiver is not considered in the design process.

An alternative for a quantizer design which incorporates

ISCD is presented in [9]. The improved error robustness in bad

channel conditions is achieved at the cost of a slightly higher

mean squared error (MSE) E{|u−ū|2} and thus, a weaker

baseline quality in almost error-free channel situations.

The switch from a quantizer code book U to an optimized

quantizer code book U
� affects several components of the

ISCD transmitter and receiver. Beside the quantizer itself and

its counterpart at the receiver, the parameter estimation, the

utilization of source statistics at the receiver is also affected.

With a new quantizer code book U
� the statistics P (ū) and

P (ūτ |ūτ−1) of the residual source redundancy change. Via

the index assignment x = Γ(ū) these are directly related

to the probabilities P (x) and P (xτ |xτ−1). Thus, the index

assignment heavily influences the design process. Therefore,

in many situations it will be beneficial to re-optimize the index

assignment Γ as well.

One design criterion for the new optimized quantizer (OQ)

shall be that the parameter SNR P [max] for an error-free

channel does not drop below a target parameter SNR P [target],

P [max]≥P [target], which, e.g., may be slightly higher than the

reference parameter SNR P [ref]. Using (1) and

E{|u − û|2} ≈ E{|u − ū|2} + E{|ū − û|2} , (5)

with equality for quantizers minimizing E{|u− ū|2} [15], this

relates for the error-free channel E{|ū − û|2}≈0 to an upper

bound on the quantization noise NQ = E{|u − ū|2} denoted

by N
[max]
Q

.

Unfortunately, a closed form determination of the optimized

quantizer is an impractically complex task as all blocks of

the source encoder and the SDSD have an impact on the

optimization process. Additionally the search for a proper

index assignment has to be incorporated. Thus, in [9] a step-

wise optimization is proposed. First the index assignment is

optimized with the initial code book U, e.g., as described in

Section III.

Afterwards, the optimized quantizer code book U
� is

searched by an iterative algorithm. For the details of the

quantizer optimization algorithm we refer to [9] and briefly

review it in the following. It was observed that the magnitude

of the quantizer reproduction levels ū is increased, i.e., the

probability P (ū) of unlikely outer quantizer reproduction

levels is further reduced. In turn, the probability P (ū) of the

center quantizer reproduction levels, which have also been

more probable beforehand, rises. For the sake of simplicity

a symmetric probability density function of the source codec

parameters which increases from the margins to the center is

assumed.

Initialization:

Define N
[max]
Q

by P [target] and choose the index assignment and

the starting quantizer code book U, e.g, SOAK1 and LMQ.

Compute the source statistics P (ū) and P (ūτ |ūτ−1) and the

cost function D, e.g., (3) or (4).

Iterative Processing:

a) Set quantizer interval counter to q=1.

b) If q≥2M−1 stop optimization process.

c) Initialize step-size to, e.g., ∆P =1/2M .

d) Compute temporary P̃ (ū)=P (ū)−∆P for the q-th and the

(2M−q+1)-th interval (symmetry assumption).

e) If these P̃ (ū) < 0 undo and repeat step d) with smaller

step-size, e.g., ∆P =∆P/2. If the step-size drops below a

limit, e.g., ∆P > 10−9, undo step d), increase the interval

counter q=q+1, and return to step b) to start with the next

inner interval. Otherwise proceed to step f).

f) Add the spare 2∆P of d) equally distributed to the P (ū)
of the inner 2M−2q intervals, i.e., P̃ (ū)=P (ū)+ 2∆P

2M−2q
.

g) Recompute the quantizer code book ū ∈ U from P̃ (ū).
Compute P (ūτ |ūτ−1), the cost D, and E{|u − ū|2}.

h) If E{|u− ū|2}<N
[max]
Q

check if the cost D is “better” than

any previous cost. If so, save the ū as optimized code book

U
�. In any case return to step d).

The resulting optimized code books U
� with Q=8 quantizer

levels and a target parameter SNR of P [target] = 13.5 dB are

given in Table II. As residual source redundancy an auto-

correlation of ρ = 0.9 was assumed. The parameter SNR

optimized quantizer (SOQ) is obtain by applying the cost

function D[SOAK1] of (3). As initial index assignment served

SOAK1. For an EXIT optimized quantizer (EOQ) [9] which

maximizes I [ext]
SDSD(I [apri]

SDSD ≈ 1 bit) (4) is used as cost function

and EO as initial index assignment. The quantizer optimization

yields identical results for both cases, SOQ and EOQ.

In a next step, the index assignment can be re-optimized. For

the considered example, the index optimization according to

(4) in Section III-C results again in EO. With the cost function

D[SOAK1] of Section III-B a new index assignment is obtained,

which will be denoted as SOAK1Q and is listed in Table I.

In the following another iteration for the optimization could

be performed by optimizing the quantizer again. However, for

the given example this yields no further improvements of the

parameter SNR.

A. Simulation results

The parameter SNR performance of ISCD with the new

optimized quantizers EOQ and SOQ is compared to a conven-

tional LMQ in Fig. 4. The simulation settings are identical to

those used in Fig. 2. For high Es/N0 the parameter SNR with

EOQ and SOQ approaches P [target] =13.5 dB as expected by

the design constraints. This is less than the LMQ enables, but

nevertheless surpasses the assumed required reference param-

eter SNR P [ref] =12.5 dB. Towards lower Es/N0 the SOQ can

preserve P [ref] for about ∆Es/N0
≈0.7 dB longer and achieve
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a gain of ∆Es/N0
≈0.8 dB in the waterfall region. The EOQ

retains P [ref] approximately ∆Es/N0
≈ 0.5 dB towards worse

channel conditions compared to the LMQ. The difference in

performance between EOQ and SOQ is very small, similar to

the difference between the index assignments EO and SOAK1.

But again, the system optimized with respect to the parameter

SNR, the SOQ, yields the slightly better results.

The EXIT chart in Fig. 5 visualizes the advantages in

the convergence behavior of the new optimized quantizers

in comparison to the conventional LMQ. At Es/N0 =−5 dB
the EXIT characteristic T (SOAK1) with the LMQ yields

an early stopping intersection with the EXIT characteristic

T (GC
RNSC) of the channel code. In contrast the stopping

intersections defined by the EXIT characteristics T (SOAK1Q)
with the SOQ and T (EO) with the EOQ is at high extrinsic

mutual information I [ext]. A long tunnel between the EXIT

characteristics can be explored by ISCD, which is confirmed

by the depicted trajectory for the EOQ case. The situation

regarding the order of parameter SNR optimized and EXIT

optimized systems in the EXIT charts is similar to the one

for index assignment optimization in Section III-D. Despite

performing better in terms of parameter SNR, the parameter

SNR optimized SOQ system exhibits a slightly worse EXIT

characteristic than the EXIT optimized EOQ system.

V. CONCLUSION

In this paper we presented new parameter SNR optimized

index assignments and quantizers for ISCD, which are based

on a novel cost function. The new cost function directly

represents the usual quality criterion, the parameter SNR, and

incorporates the first order a priori knowledge in contrast to

previous optimizations. These were either limited to zeroth

order a priori knowledge or optimized the parameter SNR

indirectly via the EXIT characteristic. Simulation results con-

firm the superior performance of the proposed index assign-

ments and quantizers. An EXIT chart analysis reveals the

slight mismatch of the indirect optimization with the EXIT

characteristics.
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