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SUMMARY

How much performance penalty does a hierarchical coder based on multistage vector quantization (MSVQ)
suffer compared to a non-hierarchical coder based on fixed rate VQ? In this paper, the above question shall
be answered from a rate-distortion theoretic perspective. We analyze several results from high-rate or
asymptotic quantization theory and use them to specify an upper bound on the MSVQ penalty in terms of
mean square error (MSE) distortion. The theoretical results are used to gain more analytic insight in
hierarchical coding systems based on a multistage coding approach. Although entirely based on high-rate
assumptions, in practice this bound also applies for relatively small rates as shown by experiment.
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1. INTRODUCTION

Usually, hierarchical coding based on multistage vector
guantization (MSVQ) involves a performance penalty
when compared to non-hierarchical coding based on fixed
rate VQ. This statement has some intuitive appeal. Also it
is well-known from rate-distortion theory [1] that the per-
formance bound for quantization of a random variable can
be approached by using VQ of arbitrary large dimension or
block length.

It is sometimes argued that the results provided by rate-
distortion theory are of limited relevance for practical
quantization tasks since both search complexity and mem-
ory requirements grow exponentially with the block
length. A contrasting approach is to fix the block length
and assume the bit rate (and hence the codebook size) to
be large, which is the subject of high-rate or asymptotic
quantization theory [2]. High-rate theory thus provides
results on VQ performance for any block length which
actually show that even in case of finite block lengths
VQ gets closer to the rate-distortion bound for a given
source than any other coding scheme that breaks down
the quantization task into several sub-tasks of reduced
block length.

To develop a basic understanding how different quanti-
zation schemes utilize such characteristic signal properties
as dimension, correlation between samples and the prob-
ability density function (PDF) for efficient quantization
in a rate-distortion sense, we review some results from
rate-distortion theory and high-rate theory. Although the
majority of these theoretical tools are well-known from
the literature and have been frequently used to describe
the performance of fixed rate VQ, in this paper they are
used for the first time to describe the performance respec-
tively the performance penalty of MSVQ.

Our particular treatment of MSVQ is motivated by the
fact that it represents a typical example of so-called
sequential search product code technique [3], which is fre-
quently used in practical implementations of hierarchical
coding systems.

In this paper, we address the performance penalty of
MSVQ compared to fixed rate VQ using a mean square
error distortion criterion. In Section 2, we review some
important results from rate-distortion and high-rate theory
that are used to describe the theoretical performance of
VQ. In Section 3, the concept of MSVQ is introduced prior
to the derivation of an upper bound on the MSVQ penalty.
To see how this bound applies in practice for relatively
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small rates, two examples of MSVQ are discussed in
Section 4.

2. THEORETICAL VQ PERFORMANCE

Rate-distortion theory defines optimum quantizer perfor-
mance for a given source and mean square error (MSE)
distortion by a distortion-rate function (DRF) D(R), that
describes the minimum bit rate R which is required for
quantization with a given MSE distortion D. One of the
basic statements resulting from rate-distortion theory is
that by using a vector quantizer one can in principle
approach the DRF of any given source arbitrarily closely
by increasing the vector dimension d. Thus, D(R) is not
merely a lower bound on the achievable quantizer distor-
tion, it is actually achievable by VQ with high dimension.

The DRF D(R) has two important properties: (1) it is
monotone decreasing with R and (2) it is convex. Further-
more, for the MSE distortion in decibels, D(R) decreases
at a rate of 6.02 dB/bit for large R. For a zero-mean, mem-
oryless Gaussian source with variance o2, the DRF with
MSE distortion normalized to o2 is known as

Dg(R)

>— =—0.02R
o

DG(R) = 101og [dB] (1)
where D denotes the normalized MSE distortion in deci-
bels, which shall be used to describe quantizer perfor-
mance for the remainder of this paper.

There are only scant explicit D(R) results for sources
other than the memoryless Gaussian source. Yet, lower
and upper bounds exist so that

Dsip(R) < D(R) < Dg(R) (2)

whereas D(R) is known to be upper bound by the DRF
Dg(R) for a Gaussian source. The lower bound Dsie(R)
is the Shannon lower bound (SLB) [1] which for MSE
distortion is given by

1 .
Dsip(R) = EZZM(X) o (3)

where

h(x) = — j 3 pilog, p, (4)

is the differential entropy of the memoryless source with
PDF p. According to the special role that Gaussian
sources play in bounding the performance of coding
systems, also h(x), for x being a random variable with
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variance ¢, is upper bound by the differential entropy
hG(x) of a Gaussian PDF with equal variance o2 (e.g.
Reference [4]), thus,

h(x) < hg(x) = %Iogz (2mea?) (5)

For many sources the SLB is achievable only as R — oc.
With Equations (3) and (5), we can write Dg1(R) as a nor-
malized MSE distortion in decibels

ESLB (R) = —6.02R — 602(’1(}()6} = h(x)) [dB] (6)

Hence, with Equation (1) the asymptotic difference in
MSE distortion between the Gaussian upper bound and
the SLB amounts to

ADgsis = Dg(R) — Dsrp(R)
= 6.02(ha(x) — h(x))

Since hg(y) > h(x), the SLB Dg (R) is lower than the
Gaussian DRF by an amount equal to the difference
between the differential entropies hg (x) and A(x) (in bits)
multiplied by 6.02 dB/bit. Equation (6) clearly indicates
that the asymptotic behavior of the DRF for many PDFs
is expected to decrease at a rate of 6.02 dB/bit as R — 00.

Table | shows the asymptotic difference ADgs1p
between the Gaussian upper bound and the SLB according
to Equation (7) for four PDFs that are common models
used for certain signal distributions.

The plots in Figure 1 illustrate the DRF Dp(R) for a
Gamma PDF along with the Gaussian upper bound
Dg(R) and the SLB Dsip(R). Noll and Zelinski [5]
obtained the DRF Dr(R) by numerical calculations using
Blahut’s algorithm [6]. The Gamma PDF was chosen
among the four PDFs from Table 1 because it shows very
clearly the departure of D(R) from the Gaussian DRE.

(dB] (7)

Table 1. Four common PDFs and their asymptotic difference in
MSE distortion between the Gaussian DRF Dg(R) and the
Shannon lower bound Dg; 5(R) in decibels.

PDF Dx ADgs1s[dB]
Gaussian (G) ﬁexp[—x}/&ﬂ 0
Uniform (U) s Kl < V302 1.53

0, otherwise
Laplacian (L) 721=ﬂz-exp [-V2|x|/0] 0.63
Gamma (I') Lexp[—ﬂ|x|/20} 427

£/ 8anx|
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Figure 1. Distortion-rate function Dp(R) (in decibels, MSE
distortion) for a memoryless Gamma source. Dp(R) is upper
bounded by the Gaussian DRF Dg(R) and lower bounded by the
SLB Ds1g(R) (from Reference [5]).

Note that the Dr(R) curve in Figure | is monotone
decreasing and convex. Also, as R increases beyond a
few bits, Dr(R) decreases at a rate of 6.02 dB/bit which
is the slope of the upper and lower bounds.

2.1. Scalar quantization results

From a quantizer design perspective, a scalar quantizer
(5Q) such as the well-known Lloyd—Max quantizer
(LMQ) [7, 8] can be viewed as a special case of one-
dimensional VQ. Let R = log, N be the bit rate given in
bit/sample for SQ with N reconstruction levels. For large
R, an asymptotic formula for the normalized MSE distor-
tion of LMQ is provided in Reference [9] that can be writ-
ten in decibels as

Dimo(R) = —6.02R + Frmo(px) [dB] (8)
where & mo(px) is a constant that depends on the
PDF shape. Note again the —6.02dB/bit behavior for
large R. However, as the first term in Equation (8) equals
Dg(R) from Equation (1), we can modify Equation (8) to
obtain

3LMQ(PJ:) = DLMQ (R) — Dg(R)

=10log*(p,) [dB] ®)

Hence, the quantity €*(py), or Fpmo(ps) in decibels,
describes the PDF shape dependent performance of practi-
cal PDF-optimized scalar quantizers such as LMQ in terms
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Table 2. Performance of LMQ for four common PDFs.

PDF  Dymo(R) — Dsin(R) Simo(Px) (py)

[dB] [dB]

G 4.347 4.347 2.721
U 1.53 0 1

L 7.17 6.537 4.505
r 11.82 7.547 5.685

of normalized MSE distortion relative to the Gaussian
DRF Dg(R). The parameter ¢*(p,) is also known as SQ
performance factor [10].

Table 2 shows the asymptotic difference between the
normalized MSE distortion of LMQ D, ymq(R) and the
Shannon lower bound Dg; g(R). Note that for high rates
R — oo the DRF D(R) approaches Dgip(R). The ditter-
ence Dppvo(R) — Dsia(R) represents the maximum per-
formance that VQ with large dimension d — oo can
potentially gain over LMQ. Dy ymo(R) — Dsig(R) is thus
called the asymptotic VQ gain.

Columns 3 and 4 of Table 2 list the PDF dependent
performance of LMQ relative to the DRF Dg(R) for the
Gaussian PDF, expressed either by the quantity
&Lmo(py) in decibels or the corresponding SQ perfor-
mance factor ¢?(p,) on a linear scale.

Having the most peaked shape among the four model
PDFs, the Gamma PDF results in the highest MSE distor-
tion when using LMQ, although it has the lowest DRF
Dr(R). This result is also shown by the various
Dimo(R)-curves in Figure 2, which were obtained from
particularly designed LMQs. Therefore each scalar quan-
tizer has been optimized to one of the four PDFs by using

O o
g
& -10f 1
w
7}
= _15)
= -20}
E — Dpmg,ul(R) o
g 18 Dimo.6(R) : ‘\"‘
........ Draig i(R) ]
== Dymo,r(R)
—130 PR T U S S N
0 1 2 3 4 5

bit rate R [bits]
Figure 2. Normalized MSE distortion Dpmg(R) for a uniform,
Gaussian, Laplacian and Gamma distributed memoryless sources
using LMQ with R = log, N bit/sample.
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the LBG algorithm [11], which in the scalar case yields the
same quantizer as Lloyd’s algorithm for PDF-optimized
quantizer design [7]. (For comparison see also Dpmo(R)-
values in Table 4.4 in Reference [10]).

2.2. Asymptotic VQ results

The above given asymptotic formulas for SQ performance
have analogues for VQ. In References [12, 13] it was
shown that under the assumption of high rates R given in
bit/vector a d-dimensional VQ with N = 2F reproduction
vectors attains a minimum MSE distortion of

Dvo(d.N) = Co(d)N"||pxl 4/ (a+2) (10)

where Cq(d) is the coefficient of quantization that
describes how well cells can be packed in R? independent
of the PDF [14]. ||px||, denotes the rth norm of the
d-dimensional PDF py according to

Ioel, = ||y dx]1 (11)

For N-level VQ with N = 2% Equation (10) may by writ-
ten in decibels as

Dvold,R) =~ 2 PR+ Fuold.py) [4B] (12

Analog to the term §;yq(px) in Equation (8), the term
&vq(d, px) describes the performance of PDF-optimized
VQ relative to DRF for the Gaussian PDF, but now
depending on the joint PDF py and the dimension d, i.e.

Bo(d,px) = 1010 | Co@lpallyyarn)]  (13)

Comparing this result with the scalar case from Equation (9),
we can readily see that Fyq(d, py) is not merely a general-
ization of & v (p:)- Beyond the dependence on the PDF
shape, the step from one dimension to multiple dimensions
d causes the quantity ¥yq(d, px) to include further signal
properties that may have an impact on the VQ performance
such as vector dimension and linear as well as non-linear
dependencies between vector components.

3. MULTISTAGE VQ

Multistage VQ, which is sometimes also called cascaded
VQ, is quite common for quantization of, for example, LP
parameters in predictive speech coding. According to the
concept of successive refinement, the basic idea of MSVQ
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Figure 3. Multistage vector quantization (MSVQ).

as shown in Figure 3 is to divide encoding with N repro-
duction levels into v successive stages with N; reproduc-
tion levels each, so that N = [, N;.

The first stage VQ, performs a relatively crude quanti-
zation of the input vector x using a small codebook of size
N\. Then, a second stage quantizer VQ, with N, reproduc-
tion levels operates on the error vector e; between the ori-
ginal x and quantized reproduction x of the first stage. The
quantized error &; then provides a second approximation to
the original input vector thereby leading to a refined repre-
sentation of the input. A third stage quantizer VQ; with N3
reproduction levels may then be used to quantize the sec-
ond stage error vector ez to provide a further refinement
and so on.

From a hierarchical coding perspective, each coding
stage consists of pure VQ with N; reproduction levels,
where the input vector for the next coding stage is the cor-
responding quantization error. It is important to note that
all stages operate on the full dimensionality d. MSVQ thus
realizes only a decomposition in terms of reduced code-
book sizes but not in terms of reduced dimensionality.

3.1. Performance of MSVQ

To analyze the MSE distortion of MSVQ, let us consider
two quantizers VQ; and VQy of equal dimension d but
with different bit rates R, and Ry, where R < Ryx. The
bit rates are assumed to be sufficiently large, so that the
individual MSE distortions are given by the asymptotic
formula from Equation (12). Both, VQ, and VQy, are sepa-
rately applied to the same vector x with a given but arbi-
trary PDF py. As $yq(d,px) depends only on the
properties of the input vector x, while being independent
of the quantizer, the respective value of vold, px) is equal
for both VQs, so that the difference of the individual MSE
distortions in decibels is given by

6.02
Dyg(d,Rx) — Dyg(d,R)) = _T(RE ~Ry)
(14)
6.02
= —TRA [dB}

This result may seem trivial, but it gives rise to an inter-
esting interpretation when we consider MSVQ as shown in
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Figure 3 with only two stages, with quantizer VQ, in the
first stage, and the quantizer VQ, in the second stage
employing a bit rate of R bit/vector.

Certainly, the overall MSE distortion of such two-stage
MSVQ can never fall below the MSE distortion of VQy;, i.e.

Dyo(d,Ry) < Dvo(d,R)) + Dyo(d,Ra) [dB]  (15)

Otherwise, this would imply that the same performance
can be exceeded by sharing a fixed quota of bits over sev-
eral VQs, than by using all the bits in one single VQy
while at the same time achieving a great complexity reduc-
tion. With Equation (14) we obtain the following condition
for the MSE distortion Dyg(d, Ra) of VQ,:

6.02
————Ra < Dygld,Ra)

- (16)
Hence, we can conclude that the MSE distortion
Dvold,Ra) of VQ, is bounded below by the DRF
Dg(R) for a Gaussian PDF, even if Ry is sufficiently large
so that VQ, itself falls into the high-rate case.

(1) Memoryless Sources: Let us firstly consider the d-
dimensional input vector x to be memoryless, so that its
joint PDF py is completely specified by its respective mar-
ginal PDF p, according to py = (p_r)"'. In this case, we have
Svold, px) = Fyg(d, py). The distortion of VQ, is thus
entirely determined by the shape of the marginal PDF of
the quantization error vector ez, (i.e., the output of the first
stage) and the vector dimension d. Recall that in MSVQ
the vector dimension remains the same for all stages.

Considering for example the same Gamma distributed
source as in Figure 1, Figure 4 illustrates the asymptotic
VQ gain Dppmg(R) — Dsis(R) from Table 2 that describes
the potential improvement in MSE distortion by VQ

[dB]

0 =

3 Sl s QLMQ.[;(W{
. A g --- Dg(R)
g sk N, e |— D®
- ! .. L Dsip(R)
a . .
m ) \ Frmo(pz)
v —10 R i 1
p G s
9 B
E —-15¢ ‘ i
E dli{l;c Fvold, pz) -
S = —-ADgsLB s, T o
€ _ool ! 23 -
Dumo.r(R) — Dsa(R) W .,
0 1 2 3 4

bit rate R/d [bit/dimension]
Figure 4. LMQ performance Dpmor(R) and distortion-rate
function D:(R) (MSE distortion) for the same Gamma distrib-
uted source as in Figure 1.
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relative to LMQ, for high bit rates R and large dimensions
d. On the other hand the term & v (p:) specifies the MSE
distortion of LMQ relative to the Gaussian DRF (see
Equation (9) and Table 2). Hence, as d — oo the limiting
value of the MSE distortion of VQ relative to the Gaussian
DRF is given by
JL";—, g’vq(d‘l’x) = 3LMQ(P.:)
— (Dumo(R) — Dsis(R)) [dB]
and with the expression for & yq(p:) from Equation (9):
JLILIU Fvold,px) = Dsie(R) — D(R)

= —-ADgsp [dB]

(17)

(18)

The limiting value of Fyo(d,p,) is thus equal to the
negative asymptotic difference —ADggp between the
Gaussian DRF and the Shannon lower bound from
Equation (7). These implications are also illustrated in
Figure 4.

For finite dimensions d = 1, Figure 5 shows four dis-
tinct plots of §yq(d,p,) corresponding to the four model
PDFs from Table 1 [15]. Several observations can be made
on the Fyq(d,ps)-curves. First, we note that for large
dimensions, and in accordance to Equation (18), the limit-
ing values of the &y (d, p.)-curves are indeed the negative
values of ADg s p as listed in Table 1.

A second observation relates to the case that the quanti-
zation error vector e; with marginal PDF p,, is to be
quantized by VQ,. According to Equation (16) the
Gaussian DRF represents the minimum achievable MSE
distortion of VQ,. Substitution of Dyg(d, Ra) according
to Equation (12) in Equation (16) yields

me | |
B BH

8
IR TR BN
seradc

= kD W o N1 o
— T

------
et T B i

II‘WTIS!IIIIlI’!;‘ll‘n-;l‘;lllrl KXXK K

~

3VQ(deI)[dB]

|
—

=

_o| lower bound: '
g ;S"VQ(dy P-’E)vaz

‘‘‘‘‘‘‘

[N}

-4

0 2 4 6 8 10 12 14 16 18 20 22 24
dimension d

Figure 5. §yq(d, py): high-rate MSE distortion of VQ with finite

dimension d = 1 relative to the Gaussian DRF for the uniform,
Gaussian, Laplacian and Gamma PDF (from Reference [15]).
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6.02 6.02
—“(TRA < _TRA‘I';S;VQ(dwpez) [dB]  (19)
so that
0< ﬁVQ{.dapez) [dB] (20)

Hence, for quantization of e, with VQ,, Svold,pe,) is
bounded below by a value of 0dB. This implies that, for
a given dimension d, the shape of p,,(e;) must be such
as to keep Equation (20) satisfied.

As shown in Figure 5, the Fyq(d,p,,)-values are
required to lie above the 0-dB bound. Note that in case
of p, being a uniform PDF, p,, can never be uniform since
the corresponding Fyq(d, p.,)-curve lies consistently
below 0dB for a all d > 1. For the Gamma PDF, the
§vo(d, px)-curve trespasses the 0-dB bound shortly before
d = 6, so that for dimensions 4 = 6 we can be sure that Pe;
is neither Gamma nor uniform as both corresponding
&vold, p.,)-curves lie below the 0-dB bound.

(2) Correlated Sources: In case of linear dependency or
correlation p between the components of x, we have to
consider that correlated sources can be quantized with
lower distortion than memoryless sources. Therefore, we
can describe Fyq(d, px) from Equation (13) by the modi-
fied quantity §vq(d, py, p) that depends on the marginal
PDF p,(x) and the correlation p according to

8VQ(d1pX: p) = gVQ(dip.r: p= 0}

— 10log M(d, p) Ll

[dB]
where M(d, p) denotes the so-called memory advantage
of VQ [16]. Under high-rate assumptions M(d, p) coin-
cides with the well-known spectral flatness measure of
the random variable x [17, 18].

We note that the modified Fvyq(d, px, p)-curves, com-
pared to the memoryless case of the Fyq(d, p,)-curves,’
are lowered by the respective memory advantage
M(d, p). Yet, for the second stage quantizer VQ, the
above §yq(d, py, p) function is still bounded below as in
Equation (20) so that the Gaussian DRF still represents
the minimum achievable MSE distortion of VQ,.

For example, with a jointly Gaussian input vector with
correlation p according to a first-order Markov process, the
spectral flatness measure (and hence the memory advan-
tage) can be specified by (e.g. Reference [16])

10log M(d, p) = d™'(1 - d)10log(1 — p*) [dB] (22)

"Note that in case of a memoryless source with p = 0, we will, for con-
venience, retain usage of the notation Fvold,py) rather than
qu(dspx,p =0).
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According to our earlier observations, the PDF p,, of the
quantization error vector e; is allowed to be Gaussian,
too. Also, there might still be correlation p,, between the
components of e;. In case of p = 0.5, and under the
assumption that the correlation remains unchanged in
the quantization error vector, i.e. p,, = p, substitution of
Equation (22) into (21) shows that for values of d > 11,
Equation (20) is no longer satisfied, i.e.

< 0[dB|,d > 11

3\"()(0‘: Pes Pe,) (23)

Pes =G WPey =0.5

At first glance, this seems to contradict our previous results
which are entirely based on rate-distortion theory. Hence,
the only reasonable conclusion that can be drawn here
without violating rate-distortion theory is that the amount
of correlation is greatly reduced after the first stage of
quantization. This means, when the input vector x is
jointly Gaussian with correlation p according to a first-
order Markov process, the quantization error vector e,
can also be due to a first-order Gauss-Markov process
but with reduced correlation p,, < p. Consequently, the
spectral flatness of e, and hence the memory advantage
M(d, pe,) of VQ, will be reduced such that

[dB] (24)

0 "~<- S‘VQ (dupega Pe;)

PeyEp

will be satisfied for all values of d.

3.2. Upper bound on MSVQ penalty

The development so far provided us with some fundamen-
tal insight into the performance of MSVQ. While the first
quantizer stage of MSVQ performs like conventional fixed
rate VQ, the performance of the following quantizer stages
depends on the properties of the residual after the first
stage.

For MSVQ withi = 1,..., v stages, let R; denote the bit
rate given in bit/vector that is allocated to the individual
quantizer stages VQ;. It is convenient to specify the max-
imum MSE distortion after v stages relative to the mini-
mum attainable MSE distortion Dyq(d,Ry) of a
singlestage VQy. with rate

R}_j = iR,
i=1

This way, we will obtain an upper bound on the perfor-
mance penalty of MSVQ.

Considering only the first stage, the performance
penalty is trivially 0 dB as Ry, = R,. Given that R, is suffi-
ciently large so that VQy; has already reached asymptotic

(25)
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behaviour, a further increase of Ry, leads to a further
decrease of Dyg(d,Ry) at the asymptotic rate of 6.02/
d dB/bit. Consequently, the performance penalty of each
individual quantizer stage beyond the first one, i.e. for
i = 2, is given in decibels by the corresponding quantity
Svo(d, pe;, pe,) from Equation (21), where p,, is the mar-
ginal PDF of the vector e; which is the input to the ith
quantizer stage VQ; respectively the quantization error
of VQ,_,. Therefore, the overall performance penalty
ADwmsvold, px, v) after v stages is obtained by

ADwmsvol(d, px,v) = Z Svold,pe,pe,) [dB]  (26)
=3

To specify the maximum ADwmsvo(d, py, v), we have to
make some worst case assumptions on the shape of p,, and
the correlation p,, between the components of e;, given the
marginal PDF p, and the correlation p of the input vector X,
so that the Fyq(d, pe,, pe;) terms in the above Equation (26)
take on their respective maximum values.

For the jointly Gaussian case with correlation p according
to a first-order Markov process, only the maximum correla-
tion p**(d) that potentially exists in e; can be calculated by
solving Equation (24) for p,,. With Equations (22) and (21)
we obtain

@ <o o (0l \T]
Peld) < pe; " 14) = Bva(d:pe.)

The only worst case assumption that is admissible here
is thus, to consider all quantization error vectors €; as
memoryless, which indeed represents the ultimate worst
case assumption with respect to the memory advantage
of the following quantizer stages. With the above assump-
tion, the Fyq(d,pe,,pe,) terms in Equation (26) reduce
to their memoryless form Fyold,pe,, pe, = 0) = Fvo
(d,pe,). The potential maximum values of Fvgld,pe)
are due to a worst case assumption on the respective shape
of p,,. As will be shown by a reinspection of Figure 5, the
worst case PDF p,, individually depends on the shape of
Pe, , being the marginal PDF of the input vector to the
(i — 1)th quantizer stage. Hence, maximum values of
Fvold,p.,) imply maximization with respect to
Pe, (eip), thus for i =2,...,v

max{Fvg(d,pe)} = B9 (@.papa) 14B]  (28)
i1
whereas p,, = px.

We conjecture that under high-rate assumptions the PDF

of the quantization error resulting from PDF-optimized
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VQ tends to be less sharp and less peaked than that of
the input to the quantizer. This statement is also supported
by our observation from the &yq(d, p;)-curves in Figure 5,
which indicate that for increasing dimension d the shape of
the marginal PDF of the quantization error becomes
increasingly similar to the smooth shape of the Gaussian
PDF. Analog, as d — oo the values of §yq(d,p.,) con-
verge to those values for the Gaussian PDF.

Figure 6 shows a magnified display of the vq(d, p.)-
curves for small dimensions in the range of 2 < d < 4.
In case of p,,_, being, for example, Gamma the intersection
of the respective Fyq(d, pe,)-curve with the Fyq(d, pe,)-
curve for the Gaussian PDF lies between 2 < d < 3. As
ford =2,

%VQ(d!pe.‘)lprigp > ;}VQ(d!pt’f}lp‘gc [dB]

the Gamma PDF represents the worst case PDF p,, so that

Vo (d, e, | Pe.) = Fvold,pe,)

[dB]

Pe; =I

For d = 4 we have,
EVQ(d‘PEi)lpr{.iF < ri‘}\J’Q(du pe,)|mgG [dB]

so that the Gaussian PDF represents the worst case PDF
Pe;» and

32;8 (d,Pe.‘ “pr,.!) = qu(d'pe") L—,f.ié(} [dB]

Note that in case of p,, , being uniform, the Gaussian
PDF represents the worst case PDF p,, for all dimensions
d > 1, as the Fyo(d,p,)-curve of the uniform PDF lies
consistently below 0dB and thus below the Fvq(d, px)-
curve for p,, being Gaussian.

T .
kY
X, 398‘(2‘?&4196.;1)
4 L -
5
=
e | e
2 a0 FVQ (4, pe;lpe; 1)
2 et Mtria
9 “..‘ kT
2} .
3VQ{4;'PG.:_1HPE{V1 Ap

2 3
dimension d

Figure 6. Magnified display of the Fyq(d,ps)-curves from
Figure 5 in the range of 2 <d < 4.
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Generally, the maximum value of &vo(d, p.,) for arbi-
trary shapes of p,,_, is given by

f‘?%xfdal’e. 'pt'.' :) = %VQ(dﬂpfi—L) [dB] (29)
under the constraint of
qu(d: Peiy) = 3\’()(‘1’[)(’;)',,‘50 [dB] (30)

Otherwise, §vq (d,pe, |pe,,) is given by the respective
value for the Gaussian PDF, i.e.

qu%x(dvpeg |Peiy) = %VQ(dvFE.‘”miiG [dB] (31)
These §vq (d, pe, | pe,_, ) functions specify individual upper
bounds on the performance penalty for each quantizer
stage i. With the expression for ADwmsvo(d, py,v) in
Equation (26), the desired upper bound on the overall per-

formance penalty of MSVQ with v quantizer stages is
given by

ADYisvo(d,pe v) = ) BV (d.pe, | pe,) [dB] (32)
i=2

4. EXPERIMENTAL RESULTS

The specification of ADYqyo(d, ps, ) has been entirely
devoted to results on theoretical VQ performance based
on high rate assumptions. To see how this bound applies
in practice and for relatively small rates, MSVQ is applied
to a first-order Gauss—Markov source.

Such Gauss-Markov source with adjacent correlation p
can be used for simplified AR(1) modeling of speech
(comp. Reference [10]). Therefore, an i.i.d. zero-mean
Gaussian random variable z with variance ag = | was used
to excite a first-order, linear recursive filter. The filter out-
putx was partitioned into a set of 700 000 training vectorsx
with dimension d = 4. The vector quantizers were indivi-
dually optimized to the PDF of the respective training set
by the LBG algorithm [11].

The experiment was carried out for (a) a memoryless
source with p =0 and (b) a highly correlated source
with p=0.95. For these two settings, the plots in
Figure 7 (a) and (b) show both the predicted as well as
the actually measured MSE distortion as a function of
the bit rate Ry, respectively. In both figures, the solid line
shows the performance of singlestage VQy, which con-
stitutes the minimum attainable MSE distortion
Dyq(d, Ry) for quantization of that particular source,
while the stars indicate the performance of MSVQ with
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v=35 quantizer stages each
R; = const. = 4 bit/vector.

The plots in Figure 7(a) and (b) clearly indicate, that at
least for a cascade of more than two VQs the performance
of MSVQ is significantly worse than that of singlestage
VQy.. For quantization of the memoryless Gaussian source
it is now interesting to compare the respective performances
of MSVQ and LMQ. Thus for a given bit rate of Ry, bit/vec-
tor, the MSE distortion of MSVQ from Figure 7 (a) is com-
pared to the MSE distortion of LMQ as shown by the
dashed line in Figure 4 given the corresponding bit rate
of R = Ry/d bit/sample. The surprising result is that
already from the third quantizer stage VQ; the MSE

VQ,, employing

0

=)
& —10f : Negz
7 .
= B o
9 " T i
8 =207 =802 gp g CT
E !
2

* MSVQ, 4bit cascaded (LBG)

=300 singlestage VQy: (LBG)
=== ADEo(d pr,v) from Eq. (32)

0 4 8 12 16 20
Ry, [bit/vector] (d = 4)
(a) Gauss-Markov source: p = 0.0

0 o

I
—
o

T

|
)
=

|
]
(=]

normalized MSE [dB]

MSVQ, 4bit cascaded (LBG)
singlestage VQy, (LBG)
ADNEVg(d, pz, v) from Eq. (32)

0 4 8 12 16 20
Ry; [bit/vector] (d = 4)
(b) Gauss-Markov source: p = 0.95

Figure 7. Simulation results for MSE distortion obtained after
each stage of MSVQ versus MSE distortion of singlestage VQy.,
For comparison ADy\,(d, p., ) specifies a new upper bound
on the MSE distortion after » stages of MSVQ according to
Equation (32).
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distortion of MSVQ is higher than that of LMQ, which
implies that for a memoryless Gaussian source a cascade
of ¥ = 3 VQ stages performs actually worse than LMQ.

Regarding the performance of the singlestage VQs,
both Dyq(d, Ry )-curves from Figure 7(a) and (b) reach
their asymptotic behaviour of —6.02/d dB/bit at Ry, =
5bit/vector. A comparison of the Dyg(d, Ry)-curves
further indicates that VQ of the correlated source (comp.
Figure 7(b)) yields lower MSE distortion than VQ of the
memoryless source (comp. Figure 7(a)) for all bit rates Ry,
which complies with our theoretical considerations on the
memory advantage of VQ according to Equation (21).
Between these two curves we measure an asymptotic dif-
ference of 101log M(d, p) = 7.58 dB. Note that this mea-
sured value of the memory advantage is exactly the same
as what can be theoretically calculated from Equation (22),
ie. M(d, p) = M(d, p).

Due to the worst case assumption of zero correlation
Pe, in the quantization error vectors e;, the predicted
MSVQ penalty ADYc\o(d, px, ¥) must be the same for
both cases, which can be readily recognized from the
identical slope of the dashed lines in Figure 7(a) and
(b). It is therefore, easy to understand that the bound
is more accurate for the memoryless case than for
p = 0.95. In the latter case the actual correlation values
pe, are non-zero which causes a considerable memory
advantage for each VQ; beyond VQ,. Column 2 of
Table 3 shows the individual memory advantage for
each VQ; as can be determined from the distance
between the actually measured values of MSVQ distor-
tion (stars) in Figure 7(b) and (a) minus the offset of
7.58dB (see above). Insertion of these values into
Equation (22) and some algebra yields an expression
to specify the effective p,, values as listed in column 3.

First, we note the rapid decrease of correlation after the
first stage as indicated by the differential value of
Ap, = 0.65 in column 4, while the further decrease of p,,
is comparably flat. Secondly, we note a value of

Table 3. Experimental results for MSVQ of a Gauss—Markov
source with adjacent correlation p = 0.95.

VQ, j\;[’ (d, p) |VQ‘- Pe; Ap
[dB]

1 7.58 0.95

2 0.31 0.30 0.65

3 0.25 0.28 0.02

4 0.33 0.31 —0.03

5 0.03 0.10 0.21
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Pe, = 0.3. This value is considerably lower than the poten-
tial maximum value of p’™* = 0.69 which can be calcu-
lated from Equation (27). Together with the results from
the above performance comparison with LMQ the results
on the effective p,, values after the first quantizer stage
may explain, why in practice MSVQ schemes usually have

no more than two or three stages.

5. CONCLUSIONS

In this paper, we addressed the performance penalty that
arises when using a hierarchical coder based on MSVQ
as opposed to the use of a non-hierarchical coder based
on fixed rate VQ when using the MSE distortion criterion.
Therefore, we reviewed several important results from
rate-distortion and high-rate quantization theory. The the-
oretical tools that these two theories provide for describing
the performance of fixed-rate VQ were used to specify a
new upper bound on the performance penalty of MSVQ.
From the theoretical analysis of MSVQ we also gained
fundamental insight in the performance of hierarchical
coding based on cascaded coding approaches. The results
on MSVQ performance respectively the MSVQ penalty
were confirmed by practical experiments. These experi-
ments also indicated that the upper bound on the MSVQ
penalty, although completely based on theoretical consid-
erations and high-rate assumptions, applies for low bit
rates as well.
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