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Abstract

We discuss convolutionally encoded continuous phase modulation (CPM) with noncoherent detection. Specif-
ically, the application of a feedback—free modulator is considered, which is perfectly suited to coded transmis-
sion. Demodulation employs a frequency—sampling receiver with reduced representation of the signal space,
whereas the decoder makes use of reduced—state noncoherent sequence estimation (NSE). In particular, NSE
means the application of recently proposed noncoherent per—survivor Viterbi processing. Recursive calcula-
tion of the implicit phase reference symbol is proposed in this paper to keep the NSE complexity low. Receiver
front—end and NSE are optimized separately. The resulting performance is demonstrated by simulations.

1 Introduction

Continuous phase modulation (CPM) [1] is an attrac-
tive technique for digital communications. Due to
its constant envelope, full amplifier power can be ex-
ploited without any back—off to avoid amplifier non-
linearities. Additionally, the power efficiency of CPM
is improved by the inherent trellis code caused by
smoothed phase transitions [2, 3]. For the same rea-
son, CPM is highly bandwidth efficient, too. A non-
coherent receiver for CPM avoids the need for explicit
carrier phase synchronization. Especially in the case
of coded modulation, combined decoding and syn-
chronization is rewarding in terms of robustness of
the transmission link. So called noncoherent sequence
estimation (NSE) techniques are very well suited to
channels with slowly time—variant phases [4].

In this paper, the optimization of the noncoherent
receiver is performed in two stages on the basis of
the decomposition approach for CPM [2, 3]. The de-
composition of CPM facilitates the independent de-

sign and complexity reduction of a receiver front—end
(matched filter) and subsequent NSE, respectively.
The receiver front—end presented in [5] is applied here,
which requires only two or three matched filters and
provides sufficient accuracy at the same time.

For noncoherent CPM detection , we apply a novel
NSE scheme which has been previously proposed for
coded M—ary phase—shift keying (MPSK) and dif-
ferential MPSK (MDPSK) transmission over inter-
symbol interference (ISI) channels (cf. [6] and refer-
ences therein). This NSE scheme enables the recur-
sive calculation of the reference symbol required for
metric calculation and thus, offers considerable sav-
ings in computational complexity for achieving the
same/better power efficiency as/than in [7]/[8]. Also
the number of states can be chosen in this approach
to satisfy any predetermined complexity constraints.

Simulation results verify that the proposed non-
coherent coded CPM scheme enables power—efficient
transmission with a very fair demodulation and de-
coding complexity.



2 Transmission System

In this section, we introduce the system model for
noncoherent CPM transmission. First, decomposition
of the CPM system into a natural trellis—encoder and
a memoryless modulator (signal table) is briefly re-
viewed. In particular, we introduce the concept of
phase—state mapping, cf. [2], which is perfectly suited
for coded modulation and noncoherent detection. The
decomposition model enables the construction of the
noncoherent receiver with low complexity as described
in Section 3.

2.1 CPM Signal Representation
The passband CPM signal has the form [1]

sur(@,t) =1/ 2TESCOS <27rfct+27rh§:a[i]q(t—iT)> (1)

i=0
where f. is the carrier frequency, E denotes the sig-
nal energy per modulation interval 7', h = k/p is
the rational modulation index with relatively prime
integers k and p. The information sequence a =
(afi]), i € Ny, consists of M-ary elements ali] €
{£1,4£3,... ,£(M = 1)}, M even. The phase pulse
q(t) is normalized as usual such that

0 t<0
Q(t)_{ 12 t>LT

For a compact representation of syp(a,t) as an
equivalent complex baseband (ECB) signal it is con-
venient to use the transformation frequency fo =
fe—h- %, cf. [2, 3, 5], which is different from the
carrier frequency f.. Furthermore, we introduce the
modified data sequence 8 with components

gri 2 1 ®

Then, the ECB signal s(3,t) can be interpreted as a
sequence of time-limited signal segments p(b[i], t):

(2)

€{0,1,...,M —1}.

s(8,t) =Y p(b[il,t —iT) (4)
i=0

with p(b[i],t) = 0 for ¢ ¢ [0,T") and address vector

b[i], which is generated from 8 by a minimum trellis

encoder [3, 5]. In particular, using the decomposition

approach of CPM [2, 3], a description with pM L signal

elements p(b[i],t) addressed by vector

bli] 2 [Blil, ... ,Bli— L+ 1,0 — L] (5)

from a trellis with pML~1 states SJi] = Bli —

1],...,8[i — L+ 1],¢[i — L]] is always possible. The
phase state
R i—L
Yli - L] = (k : ﬁ[m]> modp, (6)
m=0

Y[i] € {0,1,...,p — 1}, subsumizes the contributions
of all past modulator input data for which the phase
pulses have already reached a constant value. The
data symbols (B[i],...,[[i — L + 1]) determine the
phase transient, cf. [5]. Thus, the time limited signal
elements are given by

L—1
(bl 1) = [ o - vl RS

L—1

J 22 »(t+mT)
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fort € [0,7) (7)
and p(b[i],t) = 0, otherwise, where ¢(t) 2 2h(M —
1) (54 —q(t)), 0 < ¢t < LT, accounts for the mod-
ified data symbols S[i] and the transformation fre-
quency fo [2, 3, 5]

This model of the CPM modulator with the inher-
ent trellis encoder is refered to as CPM with frequency
mapping. The contained recursive structure due to (6)
is analogous to the well-known differential encoder of
DPSK and essentially resolves phase ambiguities.

2.2 Phase—State Mapping and Coding

In the above description of CPM, data symbols are
mapped to phase changes. However, a mapping to
the absolute phase is also possible, cf. [2, 3]. For the
interesting special case M = p the unique relation

(k- Bi]) mod p = (P[i] — [i — 1)) modp  (8)

(cf. (6)) allows to express the information by the sig-
nal phase at the end of the corresponding modulation
interval. With the address vector
YN .
w[z] = W}[ZL 71/}[Z_L]] (9)
a modified signal table can be used. That is, the op-
eration (8) is incorporated into the signal table def-
inition and now, the signal elements are denoted by
p(wli],t), the transmitted signal by s(tp,t). Since the
information is represented in the absolute phase, this
structure is referred to as CPM with phase—state map-
ping [2] and illustrated in Fig. 1. Phase-state map-
ping can also be generated simply by the application
of a discrete-time differentiator (Eq. (8)) to the in-
put symbols of the CPM modulator with frequency
mapping.

Of course, by applying such a differentiation the
phase ambiguities due to the rotational invariance of
CPM become unresolvable. Therefore, it should never
be applied when using a coherent receiver with an
explicit carrier phase synchronization unit, because a
phase slip would cause a complete loss until a training
sequence (e.g. frame synchronization word) appears.
The situation is quite different for a noncoherent re-
ceiver combined with a convolutional encoder. Here,
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Figure 1: Decomposition of CPM with phase-state
mapping.

phase ambiguities are resolvable due to a noncoher-
ently non—catastrophic encoder [9, 10]. As phase es-
timation is part of the noncoherent decoding process,
actual phase slips do not exist. They simply corre-
spond to detours in the trellis decoding algorithm.
Our investigations also showed that most of the known
codes optimized for coherent transmission are rota-
tionally variant, i.e., noncoherently non—catastrophic
[10].

Phase—state mapping is perfectly matched to coded
CPM using convolutional codes. For the sake of sim-
plicity, we restrict ourselves to nonrecursive convolu-
tional encoders with obvious minimum encoder struc-
ture. Due to the feedback—free shift register structure
of the CPM encoder (Fig. 1), a fusion of the convolu-
tional and the CPM encoder is possible, offering high
power efficiency at a comparatively low receiver com-
plexity.

The overall transmitter with M'—ary input data w[l]
of the convolutional encoder is illustrated in Fig. 2. In
case of need, the information symbols [i] are gener-
ated from the coder output through some mapping.

convolutional
encoder

M —ary

CPM with phase—state mapping

Figure 2: Transmitter structure for coded CPM with
phase—state mapping. M = p.

2.3 Channel

We consider transmission over the additive white
Gaussian noise (AWGN) channel with a signal phase
unknown to the receiver. The received signal r(¢) may
then be written as

r(t) = 0 - s(3, ) +n(1) (10)
where the unknown phase ¢(t) is slowly time—varying
and n(t) denotes complex—valued AWGN with two-
sided power spectral density Ny in the ECB domain
(corresponding to a physical channel noise with one—
sided power spectral density Ny, as usual).

3 Noncoherent Receiver
Structure

For the optimum receiver, a bank of D < 2 - ME
matched filters is required to deliver sufficient statis-
tics for r(¢) [1]. In addition, detection has to be done
by maximum-likelihood sequence estimation (MLSE)
based on a super—trellis, which takes into account er-
ror correction coding, the trellis structure inherent to
CPM, and the dependence among received samples
due to the (slowly varying) unknown channel phase
(see Section 3.2). If both filtering and sequence es-
timation are optimally solved, a very high computa-
tional complexity results. Thus, suboptimum receiver
structures and signal processing requiring a low com-
plexity are desired, whereas performance degradation
should remain as small as possible. In contrast to pre-
vious approaches, e.g. [7], we treat these two problems
separately.

3.1 Multi-Dimensional Matched

Filter Front—End for CPM

Clearly, for a low receiver complexity a set of D basis
functions which represent the signal space spanned by
p(wli],t) as completely as possible for a given (small)
value of D has to be found. For this purpose, we adopt
the reduction methods proposed by Huber and Liu
[5] leading to a compact receiver front—end with very
simple filter realizations. In [5] it is shown that the
signal elements of almost all CPM schemes relevant in
practice can be sufficiently represented by only D = 2
or D = 3 complex exponential functions of duration
T. More specifically, the signal elements p(w[i],t) in
the ECB domain are approximated by

D
plwlil,t) ~ 3 pa(wlihe™ et (11)
d=1

with!
M -1
2T

Af

fa==-(2d=1-D)+h

(12)

and 1 < d < D. Here, pg(w[i]) are the coor-
dinates of p(wl[i],t) with respect to the chosen ba-
sis of the CPM signal space, and Af denotes the
frequency spacing parameter. The rational behind
(11) is that time-limited functions can be well rep-
resented by samples in the frequency domain and us-
ing sin(n fT")/(w fT') functions for interpolation. Ap-
parently, the frequency spacing parameter A f has to
be optimized for maximum utilizable free Euclidean
distance, for details we refer to [5]. The vector

. A .
pwli]) = [pr(w[i)), ...
I Note that due to the chosen ECB transformation frequency,

fa differs by (h Ng;l) from that in [5].

,pp(wli])] of coordinates is




obtained from
p(wli]) = [o1(w[i]), .., ep(wli])]-C~",

where gq4(w[i]) are the spectral samples at frequency fy

(13)

T

oa(wli]) = / plwli], )i et 4t
0

(14)

and C is the covariance matrix of the D exponential
basis functions.
The D samples of the received signal at the 7"
L . N
modulation interval are arranged in the vector r[i] =
[r1[d], ... ,rp[i]] with

T
rali] = /r(t +iT)e 2™ fatdt . 1<d<D. (15)
0

The receiver structure under consideration is also
depicted in Fig. 3. We note that the used receiver
front—end allows direct application of subsequent non-
coherent, detection methods used for linear modula-
tion schemes, e.g. [9, 4, 11], i.e., a whitening filter
necessary for the scheme in [7] is not required (see
Section 3.2).
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Figure 3: Frequency—sampling receiver and NSE.

3.2 Noncoherent Sequence
Estimation for CPM
Now, optimum noncoherent sequence estimation

(NSE) and suboptimum NSE with windowing of the
observations are briefly described. Specifically, we in-
troduce the concepts of a finite rectangular and an
infinite, but exponentially decaying observation win-
dow. For derivation of the NSE metric for CPM we as-
sume the unknown channel phase to be constant, i.e.,
¢(t) = ¢. Later on, this restriction is relieved, and in
the simulations presented in Section 4, the influence
of a time—varying phase on the receiver performance
is also investigated.

For a constant envelope signal and the AWGN
channel with unknown phase the optimum NSE met-
ric for a block of Nz transmitted symbols ¢[i], 0 <
i < Ny —1, reads? [12, 4]

Np—1
> rli] - pM (wli]) -

i=1

A[NT — ].] = Re{

2Re{} denotes the real part of a complex number.

(Zr[ml-pH(w[mD> } . (1)

m=0

where @[i] is constructed from 4[i] (9), which cor-
respond via encoding to M'—ary hypothetical trial
data symbols @[l]. From (16) the incremental met-
ric A[i] £ Ali + 1] — Ali] at time i, 0 < i < Ny — 2,
follows as

Ali] = R{r[i] - p" (@[i]) - Grogli — 1]} (17)
with the definition Gref[i — 1] 2 iil r[m] - pt (w[m]).

m=0

Gref[t — 1] can be considered as phase reference symbol.
In its present form, Grer[i — 1] corresponds to an unlim-
ited phase memory, which grows with time ¢. Hence,
a tree search has to be employed for maximization of
A[N7 — 1]. Moreover, the channel phase is required
to be constant during the whole transmission time,
which is usually not true in practice, of course.

To overcome these drawbacks, limitation of the
phase memory has been proposed. Specifically, rect-
angular windowing [4] with window size N > 2, where
dref[i — 1] is approximated by

N-1

Y rli-m]-p"(@li-m]) (18)

m=1

A 1
Gglic1] 2
Qref [Z ] N_1
or exponential windowing [11] with forgetting factor
«, 0 < a < 1, where the modified reference symbol is
generated recursively from

Groili—1] 2 - Grei— 2]+ (1—a) - vli—1]-p" (@[i—1])
(19)

are promising approaches. Apparently, for the special
cases N =2 (N — o0) and @ =0 (a — 1) (18) and
(19) are identical.

In terms of computational complexity, exponential
windowing compares favorably with rectangular win-
dowing [11, 10]. For the former technique less arith-
metic operations are necessary, and moreover, com-
plexity is independent of a. For rectangular window-
ing, however, complexity increases with V.

Clearly, now NSE can be performed by a full-state
Viterbi algorithm in a super trellis taking into account
the memory of convolutional coding, of CPM, and
of the phase reference. In order to limit complex-
ity of noncoherent CPM decoding, we employ per—
survivor processing [13] and define a trellis diagram
with (M")K states S'I] £ (@[l — 1],...,all — K)),
K > 0. Here, the value of K determines the ex-
change between performance and complexity. For
0 < m < K, the hypothetical symbols a[l — m] are
defined by the transition from state S'[l] to S'[l + 1].
For m > K, the symbols @[l —m] are taken from the
surviving path terminating in state S[l]. In case of



exponential windowing, each path in the trellis has its
private reference symbol Gref[¢ — 1], which is updated
according to (19) using the previous reference symbol
gref[i — 2] of the same path. At the end of each trellis
branch only the reference symbol associated with the
surviving path is stored and used for calculation of
the first reference symbol of the next branch.

4 Simulation Results

To demonstrate the performance of the proposed non-
coherent coded CPM transmission scheme, simula-
tions of the bit—error rate (BER) versus Ep/No (Ep:
received signal energy per information bit) have been
performed first. For these simulations, the channel
phase ¢(t) is kept constant. Eventually, we will con-
sider channels with time—variant phase ¢(t), too.

As an important example of coded binary CPM
with h = 1/2, we consider Gaussian minimum-shift
keying (GMSK) with 3 dB bandwidth—bit—duration
product BT = 0.3. For coding, the binary rate 1/2
convolution code with 16 states (generator polynomi-
als g, = (2,3), g, = (3,5) (base-8 representation)))
from [9, Table I] is taken. At the receiver, a front—
end with D = 2 filters is applied. NSE and coherent
MLSE are performed on a trellis with 32 states, i.e.
NSE based on per—survivor processing is employed.
In case of coherent CPM, further expansion of states
is not rewarding [10]. The numerical results for non-
coherent reception with rectangular and exponential
windowing are presented in Figs. 4a) and b), respec-
tively. Although states are reduced to a great ex-
tent, by increasing the observation interval of NSE,
the performance of coherent reception with perfect
phase synchronization is approached. This is true for
both windowing techniques. More specifically, it is al-
ways possible to find pairs of (N, «) yielding similar
performance [10]. Hence, the complexity advantages
of exponential windowing can be fully exploited.

It is of high interest to discuss coded noncoherent
multilevel CPM, because in the coherent case the best
trade—off between power and bandwidth efficiency is
found for 4 and 8-ary CPM. For this reason, we re-
gard 2RC 4-ary CPM with h = 1/4, i.e., the fre-
quency pulse g(t) = dq(t)/dt is a raised cosine pulse
with duration L = 2. A 4-ary rate 1/2 code with 16
states is chosen (generator polynomials g, = (1,3, 3)
and g, = (2,3,1) (base—4 representation)), which is
also taken from [9, Table I|. Again, D = 2 is applied.
For coherent reception of CPM, the joint code and
modulator trellis has 64 states. As for GMSK, NSE
with per—survivor processing is performed on the same
trellis. The obtained results are depicted in Figs. 5a)
and b) for rectangular and exponential windowing, re-
spectively. Remarkably, without increasing complex-
ity in terms of decoder states, the proposed noncoher-
ent CPM approaches the power—efficiency of coherent
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Figure 4: BER vs. E}, /Ny for the proposed CPM sys-
tem. GMSK with BT = 0.3 and a 16-state
binary rate 1/2 code. ¢(t) = constant. NSE
and coherent MLSE with 32 states, respec-
tively. a) rectangular windowing. b) expo-
nential windowing.

reception. Again, recursive calculation of the refer-
ence symbol with low complexity (19) performs very
well.

In the above two examples of noncoherent CPM, we
increased the number of trellis states of the underlying
code by a factor of M' (i.e. the state representation
is extended by only a single hypothetical information
symbol 4[l]). The results show that this way of mod-
eling the memory of both CPM and channel phase,
provides a favorable trade—off between complexity and
performance. This has been verified for various mod-
ulation parameters [10].

Finally, the robustness of the proposed scheme to
phase jitter is assessed. The phase ¢(t) has been mod-
eled as a Wiener process, i.e., the sequence of phase
changes is a white Gaussian noise process with vari-
ance 0% over T'. This model is frequently used, e.g.
[4, 8]. 2RC 4—ary CPM with the same parameters as
in Fig. 5 has been simulated. Fig. 6 shows the mea-
sured BER’s as a function of oa for E,/Ny = 5 dB.
Clearly, there is an exchange between the achiev-
able power efficiency for oo = 0 and the robustness
against phase noise. As « (V) increases, the robust-
ness against phase variations deteriorates, while the
power efficiency for oo — 0 improves. Consequently,
in practice @ (N) has to be adapted to the current
situation. Since « is a real number, but NV is integer,
the lower—complex metric facilitates optimization. In
particular, for given Ej,/Ny and phase noise variance
o2 the minimum achievable BER can always be at-
tained exactly.
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Figure 5: BER vs. E, /Ny for the proposed CPM sys-
tem. 2RC 4-ary CPM with A = 1/4 and
a 16-state 4-ary rate 1/2 code. ¢(t) =
constant. NSE and coherent MLSE with 64
states, respectively. a) rectangular window-
ing. b) exponential windowing.

5 Conclusions

Coded noncoherent CPM transmission over the
AWGN channel with unknown phase is discussed. We
employ the decomposition of CPM into a continuous—
phase encoder and a memoryless mapper and per-
form differentiation of modulator input data to com-
bine efficiently CPM with rotationally variant convo-
lutional coding. The decomposition of CPM facili-
tates our receiver design within two stages. For low—
complex receiver input filtering an advantageous re-
ceiver front—end is applied. To enable noncoherent re-
ception, appropriate metrics used for Viterbi decoding
are specified. For a slowly time—varying channel phase
the power efficiency of coherent CPM (assuming per-
fect knowledge of the channel phase) is approached.
Remarkably, this is achieved without increasing the
number of trellis states in comparison to coherent
MLSE. Moreover, recursive branch—metric calculation
is successfully applied to CPM and thus, complex-
ity is further reduced. To summarize, the proposed
CPM scheme is attractive for power and bandwidth—
efficient noncoherent transmission with very moderate
transmitter and receiver complexity.
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