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Abstract— In direct sequence code division multiple access (DS-
CDMA) applications, system performance depends on the auto-
correlation and cross-correlation properties of the used spreading
sequences. Since these two measures come at the expense of each
other, their properties and limits need to be investigated when
designing DS-CDMA systems. In this paper, we study the trade-
off between the out-of-phase average mean-square aperiodic
auto-correlation and the average mean-square aperiodic cross-
correlation. The problem of minimizing the maximum out-of-
phase auto-correlation, the maximum cross-correlation and the
maximum nontrivial correlation values are also investigated.
A genetic algorithm is proposed to solve these optimization
problems. The spreading sequences studied are based on two
classes of complex-valued sequences, namely the Oppermann and
the modified Walsh-Hadamard sequences. It can be seen from
these applications that the genetic algorithm is well suited to
efficiently design complex-valued sequences especially when the
number of parameters for the optimization problem is large.

I. INTRODUCTION

Direct sequence code division multiple access (DS-CDMA)
represents a spread spectrum technique that is used in many
wireless communication systems [1]. With DS-CDMA, each
active user is assigned a unique sequence or signature, which
distinguishes it from other users. The sequences in a spreading
code should have low cross-correlation (CC) values to suppress
multiple access interference (MAI). The auto-correlation (AC)
function of the sequences, on the other hand, should have a
narrow peak to avoid inter-symbol interference (ISI) and to
enable proper synchronization. Since good AC comes at the
expense of the CC properties and vise versa, a trade-off be-
tween these two performance characteristics has to be accepted
and derived by using efficient optimization techniques.

In this paper, we investigate the design of complex-valued
spreading sequences with respect to a combination of different
correlation properties. In particular, the trade-off between the
out-of-phase average mean-square aperiodic auto-correlation
and the average mean-square aperiodic cross-correlation is
studied. The problem of designing the sequences with low
maximum out-of-phase auto-correlation, low maximum cross-
correlation and low maximum nontrivial correlation values
are also investigated. The two classes of complex sequences
considered are the Oppermann sequences [2], which offer a

wide range of correlation properties and the modified Walsh-
Hadamard sequences, which have been shown in [3] to offer
good correlation properties. Since the number of parameters
for the optimization problem is large, especially for the
modified Walsh-Hadamard sequences, it is difficult if not
impossible to use global optimization methods for solving such
problems. Thus, we propose to transform the problems with
continuous variables into problems with discrete variables.
These problems can then be solved efficiently using a genetic
algorithm [4], [5], [6].

The paper is organized as follows. Section II defines the
various correlation values for the spreading sequences. Section
III describes the Oppermann sequences and the modified
Walsh-Hadamard sequences. The genetic algorithm for the
design of these sequences with different cost functions is
given in Section IV. Section V shows the design examples
and Section VI concludes the paper.

II. CORRELATION MEASURES FOR SPREADING

SEQUENCES

Denote N as the length of each spreading sequence. It has
been shown in e.g. [2] that the correlation measures have been
focused on aperiodic instead of periodic correlation when per-
formance analysis of wireless communication systems is con-
cerned. The aperiodic correlation between a pair of sequences
uk = [uk(0), . . . , uk(N−1)] and ul = [ul(0), . . . , ul(N−1)] ,
is defined as

ck,l(i)=




1
N

N−1−i∑
v=0

uk(v)u∗
l (v + i), 0 ≤ i ≤ N−1

1
N

N−1+i∑
v=0

uk(v−i)u∗
l (v), 1−N ≤ i < 0

0, |i| ≥ N

(1)

where ‘*’ denotes the complex conjugate of a complex vari-
able.

For a set of S sequences U = {u1, · · · ,uS}, the out-of-
phase average mean-square aperiodic auto-correlation for U is
defined as

Rac(U) =
1
S

S∑
k=1

N−1∑
i=1−N,i �=0

|ck,k(i)|2 (2)



which measures the energy in the side lobes of the auto-
correlation for lags different to zero. Similarly, the average
mean-square aperiodic cross-correlation for the set of se-
quences is given by

Rcc(U) =
1

S(S − 1)

S∑
k=1

S∑
l=1,l �=k

N−1∑
i=1−N

|ck,l(i)|2. (3)

In this paper, we study the trade–off between Rac(U) and
Rcc(U). The associated optimization problem can be formu-
lated as

min
U

{Rac(U) + αRcc(U)} , (4)

where α is a weighting factor.
Furthermore, we investigate the performance in terms of the

maximum out-of-phase auto-correlation value cam(U) and the
maximum cross-correlation value ccm(U). These correlation
values are defined as

cam(U) = max
1 ≤ k ≤ S

1 ≤ i ≤ N − 1

|ck,k(i)|,

ccm(U) = max
1 ≤ k, l ≤ S, k �= l

0 ≤ i ≤ N − 1

|ck,l(i)|. (5)

The maximum nontrivial correlation value is defined as

cmax(U) = max{cam(U), ccm(U)}. (6)

The optimization problems can be formulated as

min
U

ccm(U),

min
U

cam(U),

min
U

cmax(U).

(7)

III. CLASSES OF COMPLEX-VALUED SPREADING

SEQUENCES

A. Oppermann Sequences

A family of complex spreading sequences with a wide range
of correlation properties is proposed in [2]. For 1 ≤ k < N ,
the (v − 1)th element uo

k(v − 1) of an Oppermann sequence
uo

k is defined by

uo
k(v − 1) = (−1)k v exp

[
jπ(kmvp + vn)

N

]
, 1 ≤ v ≤ N,

(8)
where m, n and p take real values. For a fixed combination of
m, n and p, all the sequences have the same auto-correlation
function magnitude. This magnitude depends only on n if p =
1. In view of this, we only consider the case p = 1. The
optimization problem (4) for the set of N −1 sequences Uo =
{uo

1, · · · ,uo
N−1} can be posed as the following problem with

two variables m and n:

min
m∈[m1,m2),n∈[n1,n2)

{Rac(Uo) + αRcc(Uo)} , (9)

where [m1,m2) and [n1, n2) are the search regions for m
and n, respectively, and N is a prime number. Similarly, the

optimization problems in (7) can be posed as

min
m∈[m1,m2),n∈[n1,n2)

cam(Uo),

min
m∈[m1,m2),n∈[n1,n2)

ccm(Uo),

min
m∈[m1,m2),n∈[n1,n2)

cmax(Uo).
(10)

The problems (9)-(10) can be approximated by an integer
discrete optimization problem by restricting the continuous
parameters m and n within b binary bits. These parameters
are transformed to discrete variables as follows:

m = (m2 − m1)xT
1 g(b) + m1,

n = (n2 − n1)xT
2 g(b) + n1

(11)

where x1 and x2 are b × 1 binary vectors and

g(b) = [2−1, · · · , 2−b]T .

The grid size of the search region for m and n are

∆m = (m2 − m1)/2b and ∆n = (n2 − n1)/2b, (12)

respectively, which are small for large b. Thus, the problem
(9) can be approximated as the following integer discrete
optimization problem:{

min
x1,x2

{Rac(Uo) + αRcc(Uo)} ,

x1,x2 are b × 1 binary vectors.
(13)

Similarly, (10) can be reduced to the following discrete opti-
mization problems:{

min
x1,x2

cam(Uo)

x1,x2 are b × 1 binary vectors,{
min
x1,x2

ccm(Uo)

x1,x2 are b × 1 binary vectors,{
min
x1,x2

cmax(Uo)

x1,x2 are b × 1 binary vectors.

(14)

B. Modified Walsh-Hadamard Sequences

The second considered class of sequences is based on the
modified Walsh-Hadamard matrix H̃N of size N ×N , where
N is a power of two. This matrix can be obtained from the
Hadamard matrix HN with

H̃N = HNDN (15)

where DN = diag{[exp(j2πd1), · · · , exp(j2πdN )]} and dk ∈
[0, 1), for all 1 ≤ k ≤ N . The N spreading sequences UM =
{uM

1 , · · · ,uM
N } form the rows of the matrix H̃N . Similar to

the design of the Oppermann sequences, the search for the
minimum correlation properties is restricted to q bits for each
parameter dk in the interval [0,1). These parameters can be
expressed as

dk = zT
k g(q), 1 ≤ k ≤ N (16)

where zk is a q×1 binary vector and g(q) = [2−1, · · · , 2−q]T .
The design of the modified Walsh-Hadamard sequences in
terms of a minimum of a weighted combination of Rac(UM )



and Rcc(UM ) can be transformed to the following discrete
optimization problem{

min
z1,··· ,zN

{
Rac(UM ) + αRcc(UM )

}
,

zk are q × 1 binary vectors, 1 ≤ k ≤ N.
(17)

The design of the modified Walsh-Hadamard sequences in
terms of maximum correlation characteristics can be formu-
lated similar to (14).

IV. GENETIC ALGORITHM

The problems (13), (14) and (17) are integer discrete opti-
mization problems with binary variables. These problems can
be solved efficiently by using the genetic algorithm [4], [5], [6]
which is a stochastic search method that mimics the metaphor
of natural biological evolution. The advantage of the method
is its significant computational saving over other discrete
optimization methods. It is noted that the presented genetic
algorithm can be easily modified to include performance
characteristics other than those suggested above.

The idea of the genetic algorithm can be summarized
as follows. In the first step, the algorithm begins with a
population of random chromosomes. This population generally
has a fixed size L that does not change over the generations.
Each member of the population represents a possible solution
to the discrete optimization problem. In the second step, the
cost functions for all the population members are evaluated
and each member is assigned a fitness value for reproduction.
Examples of the fitness functions for a population of size L,
{Uo,1, · · · ,Uo,L} and the two optimization problems (13) and
(14) are given as:

f(Uo,l) = 1/[Rac(Uo,l)+αRcc(Uo,l)]

1
L

L∑
i=1

1/[Rac(Uo,i)+αRcc(Uo,i)]

, 1 ≤ l ≤ L

fam(Uo,l) = 1/cam(Uo,l)

1
L

L∑
i=1

1/cam(Uo,i)

, 1 ≤ l ≤ L.

(18)
The fitness functions fcm(Uo,l), fmax(Uo,l) and the functions
for the modified Walsh-Hadamard sequences can be defined
similarly.

In the third step, an intermediate population is selected
based on the fitness functions (18) by employing the stochastic
universal sampling algorithm [6], [8]. Genetic recombination,
e.g. crossover and mutation operations is randomly applied
to pairs of parents to create offsprings. A new population
is obtained by combining the offspring population with the
intermediate population. The natural selection process is then
applied to select the L strongest members from the new
population. The second and third steps are repeated until the
variance of the cost function for the generation is less than a
small specified value or when certain stoping criteria are met.

V. DESIGN EXAMPLES

Consider the design of the Oppermann sequences and the
modified Walsh-Hadamard sequences with minimum correla-
tion properties as formulated in equations (13), (14) and (17).

The optimum values of (13) and (14) for the Oppermann
sequences with length N = 31 using the genetic algorithm are
shown in Tables I and II. The number of binary bits is b = 16
and the number of discrete variables for these optimization
problems is 16 × 2 = 32. The weighting factor α for Table I
is taken as 0, 29.9 and 60. It can be seen from the table that
depending on the application, the Oppermann sequences can
be designed for a large range of trade–offs between Rac and
Rcc. The results of the algorithm for the cases of minimizing
cam(Uo), ccm(Uo) and cmax(Uo) are given in Table II.

TABLE I

OPTIMIZED OPPERMANN SEQUENCES WITH AVERAGE MEAN SQUARE

CORRELATION CRITERIA.

Minimize Rac(Uo) + αRcc(Uo) Rac(Uo) Rcc(Uo)

α = 0 0.1107 0.9963

α = 29.9 7.4847 0.7493

α = 60 19.6774 0.3418

TABLE II

OPTIMIZED OPPERMANN SEQUENCES WITH MAXIMUM CORRELATION

CRITERIA.

Minimize cmax(Uo) cam(Uo) ccm(Uo)

cam(Uo) 0.9997 0.0853 0.9997

ccm(Uo) 0.2889 0.1876 0.2889

cmax(Uo) 0.2889 0.1876 0.2889

Tables III and IV show the results for the modified Walsh-
Hadamard sequences of length N = 32 where the number of
bits q is chosen as 2 and 3. The number of binary variables
for these cases are 64 and 96. It can be seen from the tables
that the cost functions reduce slightly with an increase in the
number of bits q. In fact, these values cannot be significantly
improved for q ≥ 4. It follows from Table III that the family
of modified Walsh-Hadamard sequences does not offer large
options for a trade-off between Rac and Rcc. Furthermore, the
maximum nontrivial correlation value is higher than that for
the Oppermann sequences given in Table II.

TABLE III

MODIFIED WALSH-HADAMARD SEQUENCES WITH AVERAGE MEAN

SQUARE CORRELATION CRITERIA.

q Minimize Rac(UM ) Rcc(UM )

2 Rac(UM ) (α = 0) 0.5625 0.9819

Rcc(UM ) (α = 60) 2.5625 0.9173

3 Rac(UM ) (α = 0) 0.5489 0.9823

Rcc(UM ) (α = 60) 4.9726 0.8396

Fig. 1 shows the convergence of the genetic algorithm for
the case of minimizing Rac(Uo) applied to the Oppermann
sequences with a population size of 400. The algorithm
converges relatively fast, within 6 iterations. The plot also
shows the magnitude of the auto-correlation and the frequency



TABLE IV

MODIFIED WALSH-HADAMARD SEQUENCES WITH MAXIMUM

CORRELATION CRITERIA.

q Minimize cmax(UM ) cam(UM ) ccm(UM )

cam(UM ) 0.4169 0.2380 0.4169

2 ccm(UM ) 0.3497 0.3078 0.3497

cmax(UM ) 0.3494 0.3263 0.3494

cam(UM ) 0.4436 0.2224 0.4436

3 ccm(UM ) 0.3460 0.3102 0.3460

cmax(UM ) 0.3463 0.3330 0.3463

spectra for three sequences taken from the spreading code. It
can be seen that the auto-correlation has a distinct peak while
the overlapping spectra are high among users.
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Fig. 1. Convergence and correlation plots for the Oppermann sequences with
lowest Rac(Uo).

Fig. 2 shows the convergence for the mean value of the
cost function for the modified Walsh-Hadamard sequences
for the case with q = 3. The population size is the same
as for the Oppermann sequences, L = 400. The algorithm
converges slower than with the Oppermann sequence since
the number of binary variables increased to 96. Since the
algorithm converges around 40 iterations, the number of search
combinations in this case is significantly smaller than the total
number of combinations 296 = 7.9228 × 1028. The figure
also shows auto-correlation magnitude and frequency spectra
for the first three sequences taken from the spreading code
with lowest Rac(UM ). The first two sequences have the same
auto-correlation magnitude while the third one has a different
magnitude.

VI. CONCLUSIONS

In this paper, a genetic algorithm is proposed for designing
complex-valued sequences with optimized correlation char-
acteristics. The trade-off between the out-of-phase average
mean-square aperiodic auto-correlation and the average mean-
square aperiodic cross-correlation as well as the problem of
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Fig. 2. Convergence and correlation plots for the modified Walsh-Hadamard
sequences with lowest Rac(UM ).

minimizing the maximum out-of-phase auto-correlation, the
maximum cross-correlation and the maximum nontrivial corre-
lation values are investigated. Since the number of parameters
for the optimization problem can be large, it is difficult if
not impossible to use global optimization methods for solving
the problems whereas the genetic algorithm can cope very
well with this type of scenarios. The genetic algorithm is
applied to the design of Oppermann sequences and modified
Walsh-Hadamard sequences. It can be seen from these design
examples that the genetic algorithm is well suited to efficiently
design complex-valued sequences especially when the number
of parameters for the optimization problem is large.
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