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Abstract

The use of live and recorded speech is widespread in applications where correct message reception is important. Furthermore, the
deployment of synthetic speech in such applications is growing. Modifications to natural and synthetic speech have therefore been pro-
posed which aim at improving intelligibility in noise. The current study compares the benefits of speech modification algorithms in a
large-scale speech intelligibility evaluation and quantifies the equivalent intensity change, defined as the amount in decibels that unmod-
ified speech would need to be adjusted by in order to achieve the same intelligibility as modified speech. Listeners identified keywords in
phonetically-balanced sentences representing ten different types of speech: plain and Lombard speech, five types of modified speech, and
three forms of synthetic speech. Sentences were masked by either a stationary or a competing speech masker. Modification methods var-
ied in the manner and degree to which they exploited estimates of the masking noise. The best-performing modifications led to equivalent
intensity changes of around 5 dB in moderate and high noise levels for the stationary masker, and 3–4 dB in the presence of competing
speech. These gains exceed those produced by Lombard speech. Synthetic speech in noise was always less intelligible than plain natural
speech, but modified synthetic speech reduced this deficit by a significant amount.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Speech output, whether spoken live, recorded, or gener-
ated synthetically from text, is used in a growing range of
applications, including public address systems, vehicle nav-
igation devices and mobile phones, and is likely to become
more widespread in domestic situations for interaction with
consumer devices and speech-based warning systems.
Maintaining intelligibility in such settings without resorting
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to increases in output level is a challenge, particularly in the
presence of additive and convolutional distortions. Unlike
current speech output technology, human talkers appear to
adapt to the immediate context by changing the acoustic,
phonetic, and linguistic content of their speech (Lindblom,
1990; Picheny et al., 1985; Summers et al., 1988; Howell
et al., 2006; Uther et al., 2007; Patel and Schell, 2008;
Cooke and Lu, 2010). Recently, a number of speech mod-
ification algorithms designed to promote intelligibility have
been proposed, some inspired by human speech production
changes, and useful gains in intelligibility in noise have
been reported. The purpose of the current article is to eval-
uate within a common framework the performance of a
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range of speech modification strategies, alongside a number
of natural speech styles.

Most speech modification algorithms proposed to date
are noise-independent. Methods include boosting the con-
sonant-vowel power ratio (Niederjohn and Grotelueschen,
1976; Skowronski and Harris, 2006; Yoo et al., 2007), spec-
tral tilt flattening and formant enhancement (McLoughlin
and Chance, 1997; Raitio et al., 2011), manipulation of
duration and prosody (Huang et al., 2010), and voice con-
version (Langner and Black, 2005). Raitio et al. (2011) also
proposed a method using adaptation techniques (Yamagi-
shi et al., 2009b) for hidden Markov model (HMM) text-
to-speech (TTS) that require recordings of Lombard speech
from the speaker whose voice is to be synthesized. A differ-
ent approach, described by Moore and Nicolao (2011), also
makes use of adaptation to map between normal, hypo,
and hyper-articulated speech.

Some work has been carried out using prior knowledge
or estimates of the noise context. These approaches
include modification of the local signal-to-noise ratio
(SNR) (Sauert and Vary, 2006; Tang and Cooke, 2010),
optimisation of the spectral audio power reallocation
based on the Speech Intelligibility Index (Sauert and
Vary, 2010, 2011) or glimpse proportion (Tang and
Cooke, 2012), cepstral extraction based on the glimpse
proportion measure (Valentini-Botinhao et al., 2012a),
and the insertion of small pauses (Tang and Cooke,
2011). Recently, Taal et al. (2012) presented an optimisa-
tion algorithm based on a spectro-temporal perceptual
distortion measure.

The evaluation described in this paper aims to quantify
the effect on intelligibility of speech modifications under
energy and duration constraints. Listeners identified words
in phonetically-balanced sets of utterances presented in
both stationary and fluctuating maskers. Ten different
types of speech were evaluated. These were either natural
or synthetic speech, presented with and without modifica-
tion. The two unmodified natural types – ‘plain’ and ‘Lom-
bard’ – were produced in quiet and noise respectively. Five
algorithmic modifications of natural speech were also eval-
uated, alongside unmodified synthetic speech and two fur-
ther modified synthetic types.

The specific modification approaches selected for the
evaluation were a subset of those developed in recent stud-
ies by the authors, chosen to exhibit a wide variety of
potential modification techniques. Algorithms differed
principally in their use of noise estimates, the parameters
being modified, and the optimisation criterion employed.
Alongside one noise-independent approach, others make
use of information about the noise context during offline
optimisation, while the rest employ online noise estimates.
A number of the tested modification algorithms restrict
themselves to changing spectral weights, either globally
or locally in time; others additionally use time-domain
amplitude range compression strategies. Some of the
approaches were inspired by observed human speech pro-
duction changes in intelligibility-enhancing types of speech,
while others employed model-based optimisation of objec-
tive intelligibility.

The performance of each type is characterised in terms
of the change in the percentage of keywords identified cor-
rectly by listeners. In addition, the concept of equivalent

intensity change (EIC) is introduced, which describes the
amount in decibels by which plain speech would need to
be changed to acquire the same intelligibility as a given syn-
thetic/modified type. A design goal for the evaluation was
to be able to distinguish different speech types at a resolu-
tion of about 1 dB of EIC.

Section 2 provides a brief introduction to each of the 10
speech types evaluated in the current study. Speech and
noise corpora are described in Section 3, along with details
of the estimation of psychometric functions for the noise
maskers. The outcome of the evaluation is presented in
Section 4.

2. Speech types

Table 1 lists the 10 speech types whose intelligibility in
noise is reported here, and summarises the extent to which
each method uses noise signals or estimates both offline
and online.

While the focus of the current study was on measuring
intelligibility rather than naturalness or quality, informal
listening suggested that most of the non-synthetic types
were highly-natural and free from artefacts. The two meth-
ods which included a stage of dynamic range compression
(SSDRC and TMDRC) were slightly less-natural than the
others when screened in quiet, but when presented mixed
with a masker these features were less noticeable.

2.1. Unmodified natural read speech (plain)

The reference unmodified speech type consisted of
recordings of a subset of utterances from the Harvard sen-
tence materials (Rothauser et al., 1969), which define 72
phonetically-balanced lists of 10 sentences each. Example
sentences are “The key you designed will fit the lock”

and “Open the crate but don’t break the glass”. These
recordings provide a baseline to evaluate the intelligibility
of unmodified speech. The type is referred to here as ‘plain’
speech, as suggested by Bradlow and Alexander (2007).
However, it is worth noting that the speech was elicited
via read sentences, so the plain type can be considered to
consist of relatively clear speech. Further details of speech
collection are given below in Section 3.1.

2.2. Speech spoken in the presence of a masker (Lombard)

Lombard speech (Lombard, 1911; Summers et al., 1988)
refers to speech material elicited in the presence of noise.
Lombard speech is of interest in evaluating speech intelligi-
bility since it is a naturally modified speaking style which
has been shown to be more intelligible than plain speech
when presented at the same signal-to-noise ratio (Dreher



Table 1
Speech types tested.

Type Approach Mode Modified Noise dependency

Offline Online

Plain Neutral speech Natural No – –
Lombard Lombard speech Natural No – –
OptSII SII-optimised spectral reweighting Natural Yes No Short-term noise PSD
OptGP Glimpse-optimised spectral reweighting Natural Yes Yes Noise type & SNR
SelBoost Boost just audible regions Natural Yes No Short-term noise PSD
SSDRC Spectral shaping + DRC Natural Yes No No
TMDRC Harmonic model tilt modification + DRC Natural Yes Yes Noise type & SNR
TTS HMM-based text-to-speech Synthetic No – –
TTSLomb TTS adapted to Lombard Synthetic Yes Yes No
TTSGP Glimpse-optimised TTS Synthetic Yes No Short-term noise PSD
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and O’Neill, 1957; Summers et al., 1988; Pittman and
Wiley, 2001; Lu and Cooke, 2008). Lombard sentences
came from the same subset of the Harvard corpus as the
plain material and were spoken by the same talker (see
Section 3.1).

2.3. Speech Intelligibility Index-based optimisation of

spectral audio power reallocation (OptSII)

In this approach, the audio power of the speech signal is
spectrally reallocated with respect to the Speech Intelligibil-
ity Index (SII, ANSI S3.5-1997, 1997). A recursive closed-
form optimisation scheme calculates, in each time frame,
the spectral weights which maximise the SII given the cur-
rent noise spectrum levels with the additional constraint of
an unchanged short-term audio power of the speech signal.
For this purpose, a (warped) filterbank with non-uniform
frequency resolution divides speech and noise signal into
21 approximately Bark-scaled subband signals. This algo-
rithm, which was originally designed for mobile communi-
cation devices, estimates all necessary information blindly
based on the (far-end) speech and the (near-end) micro-
phone signal with a look-ahead of only 10 ms. In situations
where both participants speak at the same time (double-
talk), the microphone signal contains not only background
noise but also the speech signal of the local participant,
which must not be treated as noise. This is addressed by
a single-channel noise power spectral density (PSD) estima-
tion algorithm. OptSII is thus noise-dependent, making use
of online noise estimates. See Sauert and Vary (2011, 2010)
for further details.

2.4. Optimal spectral reallocation based on glimpse

proportion (OptGP)

As for OptSII technique, this approach focuses on pro-
moting speech intelligibility in the context of different
noise masker types and noise levels by applying a fre-
quency-dependent weighting chosen to optimise the num-
ber of audible regions. The technique learns frequency
band weights which maximise objective intelligibility using
a genetic algorithm optimisation technique (Holland,
1975), with glimpse proportion (Cooke, 2006) as an objec-
tive intelligibility metric. Optimisation is performed sepa-
rately for each masker type and SNR combination,
resulting in a single weighting for each combination. A
58-channel auditory resolution filter bank is used rather
than octave or third-octave band weights. Optimised
weightings are typically almost binary in form, either
boosting or attenuating individual frequency bands.
Boosting becomes more sparse as noise level increases.
This modification approach makes use of the masker sig-
nals during the offline learning process, but since a static
spectral weighting is applied online, the method can be
used based on a relatively high-level estimate of the noise
context e.g., by estimation of the noise type and overall
SNR. Further details are presented in Tang and Cooke
(2012).

2.5. Selective energy reallocation to boost just audible time-

frequency regions (SelBoost)

The SelBoost method is motivated by two factors: (i)
some time-frequency regions are likely to possess a local
SNR that is more than sufficient, while others are at or near
the threshold of audibility; (ii) frequency regions differ in
their importance for speech perception. For instance, the
frequency range from 1000 to 4000 Hz is suggested to be
more important than elsewhere (Zwicker, 1961; Studebaker
et al., 1987; Bell et al., 1992). Under the constraint of con-
stant input-output energy, transferring speech energy from
regions of high local SNR to those of lower SNR, and from
low-importance frequency regions to high-importance
parts of the spectrum may be an effective strategy. The
key offline requirement is to determine which parts of the
local SNR range and which frequency bands are most effec-
tively boosted by energy reallocation. An optimisation pro-
cess which accomplishes this, reported in (Tang and
Cooke, 2010), suggests boosting those regions whose local
SNR is less than 5 dB in the frequency range 1800–
7500 Hz. Moreover, this outcome was found not to depend
on noise type or level. Online, this modification method
requires good SNR estimates in each time-frequency
region.
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2.6. Spectral shaping and dynamic range compression

(SSDRC)

SSDRC (Zorilă et al., 2012) performs spectral shaping
followed by dynamic range compression (DRC). Spectral
shaping consists of two cascaded subsystems which are
adaptive to the probability of voicing: (i) an adaptive
sharpening where the formant information is enhanced,
and (ii) an adaptive pre-emphasis filter. Furthermore, a
third fixed spectral shaping is used to prevent attenuation
of high frequencies in the speech signal during signal repro-
duction. The operations of the spectral shaper follow
observations of formant enhancement in clear speech
(Hazan and Baker, 2011) and spectral tilt reductions in
Lombard speech (Lu and Cooke, 2008). The output of
the spectral shaping system is then input to the DRC,
inspired by compression strategies used in sound recording
and reproduction, audio broadcasting (Blesser, 1969) and
amplification techniques in hearing aids (Kates et al.,
1998). DRC has a dynamic and a static stage. During the
dynamic stage, the envelope of the total time signal is
dynamically compressed with a 2 ms release time constant
and almost instantaneous attack time constant. During
the static amplitude compression, the 0 dB reference level
is set to 0.3 times the peak of the signal envelope. DRC
enhances the transient components of speech. The SSDRC
method is independent of noise type and level.

2.7. Harmonic model tilt modification and dynamic range

compression (TMDRC)

TMDRC is a parametric approach based on full-band
harmonic modelling of speech for increasing speech intelli-
gibility in noise (Erro et al., 2012). This is achieved in two
steps. First, the spectral slope is increased to mimic the
effect of higher vocal effort. Then, the energy of the signal
is redistributed over time to amplify low-energy parts of the
signal. This is similar to the DRC operator discussed
above. However, in this case the transformation operates
on harmonic amplitudes and not on the envelope of the sig-
nal. It is interesting to note that the operations of spectral
tilt modification and dynamic range compression can be
easily integrated into a harmonic model-based waveform
reconstruction module of a statistical text-to-speech syn-
thesizer. This provides a higher degree of control on intel-
ligibility at the expense of an almost negligible increment in
computational load. TMDRC makes use of both offline
and online noise estimates.

2.8. HMM-based text-to-speech synthesis (TTS)

Synthetic voices were built using the statistical and para-
metric HMM-based text-to-speech framework (Zen et al.,
2009). The following parameters were used to train, adapt
and generate speech: 59 Mel cepstral coefficients, Mel scale
F0, and 25 aperiodicity energy bands extracted using
STRAIGHT (Kawahara et al., 1999). A hidden semi-Markov
model was used as the acoustic model. Observation vectors
contained static, delta and delta-delta values, with one
stream for the spectrum, three streams for F0 and one
for the aperiodicity energy bands. The global variance
method (Toda and Tokuda, 2007) was applied to compen-
sate for the over-smoothing effect of acoustical modelling.

The standard synthetic speech material, referred to here
as the speech type ‘TTS’, was created from a high quality
average voice model (Yamagishi et al., 2009a) adapted to
2803 sentences from prior recordings made by the same
male talker used for the current evaluation (see Section 3.1),
corresponding to three hours of material. An average voice
rather than a speaker-dependent voice was built because
the plain speech dataset context coverage was not suffi-
ciently large.

2.9. TTS adapted to Lombard speech (TTSLomb)

The Lombard voice ‘TTSLomb’ was based on TTS, fur-
ther adapted using 780 sentences from the Lombard speech
dataset described previously, corresponding to 53 mins of
recorded material. Again, the reason for using adaptation
was the lack of phonetic balance in the speech dataset.
All acoustic features of the Lombard speech dataset i.e.,
Mel cepstral coefficients, F0, duration and band aperiodic-
ity were used in the adaptation step for creating the TTS-
Lomb voice. The Lombard voice produces sentences with
longer duration (25% relative increase), longer pauses
(18% relative increase), greatly increased F0 mean (39%
relative increase) and flatter spectral tilt (24% flatter). TTS-
Lomb uses offline noise estimates but is noise-independent
at run time.

2.10. TTS optimised using a glimpse proportion metric

(TTSGP)

To create the ‘TTSGP’ type a Mel cepstral coefficient
modification method (Valentini-Botinhao et al., 2012b)
was applied to the spectral parameters generated by the
TTS type. Duration, fundamental frequency and excitation
parameters remained unmodified. The first two Mel ceps-
tral coefficients were modified (excluding the log-energy
coefficient) in order to maximise intelligibility of speech
in noise as given by an approximated version of the glimpse
proportion measure (Cooke, 2006; Valentini-Botinhao
et al., 2012a). The glimpse measure is maximised at each
time frame, which means that there is no reallocation of
energy across time frames, only within frequency regions.
To calculate the measure and the Mel cepstral modifica-
tion, a time-frequency auditory representation of speech
and noise was extracted from the short term Fourier trans-
form of the noise signal and the Mel cepstral coefficients of
the speech signal. To extract this representation, 55 gamm-
atone filters covering the range of 50–7500 Hz were used.
Both convergence and distortion (10% relative increase in
the Euclidian distance between the auditory representation
of original and modified speech) were used as stopping
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evaluation. However, these were based on prototype algorithms whose
performance has subsequently substantially improved, so their results are
not reported here.
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criteria. Like TTSLomb, the TTSGP type presents a flatter
spectral tilt, though to a lesser degree (16%) than the TTS-
Lomb type. TTSGP makes use of online noise estimates.

3. Methods

3.1. Speech material

A speech dataset comprised of natural sentences was
chosen over the use of isolated words or restricted-vocabu-
lary sentences in order to obtain evaluation results for pho-
netically-balanced materials more representative of
everyday speech. The existing list of Harvard sentence
materials (Rothauser et al., 1969) fits these criteria. The
Harvard sentence lists define 72 sets of 10 sentences each.
Each 10-sentence set is phonetically-balanced. Sets 1–18
(180 sentences) were used in the current evaluation.

A male native British English talker (Northern-influ-
enced RP accent) working as a professional voice talent
was recorded producing the entire set of 720 Harvard utter-
ances in a hemi-anechoic chamber using two microphones:
a Sennheiser HKH 800 p48 microphone on a stand, and a
DPA 4035 headset microphone. Utterances were produced
both in quiet and in the presence of a temporally-modu-
lated speech-shaped noise masker (ICRA noise 5 from
Dreschler et al., 2001), delivered over Beyerdynamic
DT770 headphones at a calibrated level of 84 dB(A). In
unmodified form, the utterances recording in quiet and
noise are referred to as ‘plain’ and ‘Lombard’ as described
in the previous section.

After recording, all speech was downsampled from 96 to
16 kHz using Praat (Boersma, 2001), manually endpointed
to remove leading and trailing silence and high-pass filtered
with a cut-off frequency of 100 Hz to remove low-fre-
quency artefacts.

3.2. Maskers

In order to provide modification techniques with the
opportunity to demonstrate sensitivity to both noise level
and type, both fluctuating and steady-state maskers and a
range of SNRs were tested. The fluctuating masker was
competing speech (CS) from a female talker producing
read news speech and Harvard-like sentences. The masker
was generated by concatenating (in a random permutation
fashion) 100 speech files produced by this talker. Concate-
nated speech was processed to eliminate all silences that
were longer than 300 ms using SOX (SoX, 2012). The final
processed file was 58 mins long. The steady-state masker
was speech-shaped noise (SSN) whose long-term average
speech spectrum matched that of the competing speech
masker. SSN was generated by filtering white Gaussian
noise through a 100th order all-pole filter which approxi-
mated the long-term spectrum of the CS masker. Note that
the noise used to induce Lombard speech was not the same
as either of the masker types but somewhat intermediate,
sharing the temporal modulations of CS yet having a
short-term spectrum of SSN. While different noise types
induce acoustic modifications of varying degrees in Lom-
bard speech (e.g., Lu and Cooke, 2008), the parameters
affected by noise are largely independent of inducee noise
type.

3.3. Speech-noise mixtures

Harvard sentences were centrally-embedded in CS and
SSN masker fragments chosen at random from longer
sequences. For SSN, a 30-s sample was generated, while
for the CS masker extracts were drawn from the entire
58 mins waveform to reduce the probability of listeners
being distracted by, or learning from, hearing the same
background speech more than once. Rather than co-gating
speech and noise (i.e., starting and ending both signals
simultaneously), each masker fragment was one second
longer than the sentence with which it was mixed, produc-
ing 0.5 s leading and lagging masker noise. Speech signals
were padded with 0.5 s of inaudible low amplitude random
noise at the beginning and end of each sentence. The reason
for using non co-gated noise was to permit comparisons
between modification approaches which produced speech
of differing lengths, as explained below.

Speech-noise mixtures were created to measure the intel-
ligibility of each of the 10 speech types1. Plain speech was
added to noise at 3 SNRs, chosen to produce keyword
scores of approximately 25, 50 and 75% (estimated in pilot
tests to be �9, �4 and +1 dB for the stationary noise mas-
ker, and �21, �14 and �7 dB for the competing talker). In
later sections these are referred to as ‘Low SNR’, ‘Mid
SNR’, and ‘High SNR’. To enable comparisons between
plain and modified/generated speech types, signals were
rescaled to produce the desired SNR. Since Lombard
speech was on average longer than plain speech and to
avoid constraining the intrinsic duration of synthetically-
generated speech, modifications which resulted in dura-
tional increases within the additional 1s of masker were
permitted. SNR calculation for modified speech, defined
in Eqn. 1, is based on the modification-specific interval
[t1;m; t2;m� where the speech for type m is present:

10 log10

Pt2;m
t¼t1;m

smðtÞ2Pt2;m
t¼t1;m

nðtÞ2
¼ 10 log10

Pt2

t¼t1
splainðtÞ2Pt2

t¼t1
nðtÞ2

¼ k ð1Þ

where k is the target SNR, splainðtÞ and smðtÞ are the plain
and modified speech signals, and [t1; t2� is the interval where
the plain speech is present.

None of the types which resulted in modified durations
(Lombard, TTS, TTSLomb, TTSGP) produced changes
which exceeded the additional 1 s length of the masker
signal.
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3.4. Listeners

154 listeners were recruited using the University of Edin-
burgh’s Student and Graduate Employment service. All
were paid for their participation. All were young adults
(age range predominantly 19–25) whose native language
was English. All listeners received audiological screening,
which led to responses from 15 listeners being removed
from the analysis.

3.5. Design

Listeners identified keywords in speech in six conditions
resulting from the combination of the two masker types
presented at each of three SNR levels. 30 sentences were
presented in each condition. Speech from each of 18 Har-
vard sets was mixed with noise for each of the six condi-
tions, to produce 108 blocks of 30 sentences. Listeners
were assigned to a subset of these blocks using a Latin
square design which ensured that each listener heard one
block in each of the six noise conditions, for a total of
180 sentences. No listener heard the same sentence twice,
and each condition was heard by the same number of lis-
teners. Within a single block the different speech types were
mixed such that over the six blocks each listener heard the
same number of sentences from each of the speech types.
Prior to presentation, stimuli were normalised to have the
same root mean square (RMS) level and 20 ms half-Ham-
ming ramps were applies to attenuate onset and offset
transients.

3.6. Procedure

Testing was performed in the School of Informatics at
the University of Edinburgh, using individual sound-trea-
ted booths and Beyerdynamic DT770 headphones. Listen-
ers were unable to modify output level. A custom-built
MATLAB software application controlled the entire exper-
iment. Listeners received two short practice sessions prior
to the main test, one for each of the two masker types, pre-
sented at 0 dB SNR for SSN and �3 dB for CS, using Har-
vard sentences from outside the test subset. Each stimulus
was presented once. Following presentation, listeners typed
what they had heard, after which the subsequent stimulus
was presented. In this way, the experiment was self-paced.
Listeners needed 40–45 mins to complete the test.

Since few words were identifiable for some stimuli at the
lower SNRs, listeners were instructed to simply type in the
words they heard rather than to attempt to construct an
entire sentence as their response. Null responses were not
permitted by the software: listeners typed an ‘X’ for those
sentences where no words were audible.

3.7. Scoring

Scores were computed based on the number of words
correctly identified in each Harvard set. The short common
words ‘a’, ‘the’, ‘in’, ‘to’, ‘on’, ‘is’, ‘and’, ‘of’, and ‘for’ were
excluded. Prior to scoring, sentence lists and responses
were adjusted to remove punctuation, and compound
forms such as ‘sideshow’ or ‘halfway’ were modified to
reflect the most common response type.

3.8. Estimation of psychometric functions

In order to be able to express the effect of modified
speech types in terms of dB gains, a baseline listening test
was designed to estimate the psychometric function which
relates keyword scores to SNR for each of the two maskers.
For the estimation of psychometric functions, plain speech
was added to noise at 9 equally-spaced SNRs chosen to
produce keyword scores in the range from 10 to 90%.
For SSN the range was from �10.7 dB to 2.7 dB in
1.7 dB steps, while for CS the SNR varied from �28 dB
to 0 dB in 3.5 dB steps.

Baseline testing was carried out prior to the main tran-
scription test. 57 different listeners with a similar profile
to that of the main test group (less eight listeners who
did not pass the audiological test) identified keywords in
speech in 18 conditions: two masker types crossed with
each of nine SNR levels. Ten sentences were presented in
each condition, each chosen as a single Harvard sentence
block. Speech from each of 18 Harvard sets was mixed with
noise for each of the 18 conditions, to produce 324 blocks
of 10 sentences. Listeners were assigned to blocks of stimuli
in a similar fashion to that used for the main test i.e., ensur-
ing that no listener heard the same sentence more than once
and that all listeners heard the same number of utterances
in the 18 conditions. Testing took place in the same listen-
ing booths and under the same listening conditions as the
main test. Scores were computed as for the main test.

Fig. 1 plots mean keyword scores in the baseline test as a
function of SNR and masker type. The MATLAB glmfit

function with a normal distribution and logic link func-
tion was used to find the best-fitting logistic function (Eq.
2) for each masker:

pn ¼
1

1þ e�ðk�lnÞ=sn
ð2Þ

where pn is the proportion of words recognised correctly at
SNR k for masker n, and ln and sn are the offset and slope
of the logistic function for that masker.

Listeners tolerated around 9 dB more noise at the 50%
words correct level for the competing speech masker com-
pared to the speech-shaped noise masker, compatible with
previous studies using stationary and fluctuating noise
(Festen and Plomp, 1990).

4. Results

4.1. Keyword scores

Figs. 2 and 3 show keyword scores for the competing
speech and speech-shaped noise maskers relative to scores
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Fig. 1. Listeners’ mean keyword scores (open circles) as a function of
SNR for competing speech (CS) and speech-shaped noise (SSN) for 49
listeners. Error bars represent 95% confidence intervals. Two-parameter
logistic fits are also shown.
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for the plain speech type at each of three SNR levels
denoted High, Mid, and Low. Speech types are ranked
by degree of gain.

A 3-factor (modification, SNR level2, masker type)
repeated-measures ANOVA on arcsine-transformed key-
word scores confirmed visual impressions, revealing
highly-significant effects of all factors (all p < 0:001) as well
as significant interactions between all factor combinations,
suggesting that the effect of modification strategies varied
across SNR and masker type.

Fisher’s least significant differences, computed sepa-
rately for each SNR level and masker type using ANOVAs
with the single factor of modification type, are reported in
Figs. 2 and 3 to allow statistical comparison of modifica-
tion algorithms.

Leaving aside for the moment the three modifications
which employed synthetic speech, most speech types were
more intelligible than plain speech. The degree of gain
showed significant variation across types, maskers, and
SNR levels. On average, large gains were seen for modified
speech in the presence of the stationary noise masker,
reaching over 36 percentage points (from a plain speech
baseline of around 16%). In general, the size of these gains
was more than halved for the competing speech masker.
Larger gains were observed at the more intense masker lev-
els. In part, the scope for intelligibility improvements is
limited in the High SNR condition, where for instance
the near 8 percentage points gain of the most intelligible
type was relative to a plain baseline of 86%. However, par-
2 Note that the factor levels for SNR – high, mid and low – do not
represent the same SNRs (in dBs) for the two masker types.
ticularly in the CS case, room for further gains exists even
at high SNRs.

The SSDRC method significantly outperformed all
other approaches in four of the six conditions and was sta-
tistically-equivalent to the best method in the two High
SNR conditions. Lombard speech was always more intelli-
gible than plain speech, but it is notable that many of the
manipulated types were even more intelligible.

TTS was always the least intelligible type (or statisti-
cally-equivalent to the type producing lowest scores), with
a deficit relative to plain speech of up to 32 percentage
points. However, the two modified synthetic types dis-
played substantial improvements relative to TTS, while
not quite reaching the intelligibility of natural plain speech.
In most conditions TTS adapted to Lombard speech (TTS-
Lomb) outperformed TTS adapted to increase intelligibil-
ity (TTSGP).
4.2. Equivalent intensity change

While gains in keyword scores provide a raw measure of
the effect of modifying speech, a more easily-interpretable
measure of the effect of modifying speech is to estimate
the amount by which plain speech would have to be boosted
(or in some cases attenuated) to achieve the intelligibility
level of the modified type. We compute a measure – the
equivalent intensity change (EIC) – which represents the
boost or attenuation level in decibels. The relation between
EICs and changes in keyword scores is nonlinear. The EIC
is derived by inverting the logistic approximation to the
masker-specific psychometric function. The absolute SNR
corresponding to the proportion of words correct in speech
type m for masker n, denoted pm;n, is computed using Eq. 3

km;n ¼ ln � sn ln
1

pm;n

� 1

 !
ð3Þ

where ln and sn are the offset and slope of the psychometric
function for masker n, whose specific values are provided in
Fig. 1. The equivalent intensity change is then simply

EICm;n ¼ kplain;n � km;n ð4Þ

Note that the actual SNRs at which speech types were pre-
sented are not required in this calculation. Instead, via the
logistic approximation, scores for all speech types (includ-
ing plain speech) are derived from the same intelligibility-
SNR relation. This approach implicitly corrects for any
differences between the groups of listeners whose responses
were used to estimate the psychometric functions and those
who evaluated modified speech types.

Figs. 4 and 5 indicate that the most intelligible modifica-
tions produced around 5 dB of gain at Mid and Low SNRs
for the stationary masker and 3–4 dB for the competing
talker. Unmodified synthetic speech was 4–8 dB less intelli-
gible than unmodified natural speech. However, some of
this deficit was reduced for modified synthetic speech,
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which produced gains of up to 4 dB compared to unmodi-
fied synthetic speech.

5. Discussion

5.1. Key findings

Speech modification can lead to substantial increases
in intelligibility for sentences presented in noise relative
to an unmodified speech baseline. The most successful
techniques evaluated here produced increases in keyword
scores over plain speech which ranged from 7.6 to 36.5
percentage points for a stationary masker, with smaller
increases (5.5 to 15.4 percentage points) in the presence
of a competing talker. These quantities correspond to
gains in the range 2.5–5.2 dB and 2.4–4.1 dB for the
two masker types. It is worth noting that these improve-
ments are relative to a baseline of ‘plain’ speech, a read
style produced by a professional voice talent. As such,
on a continuum from conversational (hypoarticulated)
to clear (hyperarticulated) speech, the plain type is
already intrinsically quite clear and might therefore pro-
vide fewer opportunities for intelligibility gains. In this
light, the outcome of the current evaluation of gains
equivalent to boosting plain speech by up to 5 dB is
encouraging.

In general, the size of the intelligibility gain increased
with decreasing SNR. At the highest SNR, the scope for
gains is limited by ceiling effects. In terms of relative reduc-
tions in word error rate, the largest change was observed at
the moderate SNR for the speech-shaped noise masker,
corresponding to a 72% relative reduction (i.e., an error
rate of just over 40% for plain speech is reduced to around
11%).
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Most modification techniques resulted in larger gains
for the stationary masker than for the competing
talker, suggesting that the algorithms evaluated here
did not fully exploit modification opportunities afforded
by temporal fluctuations in the masker. One technique
– OptGP – did lead to larger gains for the competing
talker at two of the three SNRs and was equivalent at
the third SNR. We discuss possible reasons for this find-
ing below.

In recent years, synthetic speech has reached
intelligibility levels of natural speech in quiet (Yamagishi
et al., 2008). However, the current study found a clear
deficit in all noise conditions, ranging from 4 to
8 dB, suggesting that further work aimed at increasing
the intelligibility of synthetic speech will be required
to enable its adoption in a wider range of natural
settings.
5.2. Comparison of algorithmic modifications to natural

speech

Modified speech produced by SSDRC was significantly
more intelligible than all other approaches in moderate
and high levels of noise, for both maskers, and statistically
equivalent to the best techniques in the low noise case.
SSDRC was inspired by observations from talkers (clear
and Lombard speech) and from audio engineering, and dif-
fers from most of the techniques evaluated here in modify-
ing both spectral and temporal properties of the speech
signal. The degree of spectral shaping is adaptive to the
probability of voicing, with larger modifications for
strongly-voiced speech segments. The adaptive character
of spectral shaping is important to avoid introducing arti-
facts in the processed signal, especially in fricatives, silence,
or other low-amplitude regions of speech. Concerning the
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temporal element, dynamic range compression reduces the
peak-to-RMS value of the speech signal, which has the
effect of transferring energy from sonorant to less sonorant
parts of speech. This type of compression supports obser-
vations (e.g., Hazan and Simpson, 1996; Yoo et al., 2007)
which show that selective reinforcement of bursts, nasals,
and vocalic onsets and offsets can provide significant
improvements to the intelligibility of the subsequently
degraded speech signal, while maintaining the same overall
SNR. Enhancement of the transient components of speech
has also been shown to improve intelligibility of speech in
noisy conditions. Low energy signals are unaffected in
order to avoid introducing artifacts in these areas of
speech. Since the TMDRC method also employs a stage
of dynamic range compression, the better performance of
SSDRC can be attributed to differences in the treatment
of spectral information. TMDRC is essentially a spectral
tilt modifier, while SSDRC enhances formant information.

Two methods, OptSII and OptGP, used different objec-
tive intelligibility models to optimise speech modifications.
These methods produced similar-sized moderate gains for
two of three SNRs for the stationary masker. At the high-
est noise level, OptSII outperformed OptGP by 1.3 dB. In
the competing talker case, OptGP produced larger gains
than OptSII, with the difference ranging from 1.7 to
3.2 dB. The poorer performance of OptSII in the fluctuat-
ing masker case is easy to explain: the noise estimator is
unable to track a rapidly-modulated masker such as com-
peting speech. What is less clear is why the performance
of OptGP is so good for this masker. Online, OptGP
employs a static spectral weighting which is matched to
the type of level of noise, based on offline optimisation.
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Fig. 5. As for Fig. 4 but for the competing speech masker.

582 M. Cooke et al. / Speech Communication 55 (2013) 572–585
Thus, OptGP cannot actively exploit the masker’s temporal
fluctuations. One possibility is that the sparse spectral
weighting patterns learnt in OptGP (described in Tang
and Cooke, 2012) create an energy concentration in narrow
bands whose effect is to boost a small number of regions
above the level of the masker for extended periods of time,
enabling temporal variations in these frequency regions to
be tracked by the listener. Having access to temporal mod-
ulations of the target speech is likely to be most beneficial
when the masker itself is also modulated, since they help to
define which frequency regions should be grouped together.
Further work is needed to test this hypothesis.

The remaining natural speech modification approach,
SelBoost, follows the pattern of benefits for the stationary
masker and lack of substantial gains for competing speech.
Like OptSII, SelBoost makes use of ongoing noise estimates
to select which spectral regions to modify on a frame-by-
frame basis. Unlike OptSII, SelBoost assumes access to
ideal noise estimates, and might therefore be expected to
show larger gains, particularly for the fluctuating masker.
It is possible that boosting individual time-frequency cells
leads to artefacts which have a negative influence on intelli-
gibility. Since the competing speech masker is modulated in
time and shows high variance across frequency, particularly
in the resolved harmonics region, the probability of arte-
facts will be larger than for the stationary masker, compat-
ible with the observed pattern of gains.

5.3. Lombard speech

In line with most studies (e.g. Dreher and O’Neill, 1957;
Summers et al., 1988), Lombard speech was always more
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intelligible than plain speech, although the difference was
marginal for some conditions. Lombard is a naturally
modified style, and observations from Lombard speech
formed part of the motivation for several techniques, either
indirectly (SSDRC, TMDRC) or directly (TTSLomb), so it
is interesting that many of the artificially-modified
approaches led to larger increases in intelligibility than
Lombard speech. However, the Lombard benefit was more
equally-balanced overall across the two masker types than
was the case for many algorithmic modifications. Since
Lombard speech was produced in response to temporally-
modulated speech-shaped noise, it is notable that gains
are observed in the presence of mismatched maskers, i.e.,
competing speech and stationary speech-shaped noise.

5.4. Synthetic speech

While synthetic speech (TTS) was substantially less
intelligible than plain natural speech, the other TTS-based
approaches led to very significant gains over the TTS base-
line, ranging from 2.2 to 3.3 dB for the SSN masker and 2.0
to 4.3 dB for the competing speaker. In most conditions,
these gains took synthetic speech to within 1–2 dB of natu-
ral speech in noise. In fact, the benefit of adapting TTS to
Lombard speech was larger than the difference between
natural Lombard and plain speech in five of the six condi-
tions. The two TTS modifications are motivated by quite
different criteria—adapting to Lombard and optimising
an objective intelligibility model respectively. While the
first modification changes spectral features, duration, and
prosody, the latter only modifies the speech spectral enve-
lope, hinting at a possible beneficial combination of the
two approaches.

5.5. Practical considerations: noise estimation and

computational complexity

As summarised in Table 1, modification methods dif-
fered in the extent to which they made use of information
from the masker. Two approaches (TMDRC, OptGP) used
noise samples in offline training and assumed knowledge of
either or both of noise type and SNR online. TTSLomb
had a similar offline noise dependency, but no dependency
online. Other methods such as OptSII, SelBoost and
TTSGP required ongoing noise estimates at the frame
level. Intriguingly, the only fully noise-independent
approach, SSDRC, was the one that produced the largest
gains, suggesting that even larger EICs might be produced
by extensions of SSDRC which make use of the noise-
context.

In terms of computational cost, SSDRC, TMDRC, Opt-
GP and OptSII are of low complexity and can be per-
formed in real time. SSDRC is a frame-based non-
parametric approach involving simple estimation and filter-
ing operations, while OptGP is a stationary spectral
weighting. The TTSLomb approach has the same complex-
ity as the baseline TTS approach, while the TTSGP
approach requires more FFT operations for the gradient
calculation performed in each time frame.

5.6. Extensions

We conclude by outlining possible extensions to both
the modification algorithms and the evaluation methodol-
ogy which may inform future evaluations.

� Some elements of the algorithmic modifications tested
here can be combined. For instance, dynamic range
compression can be applied as a post-modification pro-
cess at the level of the modified speech signal, for both
natural and synthetic speech.
� Optimisation using other objective intelligibility or qual-

ity models (e.g. Christiansen et al., 2010; Taal et al.,
2011; Rix et al., 2001) is likely to result in different
modifications.
� To accommodate natural durational differences between

plain, Lombard, and synthetic speech, constrained
changes in overall duration were permitted (see Sec-
tion 3.3), although none of the modified natural types
took advantage of this. Likewise, no technique tested
within-utterance redistribution of segment durations.
This is a clear area for future work, given the role of seg-
ment duration in cueing phonological distinctions such
as voicing. Similarly, apart from Lombard adaptation
in TTSLomb, none of the techniques explored modifica-
tions to parameters such as F0.
� Baseline natural styles other than plain and Lombard

speech could be used, including speech produced by
explicit instructions to speak clearly, casual speech,
and Lombard speech induced by more complex maskers
such as competing talkers.
� Criteria other than constant input-output SNR such as

equal-loudness constraints may be desirable.
� Metrics other than intelligibility include those typically

employed in the evaluation of processed and synthetic
speech e.g., quality, naturalness, and comprehensibility.
In addition, there is scope for measures which explore
the effect of modified speech at a cognitive level (e.g.,
multitasking, cross-modal effects).
� The effect of speech modifications for different listener

groups (e.g., non-native listeners, listeners with hearing
impairment) could be considered.
� Similarly, the size of any benefits of modification is

likely to vary across talkers.
� One limitation of the current evaluation is the use of

headphone presentation of speech and noise. In many
applications listeners will have access to other cues such
as those which carry spatial information and which can
help to separate speech from noise. The additional ben-
efit of modified speech needs to be evaluated in condi-
tions found in each scenario (e.g., using loudspeaker
presentation in real environments). Although a recent
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study by Raitio et al. (2012) in different test environ-
ments concluded that realistic noise environments are
not a prerequisite for intelligibility testing of synthetic
speech, they did find that the use of a variety of setups
yielded additional information about the effect of noise
on speech.

6. Conclusions

This paper reports the results of the first large-scale eval-
uation of speech production modification strategies
designed to increase intelligibility in noise without chang-
ing overall signal-to-noise ratio. Some modification
approaches were inspired by studies of human speech
modes known to be intelligible, while others sought modi-
fications which optimised one of several objective intelligi-
bility models. A number of modification algorithms led to
useful gains, equivalent to increasing the level of unmodi-
fied but intrinsically rather clear speech by up to 5 dB.
Gains were observed for natural and synthetic speech in
both stationary and fluctuating maskers. These outcomes
establish that speech modification is a highly-effective strat-
egy for promoting message reception in adverse conditions.
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