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Abstract. Residual echo arises in hands–free telephony equipment dueto insufficient echo canceler convergence,
but can be suppressed using a postfilter. The residual echo power spectral density is the most crucial control parameter
for both frequency–domain acoustic echo cancellation and combined residual echo and noise postfiltering. In this con-
tribution we present and compare residual echo power spectral estimation techniques. We introduce a new partitioned
block-adaptive estimation technique delivering considerably improved residual echo estimates in strongly reverberant and
noisy acoustic environments. We show that the adaptation loop of the frequency–domain adaptive filter (FDAF) can be
used simultaneously for residual echo power estimation andtracking of the echo path impulse response. In this way, the
FDAF and the postfilter concept supplement each other in a true synergy with low complexity. The resulting echo and
noise control system proves to be robust in double talk situations as well.

1 INTRODUCTION

In the acoustic environment of mobile hands-free tele-
phones we have to expect low signal–to–noise ratios and
considerable acoustic feedback at the local microphone. It
has been shown that a combined acoustic echo and noise
reduction postfilter substantially improves the performance
of the more traditional echo cancellation and noise reduc-
tion approach [1, 2].

A true synergy of acoustic echo cancellation and post-
filtering can be obtained if both algorithms are imple-
mented in the frequency domain. That leads to the concept
of joint control of acoustic echo cancellation and postfilter-
ing based on residual echo estimation. This was proposed
in [3, 4] within the framework of echo compensation in
sub-bands.

The control of our algorithm relies on the power spec-
tral density (PSD) of the residual echo which is required
for both frequency–domain adaptive echo cancellation [5]
and postfiltering [1]. The residual echo PSD, however, can-
not be directly measured and must be estimated from the
available signals. Conventional block oriented approaches
[1, 6] with limited DFT length (due to delay and complex-
ity constraints) can only reflect the residual echo within the
first DFT length of the residual echo impulse response, as

illustrated in Figure 1. This leads to a serious bias of the
residual echo estimate.

Thus, we propose a new unbiased residual echo PSD
estimator, based on coherence, which conceptually takes
the full length of the residual echo system as well as short–
term correlations into account. The idea behind the new ap-
proach is to compute the total residual echo PSD as a sum
over multiple delayed DFT frames of short length. This
leads to the concept of a partitioned residual echo power
estimator. The total residual echo PSD is then utilized to
determine the optimum spectral weights for joint residual
echo and background noise suppression, while the individ-
ual contributions can be used to control individual sections
of a partitioned frequency domain adaptive filter (FDAF).
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Figure 1: Partitioned residual echo impulse response.

Our full-duplex echo and noise control system with a
single loudspeaker and a single microphone is depicted in
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Figure 2. All signals are represented by their Fourier trans-
forms, for example the microphone signaly(i) byY (
) = S(
) +N(
) +D(
) ; (1)

whereS(
),N(
), andD(
) represent clean near speech,
background noise, and acoustic echo, respectively. During
adaptation, the echo cancelerW (
) is supposed to yield a
robust but possibly inaccurate estimateD̂(
) of the acous-
tic echo. The residual echo and background noise shall be
therefore suppressed by the postfilterH(
) with input sig-
nal E(
) = Y (
)� D̂(
)= S(
) +N(
) +B(
) (2)

whereB(
) = D(
) � D̂(
) is the Fourier transform of
the residual echo signal. In the receiving and sending path
of the telephone we have the far end speechX(
) and the
estimated local speecĥS(
), respectively.
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Figure 2: Combined echo and noise reduction system for mobile

hands-free telephony.

The remainder of our paper is organized as follows:
In Section 2 we will recall the concept of (partitioned)
frequency–domain adaptive echo cancellation and com-
bined residual echo and background noise suppression. We
will observe that both the echo canceler and the postfil-
ter rely on the same control parameter, the residual echo
PSD. In Section 3 we will briefly discuss a previously
proposed coherence estimator for the residual echo PSD,
which serves as the basis for further algorithm develop-
ment. The main part of this paper, Section 4, addresses
three major problems related to residual echo PSD estima-
tion in practice: finite DFT block length, stationary back-
ground noise, and non-stationary signals. Solutions will be
proposed for each case and the corresponding benefits will
be discussed. In order to substantiate our algorithm, we
provide a theoretical analysis of partitioned residual echo
PSD estimation (using the FDAF). Eventually, in Section 5
we will confirm our results by simulations.

2 COMBINED ACOUSTIC ECHO AND NOISE

CONTROL SYSTEM

In this Section we present an overview of our acoustic
echo and noise control system.

We employ the partitioned frequency–domain adaptive
echo canceler which uses the overlap and save implemen-
tation [5, 7, 8, 9, 10] to reduce the numerical complexity
and an appropriate sectioning of the filter impulse response
[5, 9] to limit the algorithmic signal delay. The limited
adaptation rate of the echo canceler in noisy environments,
however, leads to insufficient echo attenuation especially
during the transient phase of the adaptation process.

The postfilter is designed to achieve residual echo sup-
pression as long as the echo canceler cannot ensure suf-
ficient echo attenuation. As soon as the echo canceler
reaches a sufficient convergence state, the responsibilityfor
echo control is gradually taken away from the postfilter in
order to maintain the highest near speech quality. In this
case, the postfilter ideally performs background noise sup-
pression only.

The interaction of echo cancellation and postfiltering is
enabled on the basis of the residual echo PSD, which is the
control parameter that both algorithms have in common.

2.1 FREQUENCY DOMAIN ADAPTIVE ECHO CAN-
CELLATION

The block processing approach of the frequency–
domain adaptive filter (FDAF) introduces a signal delay
which increases with increasing block length (filter length).
The signal delay can be reduced if the filter is divided
into several filter partitions [9], and each partition is im-
plemented with the overlap and save method.

We summarize the FDAF algorithm for a single parti-
tion as follows:

The Discrete Fourier Transform (DFT)Y (
`; kR) ofY (
) at frame indexk 2 Z is obtained from the windowed
time domain signaly(i) with sampling time indexi asY (
`; kR) = M�1Xi=0 y((k � 1)R+ i)wy(i)e�j
`i (3)

with frame shiftR and the normalized discrete frequency
index
` = 2�`=M for ` = 0; 1; : : : ;M � 1. The rect-
angular window function applied to signaly(i) is defined
as wy(i) = � 1 for R � i �M � 10 otherwise

(4)

and we useM = 2R. The same notation holds for the DFT
coefficients of ~X(
`; kR), S(
`; kR), N(
`; kR), andE(
`; kR) with corresponding window functionsw~x(i) =ws(i) = wn(i) = we(i) = wy(i).
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Furthermore, we define the DFT of a two-frame ex-
tended excitation signal asX(
`; kR) = Z(
`) ~X(
`; (k � 1)R) + ~X(
`; kR)

(5)

where the vectorZ(
`) = (+1;�1; : : : ;+1;�1) of lengthM performs a cyclic shift in the time–domain. The spec-
trumX(
`; kR) might be obtained from the analysis de-
fined in Equation (3) as well, using the effective window
functionwx(i) = wy(i) + wy(i+R).

The FDAF algorithm now calculates the error spectrumE(
`; kR) = DFTfPfIDFTfY (
`; kR)�X(
`; kR)W (
`; kR)ggg ; (6)

whereW (
`; kR) is the vector of adaptive weights andP
is the projection operation used in the filter part of the algo-
rithm, which returns its operand for` = M=2; : : : ;M � 1
and zero otherwise.

In the adaptation part of the adaptive filter, the weight
vectorW (
`; kR) is updated byW (
`; kR+ 1) =W (
`; kR) +DFTfQfIDFTf�(
`; kR)X�(
`; kR)E(
`; kR)ggg ; (7)

whereQ is the projection operation used in the adaptation
part of the algorithm, which returns its operand for` =0; : : : ;M=2 � 1 and zero otherwise.�(
`; kR) denotes
the real–valued adaptive step-size factor.

The block length of the adaptive filter might be signif-
icantly shorter than the reverberation time of the acoustic
environment. In that case we apply several partitions of
adaptive weights in order to cover a significant length of
the actual loudspeaker–enclosure–microphone (LEM) sys-
tem. In particular, we adaptL sets of independent weightsW (�)(
`; kR) ; 0 � � � L� 1 ; (8)

according to (7)W (�)(
`; kR+1) =W (�)(
`; kR)+DFTfQfIDFTf�(�)(
`; kR)X�(�)(
`; kR)E(
`; kR)ggg ; (9)

using the excitation spectraX(�)(
`; kR) = X(
`; (k � �)R) (10)

and the compound error spectrumE(
`; kR) = DFTfPfIDFTfY (
`; kR)� L�1X�=0X(�)(
`; kR)W (�)(
`; kR)ggg :
(11)

In order to obtain an expression for the individual step-
size factor�(�)(
`; kR) for partition�, we first define the
convergence statejG(�)(
`; kR)j2 = jW (�)LEM (
`; kR)�W (�)(
`; kR)j2 :

(12)W (�)LEM (
`; kR) denotes the DFT coefficients of the cor-
responding section of the LEM system. Then, we adopt a
result of [5]: By minimizing the average convergence state
of a certain partition� of the adaptive filter, we obtain the
individual step–size�(�)(
`; kR) = �(�)BB(
`; kR)�EE(
`; kR) � 1�(�)XX(
`; kR) : (13)

for this partition.�(�)BB(
`; kR) represents a short–time es-
timate of the residual echo PSD at timek which is associ-
ated with the misalignment of the weightsW (�)(
`; kR)
of partition �. �EE(
`; kR) and �(�)XX (
`; kR) =�X(�)X(�)(
`; kR) further denote short–time PSD esti-
mates of the error signal and the excitation, respectively.

2.2 FREQUENCY DOMAIN ADAPTIVE POSTFILTER -
ING

Spectral weighting of DFT coefficientsŜ(
`; kR) = HW (
`; kR)E(
`; kR) (14)

on the basis of the Wiener ruleHW (
`; kR) == �SS(
`; kR)�SS(
`; kR) + �NN(
`; kR) + �BB(
`; kR)
(15)

can be viewed as a simple form of DFT based speech en-
hancement to be possibly applied in the postfilter.

Accurate (short–time) estimates�NN (
`; kR) and�BB(
`; kR) of the background noise PSD and the resid-
ual echo PSD are crucial for the reliability of the spec-
tral weightsHW (
`; kR). The background noise PSD can
be determined adaptively and accurately by the Minimum
Statistics approach [11, 12], where the desired noise PSD
can be tracked even during speech activity. The residual
echo PSD is drawn from the new partitioned estimator to
be derived in Section 4.

Instead of Wiener filtering, we actually use the more
advanced MMSE-LSA spectral weighting algorithm [13]
which, however, relies in a similar way on residual echo
and noise PSD estimates.

2.3 INTERACTION OF ECHO CANCELLATION AND

POSTFILTERING

An acoustic echo canceler which is realized as an adap-
tive filter is naturally characterized by finite convergence
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speed. The adaptation rate is specifically dependent on
the echo–to–noise power ratio of the acoustic environment.
During the process of adaptation, the postfilter is designed
to achieve additional attenuation in the feedback loop of
the hands–free telephone. The required short–time residual
echo PSD can (and must) be tracked at a higher rate than
the adaptive filter coefficients, consequently. This is en-
abled by properly choosing tracking constants of the adap-
tive filter and the residual echo PSD estimator. While the
echo canceler converges, the residual echo PSD decreases
and the responsibility for echo control is gradually taken
away from the postfilter. Thereby, the near end speech
quality is increased during double talk.

Ideally, after convergence, the echo canceler achieves
complete feedback attenuation, while the postfilter per-
forms background noise suppression only. In practice,
however, to drive the echo canceler into the state of ideal
convergence (no misalignment) we would need the perfect
step-size control and, according to Equation (13), a resid-
ual echo PSD estimate with very high accuracy. That in
turn becomes very difficult while approaching the state of
total convergence. Therefore, the very last part of acoustic
echo control must always be handled by the postfilter.

Concerning the symbiosis of the echo canceler and the
postfilter, we recall that both algorithms are implemented in
the frequency domain. Consequently, DFT and IDFT op-
erations required for analysis and synthesis are efficiently
shared in our echo and noise control system. In particular,
the postfilter is performing speech enhancement directly
upon the frequency–domain error signalE(
`; kR) pro-
vided by the echo canceler. Moreover, the residual echo
PSD estimator to be discussed in the following Sections
makes use of the already available DFT coefficients as well.
Obviously that results in an algorithm which is highly effi-
cient from the viewpoint of computational complexity.

3 COHERENCE ANALYSIS

The residual echo PSD estimator to be proposed in this
paper as well as previously proposed algorithms make ex-
tensive use of the coherence function. We therefore briefly
review coherence analysis and the relation to residual echo
power estimation.

The spectrum of the residual echo is given byB(
) = G(
)X(
); (16)

whereG(
) is the residual echo transfer function. Under
the assumption of statistically independentS(
), N(
),
andX(
), we can writeG(
) = �XE(
)�XX(
) (17)

by the use of the cross PSD�XE(
) of the signalsX(
)

andE(
). Then, we obtain�BB(
) = jG(
)j2�XX(
) (18)

for the residual echo PSD. This can be expressed equiva-
lently [6] by �BB(
) = CXE(
)�EE(
) (19)

using the magnitude squared coherence functionCXE(
) = j�XE(
)j2�XX(
)�EE(
) (20)

of the signalsX(
) andE(
).
The result can be implemented approximately [6] on

the basis of Welch’s power spectral estimation technique
[8], or recursive averaging of periodograms which accounts
for the short term stationarity of speech signals. The latter
one is written with0 < � < 1 as�XE(
`; kR) = ��XE(
`; (k � 1)R) +(1� �)IXE(
`; kR) (21)

using the (cross) periodogramIXE(
`; kR) between the
signalsX(
`; kR) andE(
`; kR)IXE(
`; kR) = X�(
`; kR)E(
`; kR)PM�1i=0 wx(i)we(i) : (22)

The approach is conceptually clear, however, in prac-
tice we observed biased estimates of the residual echo PSD.
This is due to insufficient coverage of the residual LEM im-
pulse response by the DFT length and due to short term cor-
relations of otherwise independent speech and background
noise signals. Therefore, the coherence method still has
potentials for considerable improvements with regard to
residual echo estimation. This will be shown more detailed
in the next Section and by simulations.

4 MULTIPLE –FRAME (PARTITIONED )
COHERENCE ANALYSIS

We will address in detail three practical problems asso-
ciated with residual echo power spectral estimation on the
basis of the coherence function:

1. Limited DFT block length

2. Stationary local background noise

3. Non-stationary local disturbances and non-stationary
excitation (speech)

We will specifically discuss the impact on the quality of the
residual echo estimate and subsequently propose a solution
with regard to each case.
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4.1 LIMITED DFT BLOCK LENGTH

The DFT length of typical speech enhancement sys-
tems is around 128 to 256 speech samples (due to signal
delay and complexity constraints). Consequently, a DFT
based residual echo estimator on the basis of equations
(19), (20), and (21) will certainly fail to reflect the full cor-
relation between the echo compensated signal and the far
speech. Thus, one obtains systematically underestimated
residual echo, especially for acoustic environments with
large reverberation time and algorithms which use a rela-
tively short echo canceler.

In order to take the full length of the residual echo sys-
tem into account, while using block processing with lim-
ited DFT length, we propose the partitioned residual echo
power estimation concept, based on coherence. This will
be followed by a theoretic analysis of partitioned coherence
estimation in order to validate the approach.

4.1.1 Partitioned Residual Echo Estimation

The residual acoustic echo in frameE(
`; kR) is
obviously correlated with the present and past framesX(
`; (k � �)R) of the excitation signal (corresponding
to partitions of the residual echo system). With regard to
the exponential decay of a causal residual echo impulse re-
sponse, we may have to consider only a limited numberL
of most recent framesX(�)(
`; kR) = X(
`; (k � �)R); 0 � � � L� 1 :

(23)

A partial estimate of the residual echo PSD being due
to the individual frameX(�)(
`; kR) of lengthM is then
written as�(�)BB(
`; kR) = CX(�)E(
`; kR)�EE(
`; kR) (24)

according to (19). The estimator computes the total resid-
ual echo PSD by adding the contributions ofL partitions��BB(
`; kR) = L�1X�=0 �(�)BB(
`; kR) (25)

where we assumed mutual statistical independence of the
excitation framesX(
`; kR). This is not exactly true in
the case of speech excitation. Simulations, however, show
that the approach can be successfully employed for frame-
based acoustic echo suppression (if the DFT length is not
extremely short).

Partitioned residual echo power estimation will be fur-
ther justified by the analysis in the following Section.

4.1.2 Partitioned Residual Echo PSD Estimation Using
the FDAF

The analysis presented in this section shows that the
partitioned FDAF algorithm can be quite naturally com-
bined with the partitioned residual echo estimator. We will

prove that the proposed algorithm (24) performs exact par-
titioning of the residual echo system in the case of white
noise excitation.

We assume that the impulse responseg(i) of the resid-
ual echo system can be modeled by a causal IIR filter and,
thus, the output of the residual echo system is given by the
linear convolutione(i) = g(i) � x(i) = 1Xm=0 g(m)x(i�m) (26)

wherex(i) is a stationary far end excitation signal with
power�2xx and auto-correlationrxx(p).

The cross-correlation in the FDAF adaptation loop (21)
of partition� yieldsX�(
`; (k � �)R)E(
`; kR) =1Xq=�1 1Xm=0g(m)Æ(q��R)X�(
`; kR�q) ~X(
`; kR�m)

(27)

whereÆ(q) = 1 for q = 0 andÆ(q) = 0 otherwise.
Consequently, the cross power spectral density�(�)XE(
`), which is required to compute the coherence of

partition�, is obtained by statistical expectation from the
cross periodogramIX(�)E(
`; kR) as�(�)XE(
`) = EfIX(�)E(
`; kR)g == M�1Xp=�(M�1)�rxx(p) � g(p+ �R)�rwxwe(p)e�j
`p ;

(28)

using the normalized cross-correlationrwxwe(p) of the
window functionswx(i) andwe(i)rwxwe(p) = PM�1i=0 wx(i)we(i+ p)PM�1i=0 wx(i)we(i) : (29)

For the windows under consideration andM = 256 the
cross-correlation functionrwxwe(p) is shown in Figure 3.

Since the extent ofrxx(p) is much smaller than the ex-
tent ofrwxwe(p) we may approximate�rxx(p) � g(p+ �R)� � rwxwe(p) �� rxx(p) � �g(p+ �R) � rwxwe(p)� : (30)

Strict equality in (30) will hold for a white noise excitationrxx(p) = Æ(p)�2xx. With the above approximation we have�(�)XE(
`) = ��XX(
`)G(
`)ej
`�R��Rwxwe(
`) �� �XX(
`) �G(
`)ej
`�R �Rwxwe(
`)� (31)

whereG(
`) is the frequency response of the residual echo
system andRwxwe(
`) is the cross-power spectrum of the
windows.
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Figure 3: Window cross-correlation functionrwxwe (p). M =256.

Moreover, we find that the normalization of the cross
power spectral density by�XX(
`) removes the depen-

dence of�(�)XE(
`) on the input signal statistics. The addi-
tional gradient constraint operationDFTfQfIDFTf�ggg
of the FDAF yields the spectrumG(�)(
`) = DFTfQfIDFT (�(�)XE(
`)�XX(
`))gg (32)

of a rectangular partitiong(p+�R), p = 0; : : : ;M=2� 1,� 2 Z, of the residual echo systemg(i). This can be seen
fromIDFT (�(�)XE(
`)�XX(
`)) = g(p+ �R)rwxwe(p) ++ g(p+ �R�M)rwxwe(p�M); p = 0 : : :M � 1 :

(33)

in conjunction with the projectionQ which zero–forces the
samples forp = M=2; : : : ;M � 1 and therefore leaves
only the signal within the flat–top region ofrwxwe(p) for
further processing.

Replacing power spectral densities by their short–time
estimates, the above procedure is ideally suited to compute
the residual echo power estimate�(�)BB(
`; kR) of partition� at frame indexk:G(�)(
`; kR) = DFTfQfIDFT (�(�)XE(
`; kR)�(�)XX(
`; kR))gg

(34)CX(�)E(
`; kR) = jG(�)(
`; kR)j2�(�)XX(
`; kR)�EE(
`; kR) (35)

The total residual echo PSD is eventually obtained from
Equations (24) and (25), once more assuming white noise
excitation.

Equation (33), however, also clarifies differences be-
tween residual echo PSD estimation and the adaptation part
(9) of the FDAF used for echo cancellation. Firstly, the
step-size�(�)(
`; kR) differs from the simple normaliza-
tion �XX(
`; kR) in (33). Secondly, averaging over time
takes place before the application of the gradient constraint
in (33). Therefore, the constraint operation can not be
shared by the echo canceler and the residual echo estimator,
due to the frequency–dependent step–size control. To keep
complexity low, though, we may omit the constraint for the
residual echo estimation. In fact, the coherence estimator
in Equation (20) can be viewed as an (approximate) uncon-
strained version of (34) and (35) with considerably lower
complexity. Unconstrained residual echo estimation will
be discussed more detailed in the Appendix of this paper.

Another approximate partitioning of the residual echo
system, which in practice has proven to be sufficiently ac-
curate, uses Hann windowswe(i) = wx(i) = 0:5(1 �
os(2�i=M)), 0 � i � M � 1, with 50% frame overlap
and unconstrained coherence estimation.

4.2 STATIONARY LOCAL BACKGROUND NOISE

Local background noise is also decisively influencing
the quality of the residual echo estimator. In general,
the residual echo estimates will be too high due to short–
term correlations between long–term independent echo and
background noise signals. The statistical expectation of
the biased coherencêC (20), which holds for estimates on
the basis of Welch’s power spectral averaging technique, is
given in [14] for stationary signals:EfĈg � C + 1N (1� C)2 �1 + 2CN � 4= fC(C;N)

(36)

Thereby,C denotes the true coherence andN is the number
of periodograms used for averaging over time.N is related
to the equivalent forgetting factor� of recursive averaging
(used in our algorithm) byN = 1 + �1� � : (37)

4.2.1 Correction of the Coherence Bias

The expectation of the biased coherence estimateĈ is
given as a function of the true coherenceC in Equation
(36). The proposed mechanism for bias correction directly
relies on the inversion of the above formula. That implies
a correction which is dependent on the background noise
(and near speech) power, since the true coherence is defined
asC = �BB=�EE .
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Before, however, we have to decrease the variance of
the coherence estimate in order to make the bias correc-
tion reliable. Therefore we average over several adja-
cent frequency components of the (cross) PSDs involved in
the estimation of the coherence function (20). Frequency
averaging of (cross) PSDs is written as�(
b)XE(
`; kR) = 1K + 1 K=2Xi=�K=2�XE(
i; kR) (38)

and the associated coherence estimate, Equation (20) or
(35), with decreased error variance and decreased fre-
quency resolution is denoted byC(
b)XE (
`; kR).

Psychoacoustically motivated [15], we typically make
a non–uniform choice for the number of frequency compo-
nents to be averaged, thus avoiding noticeable performance
degradations. In that respect we consider the critical band-
width 
b(
`) at the center frequency
` [15]
b(
`) = 25 + 75 1 + 1:4� fa
`2�kHz

�2!(0:69)
Hz

(39)

wherefa is the sampling frequency. The number of DFT
bins used for averaging is then determined byK = integer

�
b �Mfa � : (40)

We proceed with the actual bias correction by the inver-
sion of Equation (36) with the help of (37). In the follow-
ing, this will be denoted in short byC � f�1C (EfĈg; N(�)) (41)

which is applicable to correct the stationary bias ofĈ.
Equation (41) may be implemented by means of a

look–up table or solved iteratively byC(i+1) = EfĈg � 1N (1� C(i))2�1 + 2C(i)N �
(42)

whereC(0) = EfĈg. Normally, one or two iterations de-
liver a solutionC � C(i+1) with sufficient accuracy.

Using the bias correction (41), we can now rewrite the
coherence based residual echo estimator (24) as�(�;
b)BB (
`; kR) == f�1C �C(
b)X(�)E(
`; kR); N(�)��EE(
`; kR) : (43)

Consequently, we obtain the unbiased multiple–frame
residual echo estimate analogously to Equation (25):�(
b)BB;new(
`; kR) = L�1X�=0 �(�;
b)BB (
`; kR) (44)

The algorithm delivers an unbiased residual echo esti-
mate even in the presence of stationary local disturbances.
Note that, strictly speaking, also the residual echo due to
the misalignment of filter partitionW (�0)(
`; kR); �0 6=�; represents a local disturbance for the estimation of�(�;
b)BB (
`; kR). This is conceptually taken into account
by the approach now.

4.3 NON-STATIONARY LOCAL DISTURBANCES AND

NON-STATIONARY EXCITATION

In the case of local or far speech activity we face a
severe problem with Welch’s (cross) power spectral es-
timation technique and with recursive averaging of peri-
odograms (21) as well.

Assume, for example, that the near speech power sud-
denly rises. Then the update term in Equation (21) be-
comes dominant and consequently the estimated coherence
(20) approximately equals unity regardless of the true co-
herence value. This bias of the associated residual echo
estimate severely impacts the control of the frequency do-
main adaptive echo canceler since the adaptation rate at-
tains large values in contradiction to the actually desired
behavior in the presence of local speech. Also the postfilter
can not work as intended in that case.

Furthermore, consider the case of non-stationary exci-
tation of the adaptive filter. In the case that the excitation
suddenly vanishes the feedback term in Equation (21) be-
comes dominant and the coherence estimate (20) slowly
decays with the time constant�. The associated resid-
ual echo estimate again will be too high and, therefore,
drives the frequency domain adaptive filter into a state of
divergence (even in the presence of only weak background
noise).

4.3.1 Detection of Non–Stationarities

Our approach relies on Equation (13) for the step-
size of the FDAF algorithm. In order to cope with non–
stationarities we use two adaptive filters with different (hy-
pothetical) step-sizes [16] for each partition� of the FDAF.
We compare the two adaptive filters by their resulting error
signal which shall be minimized by the use of the correct
step-size, which in turn yields the correct convergence state
(residual echo).

In particular, an improved residual echo PSD estimate
is now expressed by means of the convergence state (12) of
the echo canceler�(�;
b;Sh)BB (
`; kR) = ���G(�)(
`; kR)���2�(�)XX(
`; kR) :

(45)

The estimate of the residual echo power–transfer function��G(�)(
`; kR)��2 is obtained either by means of Equation
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(43) as���G(�)(
`; kR)���2 = ���G(�)1 (
`; kR)���2 == f�1C �C(
b)X(�)E(
`; kR); N(�)��EE(
`; kR)�(�)XX(
`; kR) (46)

in the case that the underlying coherence estimate is useful
or from the previous frame as���G(�)(
`; kR)���2 = ���G(�)2 (
`; kR)���2 == ���G(�)(
`; (k � 1)R)���2 (47)

otherwise.
In order to perform the decision on eitherjG(�)1 (
`; kR)j2 or jG(�)2 (
`; kR)j2 (48)

we run the two corresponding hypothetical FDAFsW (�)1 (
`; kR) and W (�)2 (
`; kR) with error signalsE1(
`; kR) andE2(
`; kR) and hypothetical step-sizes�(�)1=2(
`; kR) = ���G(�)1=2(
`; kR)���2�EE;1=2(
`; kR) (49)

according to Equations (6), (9), and (13). Assuming statis-
tical independence of echo and local disturbances, we make
the decision for that convergence statejG(�)1=2(
`; kR)j
which minimizes the power (spectral density) of the cor-
responding error signalE1=2(
`; kR). Typically, we per-
form a global decision over the whole range of frequency
bins and few iterations in time to gain in robustness. When
comparing the error powers, we further apply a (heuristic)
safety factor in order to avoid false detections due to the
correlations within the local speech signal.

Assuming the correct decision for the convergence statejG(�)(
`; kR)j, we can consequently perform acoustic
echo cancellation on the basis of Equations (6), (9),(13),
and (45) with high reliability.

During double talk, the reliability of the coherence es-
timate is worst. At the same time there is only a minor
improvement of the convergence state of the echo can-
celer possible. Thus, the above algorithm will choosejG(�)(
`; kR)j2=jG(�)2 (
`; kR)j2=jG(�)(
`; (k�1)R)j2.
During far end single talk, the estimate of the conver-
gence state of the adaptive filter can be considerably
improved selecting the most recentjG(�)(
`; kR)j2 =jG(�)1 (
`; kR)j2. This leads to accurate results of the resid-
ual echo estimator (45), too.

Eventually, the multiple–frame based residual echo es-
timator (25,44) is rewritten by means of (45) as�(
b;Sh)BB;new(
`; kR) = L�1X�=0�(�;
b;Sh)BB (
`; kR) (50)

in order to take the effect of finite DFT block lengths into
account once again.

4.4 ADDITIONAL BENEFITS

The above algorithm (50) represents our final estimate
of the residual echo PSD which accounts for all kinds of es-
timation problems as outlined in this paper. The proposed
structure for residual echo estimation entails a number of
additional benefits which are briefly discussed here:� Each coherence estimateCX(�)E(
`; kR) considers an

individual PSD�(�)XX(
`; kR) of the excitation signal.
Thus, we make only weak assumptions with respect to
the stationarity of the excitation. This is particularly
meaningful for speech excitation in the presence of long
reverberation times.� The bias of each coherence estimateCX(�)E(
`; kR)
is removed individually by the bias correction formula
(41).� Eventually, we observe the freedom to assign individual
forgetting factors�(�) to the estimation processes of the
coherence functionsCX(�)E(
`; kR). This is useful,
since a reasonable forgetting factor certainly depends
on the individual ratio of acoustic echo and local dis-
turbances in partition�.

4.5 COMPUTATIONAL COMPLEXITY

The newly proposed multiple–frame algorithm basi-
cally runs the single-frame coherence estimator (19), (20),
and (21)L times in parallel in order to deliver an unbiased
residual echo estimate. However, the costly spectral anal-
ysis of the input signals has to be performed only once,
regardless of the parameterL. Additionally, we apply the
bias correction (41)L times in parallel to cope with local
disturbances. The bias correction can be implemented by
means of a one–dimensional look–up table in a very simple
way. The two path filter strategy (providing the robustness)
can be assumed to increase the complexity by at most a
factor of two. In practice, it turns out that onlyL = 3 orL = 4 can considerably improve the residual echo estimate
in the case of car acoustics.

The computational complexity of our approach mainly
depends on the number of divisions associated with coher-
ence estimation (20). The required number of operations is
significantly reduced by averaging and sub–sampling DFT
bins prior to the coherence computation. Given fixed com-
plexity constraints, we strongly recommend to design an
unbiased multiple–frame residual echo estimator, if neces-
sary at the cost of a lower frequency resolution.

Eventually, we recall the symbiosis of the acoustic echo
canceler, the postfilter, and the residual echo estimator in
our algorithm. As explained before, that results in a shared
complexity with respect to the analysis and synthesis oper-
ations (DFT/IDFT) required in the echo and noise control
system.
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5 SIMULATION RESULTS

We will first show that partitioned residual echo PSD
estimation with individual bias correction for each partition
delivers unbiased estimates for the total residual echo PSD.
Then we will demonstrate the robustness of the algorithm
in the framework of our echo and noise control system, see
Figure 2.

5.1 MEASUREMENT OF THE TOTAL RESIDUAL

ECHO PSD

5.1.1 Log–Spectral–Mean

For the purpose of instrumental evaluation of residual
echo PSD estimation techniques, we make use of a frame-
oriented spectral distance measure. At frame indexk, we
consider theLog–Spectral–MeanLSM(kR) = 1M M�1Xl=0 10log10 �̂BB(
`; kR)�BB(
`; kR) (51)

of the estimated–to–true residual echo power ratio at frame
indexk. This is a frame–based bias measure for residual
echo estimators, which is ideally zero.

5.1.2 Numerical Results

We compare numerical results for several estimation
techniques under consideration. In particular, these are the
estimators in Equation (19) for a single DFT frame, Equa-
tion (25) for multiple DFT frames, and Equation (44) for
multiple frames with individual bias correction.

We use a stationary white noise excitationX(
; k),
various levels of local speechS(
; k), and car background
noiseN(
; k). The acoustic echo is generated artificially
by means of a fixed car impulse response of 512 coef-
ficients, the first 128 coefficients being canceled nearly
ideally by a fixed echo compensator with 128 taps. The
DFT length of 256 for residual echo estimation is made
up of 128 data points for each frame plus additional zero-
padding. With regard to the short term stationarity of
speech, we choose the forgetting factor� = 0:8 for the
single-frame estimator. The number of partitions for the
multiple–frame residual echo estimator isL = 4, the cor-
responding forgetting factors were individually chosen as�(0) = 0:8, �(1) = 0:8, �(2) = 0:9, and�(3) = 0:9.

Figure 4 depicts the results for the exact (constrained)
partitioned coherence estimator as given in Equations (34,
35). We consider three different acoustic environments: In
the first 300 signal frames, there is no local speech nor
background noise contributing to the microphone signal,
thus, acoustic echo only. In frames 300 to 600 we added
local car background noise to achieve an echo–to–noise ra-
tio of -6 dB. Eventually, in frames 600 to 900, there is local
speech present (double talk) at a speech–to–noise ratio of 0
dB and car background noise at the same level as before.

Single−Frame Coherence 

Multiple−Frame Coherence 

Bias−Corrected Multiple−Frame Coherence 

Echo Only Echo/Noise=−6dB Double Talk 
15

10

5

0

-5

-10
0 100 200 300 400 500 600 700 800 900

frame indexkLSM(kR)^ =Bi
as

[d
B

]

Figure 4: Bias for constrained partitioned residual echo estima-
tors.

From Figure 4 we observe that the single-frame coher-
ence estimator (19) does not completely reflect the residual
echo. The bias of the estimator is most severe when there
are no local disturbances. In the presence of local back-
ground noise and speech activity, the approach achieves
better performance only because of the additional bias in-
troduced by short–term correlations in this case. We fur-
ther observe that the multiple–frame coherence estimator
(25) achieves nearly unbiased residual echo estimates when
there is neither speech nor background noise present. This
is due to the full coverage of the LEM impulse response of
length 512 byL = 4 estimator partitions. We can, how-
ever, see the bias of this method in the presence of local
disturbances. This is circumvented by the additional co-
herence bias correction (41) applied in the multiple–frame
estimator of (44). The latter delivers unbiased estimates
with regard to various acoustic environments. Note that the
variance of the estimator still depends on the local echo–
to–noise/speech ratio. However, in the presence of back-
ground noise the estimate is not required to be as accurate
as in noise-free environments. Hence, we conclude that the
multiple–frame coherence estimator delivers consistently
excellent results for the application of residual echo post-
filtering.

Figure 5 refers to the same types of estimators and to
the same acoustic environments as before. In contrast, this
experiment shows that we can achieve nearly the same esti-
mation performance using the approximate (unconstrained)
partitioned coherence estimator, Equation (57), with much
lower complexity than the exact implementation.

5.2 PERFORMANCE OF THE ACOUSTIC ECHO CON-
TROL SYSTEM

The performance of our algorithm in the combined
echo and noise reduction system is first investigated for a
single–talk situation (acoustic echo plus local background
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Figure 5: Bias for unconstrained partitioned residual echoestima-
tors.

noise) at an echo–to–noise ratio of 20 dB. The underlying
experiment is illustrated by Figure 6. The quality of our
algorithm is expressed by means of the echo return loss en-
hancement (ERLE) which measures the attenuation in the
feedback loop of the telephone. In particular, we consider

0 1 2 3 4 5 6 7 8 9

x 10
4

−1

−0.5

0

0.5

1

A
m

pl
itu

de Excitation Signal

0 1 2 3 4 5 6 7 8 9

x 10
4

0

20

40

60

dB

ERLE−CH
ERLE−C

0 1 2 3 4 5 6 7 8 9

x 10
4

−20

−10

0

10

20

Iterations i

dB

Estimated
Residual Echo
Power

Figure 6: ERLE and estimated residual echo power for a noisy
single talk (far end talk) situation.

the ERLE-C which is achieved by the echo canceler only
and the ERLE-CH which is obtained from echo cancella-
tion and additional postfiltering. Figure 6 shows that the
postfilter reacts much faster with regard to the presence of
acoustic feedback than the echo canceler. This is due to the
short (and limited) period of averaging applied in the resid-
ual echo estimator. In the initial phase of the simulation,
the postfilter achieves the ERLE-CH mostly on its own.
While the echo canceler converges, the postfilter attains
less additional echo attenuation, such that the total ERLE-
CH is constant. That results from the decreasing estimate
of the residual echo PSD which is shown in the bottom of

Figure 6.
The robustness of the algorithm is analysed for the ex-

ample of a difficult double talk situation. The excitation
signal and the near end speech plus background noise are
shown in the top two graphs of Figure 7. In the double talk
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Figure 7: ERLE and estimated near speech for a noisy double talk
environment.

situation under consideration, the ERLE-C and ERLE-CH
is clearly not as high as in the single talk situation. But
we observe once more that the postfilter attains fast and
strong echo attenuation while the echo canceler requires
more time to reach a good state of convergence. Moreover,
in the bottom of Figure 7 we can see that the fast tracking
capability of the postfilter also guarantees excellent preser-
vation of the local speech signal. The results as shown here
once more indicate the accuracy and the robustness of the
residual echo estimators as presented in this paper.

6 CONCLUSIONS

In this paper we have proposed a combined acoustic
echo and noise control system which is based on a parti-
tioned FDAF with partitioned residual echo estimation for
postfiltering. It was shown that an accurate residual echo
PSD estimate is essential for both the control of the FDAF
and the postfilter.

An accurate unbiased residual echo PSD estimator was
derived by taking the full length of the residual echo im-
pulse response as well as the bias due to stationary and
non–stationary disturbances into account. The resulting
partitioned bias–compensated residual echo estimator is
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then used to control both the FDAF for acoustic echo
cancellation and the postfilter for residual echo and back-
ground noise suppression.

Furthermore, it was shown that the FDAF, the postfilter,
and the partitioned residual echo PSD estimator can be ef-
ficiently integrated into a combined system where the com-
putational complexity of analysis and synthesis is shared
between different components of the algorithm.

APPENDIX

APPROXIMATE PARTITIONED RESIDUAL ECHO PSD
ESTIMATION

We aim at reducing the complexity of the exact (con-
strained) partitioned residual echo PSD estimator in Equa-
tions (34,35). An approximate residual echo power esti-
mate might be obtained without applying a constraint. In
this case the residual echo power estimate is biased. In
what follows we derive an approximate expression for this
bias.

Using (28) and (31) the magnitude squared cross PSDj�(�)XE(
`)j2 can be normalized and computed as��(�)XE(
`)�(�)XE(
`).j�XX(
`)j2 == M�1Xp=�(M�1) M�1Xv=�(M�1) g(v + �R)rwxwe(v) �g(p+ �R)rwxwe(p)e�j
`(v�p) (52)

and withv = p+ uj�(�)XE(
`)j2.j�XX(
`)j2 == M�1�pXu=�(M�1)�p M�1Xp=�(M�1) g(p+ u+ �R)rwxwe(p+ u) �� g(p+ �R)rwxwe(p)e�j
`u= 2(M�1)Xu=�2(M�1) 1Xp=�1 g(p)rwxwe(p� �R) �� g(p+ u)rwxwe(p+ u� �R)e�j
`u : (53)

The second equality results becauserwxwe(p) is zero
for jpj � M . The above equation can be interpreted
as the power spectrum of a segment of the residual echo
impulse response. This segment is cut out by the cross-
correlation functionrwxwe(p) of the DFT windows as
it was shown in Figure 3. We denote this segment byg(�)(p) = g(p)rwxwe(p � �R) and its power spectrum byjG(�)(
)j2. To achieve an unbiased residual echo power
estimate we must require that the sum over all magnitude
squared segments equals the power spectrum of the full

residual echo impulse responsejG(
)j2L�1X�=0 jG(�)(
 = 
`)j2 = jG(
 = 
`)j2 =1Xu=�1 rgg(u)e�j
`u= 1Xu=�1 1Xp=�1 g(p)g(p+u)e�j
`u
(54)

Comparing the inner sum in (53) and (54) we find that the
above condition can be fulfilled ifrgg(u) decays to zero
within 2M samples and ifrgg(u) = 1Xp=�1 g(p)g(p+ u) �L�1X�=0 rwxwe(p� �R)rwxwe(p+ u� �R) (55)

holds for allu 2 [�2(M�1); 2(M�1)℄. Hence, for a bias
free estimateRw(p; u) = L�1X�=0 rwxwe(p��R)rwxwe(p+u��R) != 18p;8u 2 [�2(M � 1); 2(M � 1)℄ (56)

needs to be fulfilled. For the windowswx(i) andwe(i)
used in the FDAF algorithm this is clearly not the case.

Fig. 8 plotsRw(p; 0) for M = 256, L = 4, and the
windows used by the FDAF algorithm. The combined sup-
port of all partitions extents over approximately 512 sam-
ples of the residual echo system impulse response. It is
evident that the estimate obtained by this method is too
large by a factor of approximatelyFw = 1:5 to 1:7. There-
fore, an approximately unbiased echo estimate can be con-
structed by dividingj�(�)XE(
`)j2 by this factor and using
the modified short–term coherence estimateCX(�)E(
`; kR) = j�(�)XE(
`; kR)j2�(�)XX(
`; kR)�EE(
`; kR)Fw

(57)

in (43) to compute the residual echo PSD estimate.
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algorithm. Ideally, this should be a flat top window of
amplitude one.
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