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Abstract—We derive a new upper bound on the rate distortion
function for arbitrary memoryless sources, which is based on the
relation between mutual information and minimum mean-square
error discovered by Guo et al. This upper bound is in general
tighter than the well known upper bound given by the rate
distortion function of a Gaussian source with an equal variance
found by Shannon and becomes tight for Gaussian sources. We
evaluate the new upper bound for various source distributions
and compare it to the Shannon lower and upper bound and to
the rate distortion function calculated with the Blahut-Arimoto
algorithm. This shows that the new upper bound is quite tight.

I. INTRODUCTION AND SETUP

It is well known that the rate distortion function states which
rate R is at least required to describe a source X , such that it
can be reconstructed up to a given distortion D for a specific
distortion measure.
Let X be a random source that generates independent

identically distributed (i.i.d.) symbols with respect to the
probability distribution function (PDF) p(x), i.e., X ∼ p(x).
When encoding, source sequences Xn consisting of n source
symbols are mapped onto indices

fn : Xn → {1, 2, . . . , 2nR}. (1)

Here, R is the rate of the encoded sequence. By this mapping
the source sequences are represented by nR bits. Based on this
index representation the decoder is able to generate an estimate
X̂n of the source sequence Xn, i.e., the decoding function is

gn : {1, 2, . . . , 2nR} → X̂n. (2)

The encoding and decoding given by the functions fn and gn
is often referred to as a (2nR, n)-rate distortion code.
The question is: How close can the source sequences Xn

be reconstructed when they are encoded with rate R? I.e.,
how large is the expected distortion D between the source
sequences Xn and their reconstruction X̂n with

D = E [d(Xn, gn(fn(X
n)))] where

d(xn, x̂n) = d(xn, gn(fn(x
n))) =

1

n

n∑

i=1

d(xi, x̂i) (3)

is the distortion between the source sequence xn and its recon-
struction x̂n. In addition, d(xi, x̂i) is the distortion between
the individual source symbols xi and their estimates x̂i.
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The distortion D and the rate R form a rate distortion pair
(R,D). A rate distortion pair is achievable if a sequence of
(2nR, n)-rate distortion codes (fn, gn) exists such that

lim
n→∞

E [d(Xn, gn(fn(X
n)))] ≤ D. (4)

The rate distortion function R(D) is defined as the min-
imum rate R that is required to encode the source X for a
given distortion D. In [1], [2] Shannon has shown that for an
i.i.d. source X with distribution p(x) and bounded distortion
function d(xn, x̂n) the rate distortion function is given by

R(D) = min
p(x̂|x)∈S

I(X ; X̂) (5)

where I(X ; X̂) is the mutual information of X and X̂ and

S =

{
p(x̂|x)

∣∣∣∣
∫∫

p(x̂|x)p(x)d(x, x̂) dxdx̂ ≤ D

}
(6)

see also [3, Th. 10.2.1]. Minimization in (5) is hence over all
p(x̂|x) for which p(x, x̂) fulfills the distortion constraint D.
For certain distortion measures d(x, x̂) and source distribu-

tions p(·), R(D) is known. E.g., it is a well known result that
for a Gaussian source X ∼ N (0, σ2

X) and the mean-square
error as distortion measure, i.e., E[(X − X̂)2] ≤ D, the rate
distortion function is given by1, see, e.g., [3, Theorem 10.3.2]

R(D) =

{
1
2 log

(
σ2
X

D

)
for 0 ≤ D ≤ σ2

X ,

0 for D > σ2
X .

(7)

While for a few combinations of distortion measures and
source distributions the rate distortion functions are known,
they are in general unknown. Existing bounds like the Shannon
lower bound [2] and the upper bound given by the fact that the
rate distortion function for a Gaussian source in (7) is an upper
bound to the rate distortion function of arbitrarily distributed
sources X with the same variance σ2

X , see [1], are in general
not tight. This is the motivation for the present work. We derive
a new upper bound on the rate distortion function for the mean-
square error as distortion measure and arbitrary source distri-
butions. This upper bound is based on the relation between the
minimum mean-square error (MMSE) and the mutual informa-
tion given in [4]. Recently, in [5] this relation has already been
applied in the context of rate distortion theory. However, in
contrast to the present work [5] does not consider minimization
over the reproduction distribution for the study of R(D).

1All logarithms are to the base e and, thus, all rates are in nats.
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II. NEW UPPER BOUND ON R(D)

Theorem 1. Let X be a random source that generates i.i.d.
symbols according to X ∼ p(x) with var(X) = σ2

X . The
minimal required rate R such that E[(X − X̂)2] ≤ D is
upper-bounded by

R(D) ≤ 1

2
log

(
1 +

σ2
X

σ2
N

)
− 1

2

∫ 1

σ2
N

0

(
σ2
X

1+σ2
Xγ

−mmse(γ)

)
dγ

(8)

=
1

2
log

(
1 +

σ2
X

σ2
N

)
−D(pX+N ‖pX′+N ) (9)

where mmse(γ) is the minimum mean-squared error when
estimating X disturbed by additive Gaussian noise N , i.e.

mmse(γ) = E
[
(X − E [X |X +N ])2

]
(10)

and where γ is the normalized SNR, i.e., γ = 1
E[N2] .

Furthermore, σ2
N is related to the distortion D by

D = mmse
(
1/σ2

N

)
(11)

=
σ2
Xσ2

N

σ2
N + σ2

X

− 2
d

d
(

1
σ2
N

)D(pX+N ‖pX′+N ). (12)

Here D(pX+N ‖ pX′+N ) is the Kullback-Leibler divergence
between the PDF ofX+N and ofX ′+N whereX ′ is a Gaus-
sian random variable with the same mean and variance as X .

Theorem 1 has also the following interpretation. The
rate distortion function R(D) for an arbitrarily distributed
source X with variance σ2

X is upper-bounded by the mutual
information of an AWGN channel with the inputX−E[X ] and
a noise variance σ2

N , which is chosen such that the distortion
is equal to D = mmse(1/σ2

N ). As (9), i.e., the upper bound
on R(D), corresponds to the mutual information of an AWGN
channel, mmse(1/σ2

N ) and hence D is given by two times
the derivative of (9) with respect to 1/σ2

N yielding (12), see
[4] for the relation between mutual information and MMSE.
The representations in (9) and (12) using the Kullback-

Leibler divergence allow an easy numerical evaluation of
the upper bound on the rate distortion function. To calculate
D(pX+N ‖pX′+N ) the PDF pX+N is required. As X and the
additive noise N are independent, pX+N is given by the con-
volution of pX and pN = N (0, σ2

N ). In case pX+N cannot be
obtained in closed-form, a numerical convolution is required
to calculate the upper bound on R(D). Thus, evaluation of (9)
gives an upper bound on the rate R for a given σ2

N . The corre-
sponding distortion D can be calculated from (12). Hence, to
evaluate the upper bound on the rate distortion function pairs
of the upper bound on R given by (9) and D given by (12)
have to be calculated by varying the parameter σ2

N .

III. PROOF OF THEOREM 1

As the rate distortion function is independent of the mean
E[X ] of the source, i.e., the rate distortion functions R(D) for
the sources X and X−E[X ] are equal, in the following proof
we assume that E[X ] = 0 without loss of generality.

With (5) the rate distortion function is given by

R(D) = min
p(x̂|x)∈S

I(X ; X̂) (13)

where the minimization is over all p(x̂|x) such that

E
[
(X − X̂)2

]
≤ D (14)

i.e., all p(x̂|x) in the set S in (6) with d(x, x̂) = (x− x̂)2.
As R(D) is monotonically decreasing in D, all p(x̂|x)

being solutions of (13) fulfill (14) with equality. Obviously,
any choice p(x̆|x) ∈ S different from the optimal p(x̂|x)
which minimizes I(X ; X̂) yields an upper bound on R(D):

R(D) ≤ I(X ; X̆). (15)

Thus, we construct an upper bound on the rate distortion
function R(D) by choosing some p(x̆|x) satisfying

E
[
(X − X̆)2

]
= D (16)

for which I(X ; X̆) can be easily evaluated and at the same
time is a sufficiently tight upper bound. Therefor, we define

Y = X +N (17)

where N is zero-mean additive white Gaussian noise with
variance σ2

N . Furthermore, let

X̆ = E[X |Y ] (18)

be the MMSE estimate of X from Y . Now, the variance σ2
N

has to be chosen such that (16) is fulfilled. As the MMSE
estimate X̆ is a sufficient statistic of Y , see [6], it does not
change the mutual information [3, Sect. 2.9] and it holds that

I(X ; X̆) = I(X ;Y ). (19)

Thus, an upper bound on R(D) is given by the mutual infor-
mation of an AWGN channel with the source X at its input
and the variance of the additive Gaussian noise σ2

N depending
on the distortion D and implicitly given by (10) and (11).
Hence, to prove Theorem 1 it remains to show that (9) is

equal to I(X ;Y ), i.e., the mutual information of the AWGN
channel in (17) with the source X at its input and noise vari-
ance σ2

N . Therefor, we rewrite I(X ;Y ) as follows, see [7]2:

I(Y ;X) = h(Y )− h(Y |X) = h(Y )− h(N)

= −
∫

pY (y) log (pY (y)) dy − h(N)

= −
∫

pY (y) log (pY ′(y)) dy −
∫

pY (y) log

(
pY (y)

pY ′(y)

)
dy

− h(N)

= −
∫

pY ′(y) log (pY ′(y)) dy −
∫

pY (y) log

(
pY (y)

pY ′(y)

)
dy

− h(N) (20)

= h(Y ′)−D (pY ‖ pY ′)− h(N) (21)

2Note that [7] states that inequality (8) in Theorem 1 holds with equality.
However, this statement is wrong in general. The erroneous assumption in [7]
is that the information rate of a system with optimal source and channel coding
is equal to the information rate of an AWGN channel where the source sym-
bols are transmitted without coding. It can be shown that this statement does
not hold in general and, therefore, (8) does not hold with equality in general.
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where h(·) denotes the differential entropy, pY (y) is the PDF
of Y , and pY ′(y) is the PDF of a corresponding zero-mean
Gaussian variable with the same variance

σ2
Y ′ = σ2

Y = σ2
X + σ2

N . (22)

Moreover, D(pY ‖ pY ′) is the Kullback-Leibler divergence
between pY (y) and pY ′(y). Furthermore, (20) holds because

−
∫
pY (y) log(pY ′(y)) dy = −

∫
pY (y) log

⎛
⎝
exp

(
−y2

2σ2
Y

)

√
2πσ2

Y

⎞
⎠dy

=
1

2
log

(
2πeσ2

Y

)
= −

∫
pY ′(y) log (pY ′(y)) dy. (23)

As Y ′ and N are Gaussian, (21) is given by

I(Y ;X) =
1

2
log

(
2πeσ2

Y

)
− 1

2
log

(
2πeσ2

N

)
−D(pY ‖ pY ′)

=
1

2
log

(
1 +

σ2
X

σ2
N

)
−D(pX+N ‖ pX′+N ) (24)

where for (24) we have used (22). This shows that (9) is the
mutual information of an AWGN channel with noise variance
σ2
N and an arbitrarily distributed source X with zero-mean

and variance σ2
X at its input.

The alternative representation of the upper bound on R(D)
in (8) holds, as D(pY ‖ pY ′) in (24) is given by

D(pY ‖ pY ′) = h(Y ′)− h(Y ) (25)

= I(Y ′;X ′) + h(Y ′|X ′)− I(Y ;X)− h(Y |X)

= I(Y ′;X ′)− I(Y ;X) + h(X ′ +N |X ′)− h(X +N |X)
(26)

=
1

2

∫ 1

σ2
N

0

(
σ2
X

1 + σ2
Xγ

−mmse(γ)

)
dγ (27)

where X ′ is a zero-mean Gaussian random variable with
variance σ2

X . If X ′ is the input to the AWGN channel in (17),
this results in the zero-mean Gaussian output Y ′, yielding (26).
Moreover, (25) and (27) follow from the results given in [8].

IV. PROPERTIES OF THE UPPER BOUND

A. Gaussian Sources

For a Gaussian source X , mmse(γ) in the upper bound (8)
becomes σ2

X/(1 + σ2
Xγ) and, thus, the integral in (8) is zero.

Hence, the upper bound is equal to 1
2 log

(
1 + σ2

X/σ2
N

)
, which

is the capacity of the AWGN channel. However, for a Gaussian
source the capacity of the AWGN channel and the rate distor-
tion function R(D) in (7) are equal, as (11) becomes equal to

D =
σ2
Xσ2

N

σ2
X + σ2

N

. (28)

which follows from (12) as the Kullback-Leibler divergence
in (12) is zero for Gaussian inputs. Thus, for a Gaussian
source the upper bound on R(D) in (8) and (9) is tight.
This discussion also shows another well known fact. In case

we estimate the Gaussian source X after transmission over an
AWGN channel based on Y using an MMSE estimator, the
MMSE is given by D in (28), see (10) to (12). To achieve

this distortion no code at all is required. On the other hand,
we can source encode the source X using a rate-distortion
code, then use a channel code to transmit it reliably over the
AWGN channel. Following Shannon’s source channel coding
separation theorem [1], this separation of source and channel
coding is optimal. At the receiver the signal can be channel
and source decoded. To achieve a maximum distortion D, the
source encoder has to encode the source with rate R(D) given
in (7). For reliable transmission over the AWGN channel its
capacity has to correspond to R(D), i.e., for 0 ≤ D ≤ σ2

X

1

2
log

(
1 +

P

σ2
N

)
.
= R(D)

(7),(28)
=

1

2
log

(
1 +

σ2
X

σ2
N

)
(29)

where P is the required transmit power. Obviously P = σ2
X .

However, this means that for a given transmit power, there is
no advantage of the use of source and channel coding when
a Gaussian source has to be transmitted over an AWGN
channel. Directly transmitting uncoded source symbols over
the AWGN channel yields the same distortion D as perfect
source and channel coding. In addition, the latter one implies
an infinite delay. This is a well known result, see e.g. [9], [10].

B. Gap to Shannon’s Lower Bound

Shannon gave a lower bound on R(D), which for the
mean-square error distortion measure becomes [2]

R(D) ≥ h(X)− 1

2
log (2πeD) = LBSha. (30)

The gap Δ between the new upper bound on R(D) given
in Theorem 1 and Shannon’s lower bound in (30) is given by

Δ=UBnew−LBSha = −h(X |Y ) +
1

2
log

(
2πemmse

(
1

σ2
N

))
.

(31)

where we have used (9), (30), (11), and (24). The variance
of the MMSE estimate E[X |Y ] is equal to mmse(1/σ2

N ).
Furthermore, for a given variance Gaussian random variables
are entropy maximizers and the second term on the RHS of
(31) corresponds to the differential entropy of a Gaussian
random variable with variance mmse(1/σ2

N ). In general,
the estimation error of the MMSE estimate E[X |Y ] is
non-Gaussian. Thus, h(X |Y ) in (31) is upper-bounded by
the second term on the RHS of (31). Δ corresponds to the
negative difference of the entropy of X conditioned on Y
and the corresponding entropy in case X is Gaussian with the
same variance. Hence, Δ becomes zero for X being Gaussian.

C. Comparison of the New Upper Bound on R(D) with
Shannon’s Upper Bound on the Rate Distortion Function

Shannon has shown that for an arbitrary distributed source
X with variance σ2

X , the rate distortion function is upper-
bounded by the rate distortion function of a Gaussian source
with the same variance, which is given in (7). I.e., Gaussian
sources are hardest to encode, cf. [11].
The difference between this upper bound in (7) given

by Shannon and the new upper bound on R(D) stated in
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Theorem 1 is for D ≤ σ2
X given by

UBSha−UBnew=
1

2
log

⎛
⎝ σ2

X

mmse
(

1
σ2
N

)

⎞
⎠− 1

2

∫ 1

σ2
N

0

mmse(γ)dγ

(32)

where we have used (7), (11), and (8). The difference on
the RHS of (32) depends on mmse(γ), which is bounded by
0 ≤ mmse(γ) ≤ σ2

X

1+σ2
X
γ
, where the RHS is the MMSE in case

X is Gaussian. The upper bound on mmse(γ) holds as Gaus-
sian random variables are hardest to estimate [12, Prop. 15].

UBnew is in general tighter than UBSha, as, by using
mmse(γ) ≤ σ2

X

1+σ2
X
γ
and the relation between the MMSE and

the mutual information given in [4], (32) is lower-bounded by

(32) ≥ 1

2
log

(
1 +

σ2
X

σ2
N

)
− I(X +N ;X) ≥ 0 (33)

where the RHS of (33) follows from the fact that I(X+N ;X)
is maximized ifX is Gaussian. For mmse(γ) = σ2

X/(1+σ2
Xγ)

(32) is equal to zero.
Finally, for an arbitrary distribution of the source X and

D → σ2
X , which by (11) corresponds to σ2

N → ∞, the MMSE
converges to the MMSE in case the source is Gaussian:

lim
1/σ2

N
=γ→0

{
mmse(γ)− σ2

X

1 + σ2
Xγ

}
= 0. (34)

Thus, UBSha − UBnew converges to zero for D → σ2
X .

D. Evaluation of the Upper Bound in Theorem 1

In Fig. 1 we have evaluated3 the new upper bound on the
rate distortion function given by Theorem 1 for a uniform
source distribution (Fig. 1(a)), a source with Laplace distribu-
tion and a bipolar input distribution (both Fig. 1(b)) all with
zero-mean and variance σ2

X = 1, i.e.,

pX,uniform(x) =

{ 1√
12

for |x| ≤
√
3,

0 otherwise,
(35)

pX,Laplace(x) =
1√
2
exp

(
−
√
2|x|

)
, (36)

pX,bipolar(x) =

{
1
2 for x = ±1,
0 otherwise.

(37)

For comparison the Shannon upper bound in (7) corresponding
to the rate distortion function for a Gaussian source, the
Shannon lower bound in (30), and the actual rate distortion
function calculated numerically based on the Blahut-Arimoto
algorithm [13], [14] are shown. The Shannon lower bound
(30) is not shown for the bipolar source as h(X) does not
exist in this case.

Fig. 1 shows that the new upper bound and the Shannon
lower bound on the rate distortion function become tight for
D → 0. On the other hand, for D → σ2

X the new upper bound
converges to the Shannon upper bound. The comparison of
the new upper bound with the numerical evaluation of R(D)
based on the Blahut-Arimoto shows that the new upper bound
is quite tight for the displayed source distributions.

3The MATLAB source code is available on our websites.

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

 

 

D [mmse]

R
(D

)
[b
it
]

Shannon upper bound (7)

Blahut-Arimoto algorithm
Shannon lower bound (30)

new upper bound (9)/(12)

(a) Uniform source distribution
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Fig. 1. Comparison of the new upper bound on R(D) given by Theorem 1
with the lower bound (30) and the upper bound (7) given by Shannon and the
rate distortion function calculated based on the Blahut-Arimoto algorithm.
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