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ABSTRACT

This paper presents a modified Kalman Filter operating in the fre-

quency domain for single channel speech enhancement. The pro-

posed scheme uses a two step approach. In the first step, informa-

tion from previous, enhanced speech DFT coefficients is exploited to

perform an estimation of the current speech coefficients. Investiga-

tions show that the highest prediction gain is achieved by modeling

the temporal trajectory of the speech DFT coefficients as a complex

autoregressive (AR) process. In the second step, the first prediction

is updated using three alternative spectral estimators, including the

conventional Kalman Filter gain. Instrumental measurements show

the improvement of the proposed scheme compared to purely statis-

tical weighting rules.

Index Terms— Speech enhancement, noise reduction, adaptive

Kalman filtering, linear prediction

1. INTRODUCTION

When a speech communication device is used in environments with

high levels of ambient noise, the noise picked up by the microphone

significantly impairs the quality and the intelligibility of the trans-

mitted speech signal. In order to get a reliable separation from the

noise signal (e.g., engine noise, street noise), noise reduction algo-

rithms have become part of digital speech coding systems recently.

They are used for example in mobile communications, in hearing

aids and in hands-free devices.

State-of-the-art noise suppression systems are based on the so

called ‘spectral weighting’ approach. The Discrete Fourier Trans-

form (DFT) is used to perform noise suppression in the frequency

domain by applying individual adaptive gains to each frequency bin.

Most of the rules, proposed in literature, have been derived under

certain assumptions about the statistics of the speech and noise DFT

coefficients. The well-known Wiener Filter [1], for instance, is de-

rived under the assumption that speech and noise samples are Gaus-

sian distributed. Recently, the use of more sophisticated distributions

to model the statistics of speech and noise were proposed, e.g., [2]

and [3]. All of these assumptions may be classified as memory-less

a priori knowledge, as only the probability distributions of either

complex DFT coefficients, real-valued magnitudes or phase coeffi-

cients are considered. Correlation in time is not taken into account.

The authors in [4] were the first who proposed the use of a

Kalman Filter for the purpose of speech enhancement. Compared

to the Wiener filtering method, the performance of this model-based

approach was shown to be considerably better. In order to reduce

complexity, the authors in [5] introduced a Kalman filtering system
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in the sub-band domain that additionally achieved better results than

the full-band time approach. In [6], the application of a Kalman

Filter in sub-bands was further investigated and improved. How-

ever, most of these techniques only consider the temporal correla-

tion within one frame and only a very limited number of proposals

are known which also take into account the correlation of successive

speech frames, e.g., [7].

In this paper, a Kalman Filter approach is presented that uses

complex prediction to exploit the temporal correlation of successive

speech DFT coefficients. The resulting prediction error is estimated

in a second step applying different statistical estimators which are

suitable for the statistics of the error signal. The remainder of this

paper is organized as follows. In Sec. 2, a brief overview about

the proposed system is given. Sec. 3 comprises the individual steps

of the modified Kalman Filter in detail. Experimental results are

reported in Sec. 4 and conclusions are drawn in Sec. 5.

2. SYSTEM OVERVIEW

The clean speech signal s(k) is assumed to be degraded by an addi-

tive noise signal n(k) to produce the noisy signal

y(k) = s(k) + n(k), (1)

where k is the discrete time index. Fig. 1 illustrates the simpli-

fied block diagram of the system that was considered within this

work for noise reduction. The decomposition of speech and noise is

performed in the frequency domain. Therefore, the noisy input sig-

nal y(k) is segmented into overlapping frames of length LF. After

windowing (e.g., applying a Hann window), these frames are trans-

formed via Fast Fourier Transform (FFT). The spectral coefficient of

the noisy input signal at frequency bin μ and frame λ is given by

Y (λ, μ) = S(λ, μ) + N(λ, μ) = R(λ,μ)e
jϑ(λ,μ)

, (2)

where S(λ, μ) and N(λ, μ) represent the spectral speech and noise

coefficients. R(λ,μ) and ϑ(λ, μ) are the corresponding noisy mag-

nitude and phase, respectively. Moreover, the magnitude of the
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Fig. 1. System block diagram
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speech coefficient S(λ, μ) is denoted by A(λ,μ) and the correspond-

ing phase by α(λ, μ).

The system used for speech enhancement is based on a Kalman

Filter structure that can be divided into two steps. In the first step,

called propagation step, the temporal correlation of successive speech

frames is exploited. The estimate Ŝprop(λ, μ) of the current speech

coefficient S(λ, μ) is propagated in time based on information taken

from the previous NK enhanced coefficients, i.e.,

Ŝprop(λ, μ) = f
“
Ŝup(λ− 1, μ), . . . , Ŝup(λ−NK, μ)

”
. (3)

In the second step, called update step, this first estimation is updated

by utilizing the noisy coefficient Y (λ, μ) of the current frame. Con-

sidering the differential signal

D(λ, μ) = Y (λ, μ)− Ŝprop(λ, μ), (4)

the update step estimates the prediction error

E(λ,μ) = S(λ, μ)− Ŝprop(λ, μ) (5)

of the propagation step. As will be seen later in Sec. 3.2, an adequate

statistical estimator can be used for this purpose. Thus, the estimate

Ê(λ, μ) of the prediction error can be stated as a spectral weighting

of the differential signal by multiplying the Kalman gain K(λ, μ):

Ê(λ,μ) = K(λ, μ)D(λ, μ). (6)

The results of both steps are combined to get the enhanced speech

coefficient

Ŝ
′
up(λ, μ) = Ŝprop(λ,μ) + Ê(λ, μ). (7)

It turned out that speech distortions are reduced by omitting the

phase of Ŝ′
up(λ, μ) and using instead the short-time phase of the

noisy input signal for reconstruction, i.e.,

Ŝup(λ,μ) =
˛̨
˛Ŝ′

up(λ, μ)
˛̨
˛ e

jϑ(λ,μ)
. (8)

In order to obtain the enhanced signal in the time domain, an Inverse

Fast Fourier Transform (IFFT) and the overlap-add method are ap-

plied.

3. MODIFIED KALMAN FILTER

This section addresses the basic principles of the afore mentioned

propagation and update steps in Fig. 1. The main differences com-

pared to a conventional Kalman Filter (e.g., [4], [5], [6]) used for

speech enhancement are presented.

3.1. Propagation Step

For the estimation of the current speech coefficient S(λ, μ) within

the propagation step, the autoregressive (AR) speech model is used

which has been proven to be very effective for modeling the human

speech production system. In contrast to most other speech process-

ing algorithms, the AR process is used here in the frequency domain

to model the temporal trajectory of each frequency bin. Thus, the

speech coefficient S(λ, μ) can be stated as:

S(λ, μ) =

NKX
i=1

âi(λ, μ)Ŝup(λ− i, μ) + E(λ,μ), (9)

where NK is the model order and âi(λ, μ) is the i-th AR coefficient

that has to be estimated in advance.

While in [7] the authors propose a system that depends on two

separate Kalman Filters for real and imaginary part, a complex pre-

dictor is required here in order to compute the spectral coefficient

1The derivation of the complex AR coefficients can be carried out ana-
logue to the real case.

D(λ, μ), see Eq. (4). For this purpose, three alternative methods are

investigated in the following to perform the complex estimation:

1) Predict magnitude and phase separately:

Âprop(λ, μ) =

NKX
i=1

âi,abs(λ, μ)
˛̨
˛Ŝup(λ− i, μ)

˛̨
˛ (10)

α̂prop(λ, μ) =

NKX
i=1

âi,∠(λ,μ)∠
n

Ŝup(λ− i, μ)
o

(11)

⇒ Ŝ
(1)
prop(λ, μ) = Âprop(λ, μ)e

jα̂prop(λ,μ)
(12)

2) Predict real and imaginary part separately:

Ŝ
(2)
prop(λ, μ) =

NKX
i=1

âi,Re(λ, μ)Re
n

Ŝup(λ− i, μ)
o

+ j

NKX
i=1

âi,Im(λ,μ)Im
n

Ŝup(λ− i, μ)
o

(13)

3) Apply complex AR coefficients:

Ŝ
(3)
prop(λ, μ) =

NKX
i=1

âi(λ, μ)Ŝup(λ− i, μ) (14)

Re{·} and Im{·} denote real and imaginary part and ∠{·} represents

the phase operator. For the computation of the AR coefficients, the

minimization of the prediction error energy is used as optimization

criterion. Hence, the real AR coefficients in Eqs. (10), (11) and (13)

and also the complex coefficients1 in Eq. (14) can be obtained by

using the Yule-Walker equations [8], where the required autocorre-

lation vector and matrix are calculated from the past LAC enhanced

speech coefficients. In order to find out which one of these methods

performs best, the prediction gain

G
(j)
P =

E
˘
|S(λ, μ)|2

¯
E

j˛̨
˛S(λ,μ) − Ŝ

(j)
prop(λ, μ)

˛̨
˛2

ff , j ∈ {1, 2, 3} (15)

was measured with the expectation operator E{·}. Here, idealis-

tic conditions were assumed, i.e., the prediction was based on clean

speech coefficients and ideal AR coefficients determined from the

previous LAC clean samples. Fig. 2 depicts the results over the model

order NK. The data is obtained from about 30 minutes of samples se-

lected randomly from the NTT speech database (sampling frequency

fs = 8 kHz). Moreover, the frame size was set to 20 ms (LF = 160),

the shift size to 5 ms and LAC = 8 was used.

The results show that the highest prediction gain is obtained by

using complex AR coefficients. Note that even negative values are
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achieved when magnitude and phase are predicted separately. This is

due to the fact that there is almost no correlation in successive phase

samples. On the basis of these results, complex AR coefficients de-

termined from previous enhanced speech coefficients were used to

estimate the current speech coefficient in the propagation step, fol-

lowing Eq. (14).

3.2. Update Step

While in the propagation step the temporal correlation of the speech

signal is exploited, the update step utilizes the statistical characteris-

tics of speech and noise. The objective in this step is to estimate the

prediction error E of the propagation step. Reorganizing Eq. (4) and

using Eq. (2), it can be shown that the differential signal D consists

of the prediction error degraded by the initial noise signal N :

D(λ, μ) = S(λ, μ) + N(λ, μ)− Ŝprop(λ, μ) (16)

= E(λ,μ) + N(λ, μ). (17)

Thus, the task of the update step eases to the classical noise reduc-

tion problem: Decomposition of the noisy input sample D into the

new wanted coefficient E and the noise coefficient N . Therefore, a

conventional statistical estimator can be applied which is adapted to

the statistics of E and N .

In the following, E and N are assumed to be statistically in-

dependent. Whereas a Gaussian signal model is considered for the

noise coefficients, the statistical distribution of the prediction error is

investigated by means of histogram measurements. Fig. 3 depicts the

histogram of the real part of the DFT coefficients, averaged over ap-

proximately 2 hours of speech taken from the NTT speech database

after normalization to E{|Re{E(λ, μ)}|2} = 1 along with the ana-

lytic Gaussian, Laplacian and two-sided Gamma probability density

functions (PDFs). It can be seen that the PDF of Re{E} lies some-

where between a Gaussian and Laplacian PDF. The same distribution

holds for the imaginary part. Based on these results, three suitable

spectral estimators are proposed for the calculation of the weighting

gains K(λ, μ) which are briefly described in the following:

a) Gaussian MMSE Estimator/Wiener Filter

This Gaussian minimum mean square error (MMSE) estimator cor-

responds to the Wiener Filter solution and is derived from the opti-

mal filter theory [1]. It is a linear estimator that minimizes the mean

square error between clean and enhanced coefficient. Applied to the

update step, the enhanced coefficient Ê(λ, μ) can be stated as:

Ê(λ, μ) = E
˘
E(λ,μ)|D(λ, μ)

¯
. (18)

Note that this MMSE estimator in the update step equals the conven-

tional Kalman filter gain as it arises from the same assumption that

prediction error and noise are Gaussian distributed [5].
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Fig. 3. Histogram of prediction error E

b) Supergaussian MMSE Estimator

In [2], the authors propose an MMSE estimator that uses a Laplacian

PDF for the statistics of the wanted signal and a Gaussian model for

the noise signal. This approach can be utilized here and a separate

estimator for real and imaginary part of E(λ,μ) is obtained under

the assumption that real and imaginary parts of D(λ, μ), E(λ,μ)
and N(λ, μ) are statistically independent:

Ê(λ,μ) =E
˘

Re{E(λ,μ)}|Re{D(λ, μ)}
¯

+ jE
˘

Im{E(λ, μ)}|Im{D(λ, μ)}
¯
. (19)

c) Supergaussian Joint MAP Estimator

Applied to the update step, this more generalized supergaussian es-

timator [3] uses a parametric function to approximate the PDF of

the spectral magnitude |E|. The Kullback-Leibler distance between

measured and modeled PDF is used to obtain the optimal approxima-

tion [3]. In combination with a Gaussian noise model, this maximum

a posteriori (MAP) estimator jointly maximizes the a posteriori PDF

of amplitude and phase of the prediction error E, given the noisy

sample D:

|Ê| = arg max
|E|

p (|E|, ∠{E}|D) (20)

∠{Ê} = arg max
∠{E}

p (|E|, ∠{E}|D) . (21)

All the afore mentioned estimators require the a posteriori SNR γ
and the a priori SNR ξ as input parameters. For the application

within the update step they are defined as follows:

γ(λ, μ) =
|D(λ, μ)|2

σ̂2
N(λ, μ)

and ξ(λ, μ) =
E{|E(λ, μ)|2}

σ̂2
N(λ, μ)

. (22)

While the noise power spectral density (PSD) σ̂2
N(λ, μ) can be es-

timated, e.g., using [9], the a priori SNR is usually estimated using

the recursive decision-directed approach [10].

4. EVALUATION

For the evaluation, five different noise types (babble, car, f16, fac-

tory, white) from the NOISEX-92 database were added to three male

and two female speech sequences (each with a length of 8 s taken

from the NTT speech database) at an input SNR varying between

-10 dB and 35 dB with an increment of 5 dB. Investigated estima-

tors were the weighting rules introduced above: Gaussian MMSE

estimator/Wiener Filter, supergaussian MMSE estimator (MMSE-

LapGauss) and supergaussian joint MAP estimator (JMAP). On the

one hand, these suppression rules were used as purely statistical es-

timators, directly applied to the noisy input signal and on the other

hand, they were embedded in the proposed Kalman Filter structure

within the update step. According to Fig. 2, complex prediction

with NK = 3 and LAC = 8 was used in the prior propagation

step. Moreover, the transformation in the frequency domain was ob-

tained by using 75% overlapping Hann analysis windows of 20 ms

length for all investigated techniques. The required a priori SNR

and noise PSD estimation was performed by the decision-directed

approach [10] and minimum statistics [9], respectively.

In the simulation, the speech and noise signal can be filtered

separately with weighting gains adapted for the noisy signal. Hence,

the output signal can additionally be stated as ŝ(k) = s̃(k) + ñ(k),

where s̃(k) is merely the filtered speech signal and ñ(k) the filtered

noise signal. Based on these quantities, the segmental speech SNR

(SegSSNR), the segmental noise attenuation (NA) and the segmental

speech attenuation (SA) were calculated (e.g., Chap. 4 in [11]).

Figs. 4 and 5 depict the averaged results for SA and SegSSNR,

respectively, both plotted over NA with the input SNR as control
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variable. Thus, a fair comparison with respect to the tradeoff be-

tween noise attenuation and speech distortion is possible. In Fig. 4,

the points of best performance would be placed in the lower right

corner, in Fig. 5, in the upper right corner. A lower a priori SNR

threshold was applied to all estimators in a way that they yield nearly

the same SA at 5 dB input SNR (cf. Fig. 4).

While keeping the SA and SegSSNR constant, it can be seen

that the Kalman Filter approaches achieve a higher NA than the

corresponding, purely statistical estimators. Comparing the three

Kalman Filters, the use of supergaussian PDFs to model the statis-

tics of the prediction error yields better results than the conventional

Kalman (Gauss) Filter gain. Especially the utilization of the JMAP

weighting rule outperforms all other approaches. The achieved re-

sults correspond to the subjectively perceived speech quality (infor-

mal listening tests). Furthermore, the gain that was achieved due to

the exploitation of the temporal correlation in the propagation step

was investigated. Fig. 6 depicts the effective prediction gain of all

three proposed estimators over the input SNR, compared to the clean

speech case (cf. Fig. 2). It can be seen that the proposed system al-

ready starts to benefit from the propagation step at -10 dB input SNR

and reaches the level of ideal prediction nearly at 25 dB.

Even though the computational complexity is moderately in-

creased by the proposed estimators, the evaluation clearly shows the

advantages of these modified Kalman Filters and motivates further

investigations in combined model-based and statistical approaches.
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5. CONCLUSIONS

In this contribution, a modified Kalman Filter for single-channel

speech enhancement is presented. The approach is based on a two

step operation. In the first step, temporal correlation of successive

speech frames is exploited by using complex linear prediction. In

the second step, the first prediction is updated utilizing the statistical

characteristics of the error signal. Here, not only the conventional

Kalman Filter gain (relying on a Gaussian model for speech and

noise) is taken into account, but also statistical estimators adapted

explicitly to the PDF of the prediction error signal. Instrumental

measurements have shown that the proposed modified Kalman Fil-

ters outperform the purely statistical estimators in terms of speech/

noise attenuation and segmental speech SNR. Moreover, the use of a

supergaussian PDF to model the statistics of the prediction error has

yielded better results than the conventional Kalman Filter gain. The

results have been confirmed by informal listening tests.
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