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Abstract

A new speech enhancement algorithm using a modified Kalman
filter in the frequency domain is proposed. The new approach
consists of two steps. In the first step, the temporal trajectories
of the speech and noise magnitudes are modeled by low order
autoregressive (AR) processes, i.e., the current coefficients are
propagated in time based on information taken from previous, en-
hanced coefficients, followed by a subsequent phase estimation.
In the second step, the first estimation is updated. Therefore, two
statistical estimators are utilized. The performance of the pro-
posed method is shown to be considerably better than purely sta-
tistical estimators.

1 Introduction

Speech quality and intelligibility may significantly deteriorate in
the presence of background noise, e.g., engine noise or street
noise. The problem of enhancing speech that is degraded by addi-
tive noise has been widely studied in the past and is still an active
field of research. Speech enhancement has many applications in
voice communications, speech recognition and hearing aids.

The design of many speech enhancement systems is based
on modeling the noisy input coefficients in the short-time Fourier
transform (STFT) domain by applying individual adaptive gains
to each frequency bin. Most of the rules proposed in literature
have been derived under certain assumptions about the statis-
tics of the speech and noise signal. Considering a Gaussian
speech and noise model, this enables to deduce useful mini-
mum mean-squared error (MMSE) estimators, such as the well-
known Wiener filter [1] or the short-term spectral amplitude
(STSA) estimator [2]. Martin [3] proposed the use of a Gamma
speech model and derived an MMSE estimator for the complex
speech coefficients under the assumption of Gaussian and Lapla-
cian noise models. Lotter [4] derived a maximum a posteriori
(MAP) estimator using a super-Gaussian speech and Gaussian
noise model. All of these estimators only utilize statistical char-
acteristics of speech and noise, correlation in time is explicitly
not taken into account.

Paliwal and Basu [5] were the first to propose the use of a
Kalman filter for the purpose of speech enhancement. In order
to reduce complexity, the authors in [6] derived a Kalman fil-
tering system in the sub-band domain. Puder [7] further inves-
tigated the application of a Kalman filter in sub-bands and in-
creased the performance compared to the full-band time domain
approach. In addition to the exploitation of intra-frame corre-
lation, model-based approaches that consider the correlation of
successive speech frames can be found, e.g, in [8] and [9].

In this paper, the Kalman filter approach of [9] is modified
and extended. Instead of using a complex predictor to exploit the
temporal correlation of successive spectral coefficients, only the
real-valued magnitudes are propagated in time, followed by an
additional phase estimation term. Furthermore, the propagation
step is not only applied to the speech signal, but also extended
to the noise signal. The resulting prediction errors are estimated
in a second step by utilizing different statistical estimators. The
remainder of this paper is organized as follows: In Sec. 2, a
brief overview about the proposed system is given. Secs. 3 and 4
comprise the procedure of propagation and update step in detail.

This work was supported by Nokia, Tampere, Finland.

Experimental results are shown in Sec. 5 and conclusions are
drawn in Sec. 6.

2 System Overview
A simplified block diagram of the proposed system is depicted
in Fig. 1. It is assumed that the noisy input signal y(k) consists
of the clean speech signal s(k) which is degraded by an additive
noise signal n(k), i.e.,

y(k) = s(k)+n(k), (1)

where k is the discrete time index. To decompose speech and
noise signal, the noisy signal is transformed into the frequency
domain. Therefore, y(k) is segmented into overlapping frames
of length LF. After windowing, the fast Fourier transform (FFT)
is applied to these frames. Hence, the spectral coefficient of the
noisy input signal at frequency bin µ and frame λ is given by:

Y (λ ,µ) = S(λ ,µ)+N(λ ,µ) (2)

= R(λ ,µ)e jϑ (λ ,µ) (3)

= A(λ ,µ)e jα(λ ,µ) +B(λ ,µ)e jβ (λ ,µ)
, (4)

where S(λ ,µ) and N(λ ,µ) represent the spectral coefficients of
speech and noise. Moreover, R(λ ,µ), A(λ ,µ) and B(λ ,µ) de-
note the magnitudes of the noisy, speech, and noise signal and
ϑ (λ ,µ), α(λ ,µ), β (λ ,µ) are the corresponding phases respec-
tively.

The investigated system is based on a Kalman filter structure
that consists of two steps, namely propagation and update step.
Both are briefly explained in the following. In the propagation
step, temporal correlation (a priori information of higher order)
of successive frames is exploited. The current speech and noise
magnitudes are predicted based on information taken from previ-
ous, enhanced coefficients. In contrast to [9], possible correlation
of the noise magnitudes is also taken into account. Additionally,
magnitude and phase estimations are performed consecutively.
The resulting estimates

Ŝprop(λ ,µ) = Âprop(λ ,µ)e jα̂(λ ,µ) and (5)

N̂prop(λ ,µ) = B̂prop(λ ,µ)e jβ̂ (λ ,µ) (6)

are combined to get an estimation of the current noisy coefficient

Ŷprop(λ ,µ) = Ŝprop(λ ,µ)+ N̂prop(λ ,µ). (7)

In general, the prediction in the propagation step is erroneous and
the prediction errors

ÊS(λ ,µ) = S(λ ,µ)− Ŝprop(λ ,µ) and (8)

ÊN(λ ,µ) = N(λ ,µ)− N̂prop(λ ,µ) (9)

occur for the speech and noise signal. Considering the differential
signal

D(λ ,µ) = Y (λ ,µ)−Ŷprop(λ ,µ), (10)

the update step estimates these prediction errors based on a con-
ventional statistical estimator, utilizing a priori information of ze-
roth order. This estimator is adapted to the statistics of speech and
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Figure 1: System block diagram

noise and performs a spectral weighting of the differential signal
by multiplying the Kalman gain K(λ ,µ):

ÊS(λ ,µ) = K(λ ,µ)D(λ ,µ) (11)

ÊN(λ ,µ) = (1−K(λ ,µ))D(λ ,µ). (12)

To obtain the enhanced speech and noise coefficients Ŝ′up(λ ,µ)

and N̂′
up(λ ,µ), the initial predictions of the propagation step are

updated:

Ŝ′up(λ ,µ) = Ŝprop(λ ,µ)+ ÊS(λ ,µ) (13)

N̂′
up(λ ,µ) = N̂prop(λ ,µ)+ ÊN(λ ,µ). (14)

It turned out that speech distortions can be reduced by omitting

the phase of Ŝ′up(λ ,µ) and using the short-time phase of the noisy

input coefficient instead for reconstruction. The enhanced speech
coefficient is therefore given by:

Ŝup(λ ,µ) =
∣
∣Ŝ′up(λ ,µ)

∣
∣e jϑ (λ ,µ)

. (15)

In order to obtain the enhanced signal ŝ(k) in the time domain, an
inverse fast Fourier transform (IFFT) and the overlap-add method
are applied.

3 Propagation Step
In this section, further details about the propagation step are
given. The magnitudes A(λ ,µ) and B(λ ,µ) of the speech and the
noise signal are both modeled as two independent autoregressive
(AR) processes. Based on these predictions, the phases α(λ ,µ)
and β (λ ,µ) are estimated.

3.1 Magnitude Estimation

Within the modified Kalman filter, the AR model is used to ex-
ploit temporal correlation of the speech and noise magnitudes. In
[9], a complex AR model was used to directly predict the spectral

coefficient Ŝprop(λ ,µ). It was shown that this kind of complex
estimator achieves the highest prediction gain

GP =
E

{
|S(λ ,µ)|2

}

E

{∣
∣S(λ ,µ)− Ŝprop(λ ,µ)

∣
∣
2
} , (16)

compared to estimators that predict either magnitude and phase
or real and imaginary part separately. The aim in this contribution
is not to utilize the AR model for a complex but for a real-valued
magnitude prediction. This is motivated by the fact that most
part of the temporal correlation of the spectral coefficients can be

found in successive magnitudes and only marginally in the phase

samples. In addition, the magnitude predictions Âprop(λ ,µ) and

B̂prop(λ ,µ) are used here in a second step to estimate the phases
α and β , as described in Sec. 3.2.

The magnitudes Âprop(λ ,µ) and B̂prop(λ ,µ) for speech and
noise can be stated as:

Âprop(λ ,µ) =
NK

∑
i=1

âi(λ ,µ)Âup(λ − i,µ) and (17)

B̂prop(λ ,µ) =
MK

∑
i=1

b̂i(λ ,µ)B̂up(λ − i,µ), (18)

where NK and MK represent the orders of the speech and the noise

model respectively. The AR coefficients âi(λ ,µ) and b̂i(λ ,µ) are
estimated in advance by minimizing the prediction error energies.
This optimization criterion leads to the well-known Yule-Walker
equations [10]. The required autocorrelation vector and matrix
are calculated from the previous LAC enhanced magnitudes of
either speech or noise.

3.2 Phase Estimation

In contrast to [9], magnitude and phase are estimated consec-
utively in this contribution. As there is almost no correlation
in successive phase samples, linear prediction is explicitly ap-
plied to the speech and noise magnitudes in order to exploit the
maximum temporal correlation within adjacent magnitudes. If

Âprop(λ ,µ) and B̂prop(λ ,µ) are available for the current frame λ ,

the phases α̂(λ ,µ) and β̂ (λ ,µ) are estimated according to Fig. 2.
The aim in this phase estimation process is to ensure that the re-

sulting phase of Ŷprop(λ ,µ) equals the noisy input phase ϑ (λ ,µ).
Therefore, the following procedure is applied. Note that the
frame index λ and the frequency index µ are omitted in the fol-
lowing for simplicity.

1. At first, a random phase α̂ out of the range

ϑ −arsin
B̂prop

Âprop

≤ α̂ ≤ ϑ +arsin
B̂prop

Âprop

(19)

is selected and applied to Âprop in order to obtain Ŝprop (cf.
Eq. 5). The limitation in Eq. 19 ensures that in the follow-

ing step at least one phase β̂ can be found which satisfies
6 {Ŷprop} = ϑ , where 6 {·} represents the phase operator. Ob-
viously, the range of the phase limitation is dependent on the
estimated input signal-to-noise Ratio (SNR), where the worst

case is given below 0 dB. Assuming that the predictions Âprop

and B̂prop are adequate, the phase estimation of α gets more
precise with an increasing input SNR.
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Figure 2: Phase estimation

2. The phase β̂ that satisfies the following equation:

6
{

Âprope jα̂ + B̂prope jβ̂
}

= ϑ (20)

is selected as estimate for the noise phase. In general, there
are two solutions of Eq. 20, as can be seen from Fig. 2. In this

case, β̂ is chosen such that the distance Y (λ ,µ)−Ŷprop(λ ,µ)

is minimized. Hence, N̂prop and Ŷprop are calculated according
to Eqs. 6 and 7 respectively.

4 Update Step
While in the propagation step, the temporal correlation of suc-
cessive speech and noise magnitudes is exploited, the update step
makes use of the statistical characteristics of both signals. The
objective in this step is to estimate the prediction errors ES(λ ,µ)
and EN(λ ,µ), caused in the propagation step. By reorganizing
Eq. 10, it can be shown that the differential signal D(λ ,µ) con-
sists of the speech prediction error ES(λ ,µ) that is degraded by
the noise prediction error EN(λ ,µ):

D(λ ,µ) = Y (λ ,µ)−Ŷprop(λ ,µ)

= S(λ ,µ)− Ŝprop(λ ,µ)+N(λ ,µ)− N̂prop(λ ,µ)

= ES(λ ,µ)+EN(λ ,µ). (21)

The estimation problem in the update step reduces to a classical
noise reduction problem: The target coefficient ES(λ ,µ) is as-
sumed to be degraded by the additive ‘noise’ coefficient EN(λ ,µ)
to produce the noisy coefficient D(λ ,µ). Thus, a conventional
statistical estimator can be applied which is adapted to the statis-
tics of the prediction errors.

Based on the assumption that the coefficients ES(λ ,µ) and
EN(λ ,µ) are statistically independent, two estimators are con-
sidered in the following for the update step, namely an MMSE
estimator [1] and a recently published super-Gaussian joint MAP
estimator [4]. Both estimators rely on a Gaussian model for the
noise signal. Indeed, even if the initial speech signal s(k) is de-
graded by a colored noise n(k), the propagation step has the effect
of a prewhitening filter as it reduces possible temporal correla-
tion. In addition, both estimators require the a posteriori SNR
γ(λ ,µ) and the a priori SNR ξ (λ ,µ), which are defined here as
follows:

γ(λ ,µ) =
|D(λ ,µ)|2

E {|EN(λ ,µ)|2} and ξ (λ ,µ) =
E {|ES(λ ,µ)|2}
E {|EN(λ ,µ)|2} .

(22)
The two estimators are briefly described in the following:

1. Gaussian MMSE Estimator/Wiener Filter
This Gaussian MMSE estimator corresponds to the well-
known Wiener filter solution and is derived from the optimal
filter theory [1]. This linear estimator minimizes the mean
square error between clean and enhanced coefficient. Applied

to the update step, the enhanced coefficient ÊS(λ ,µ) can be
stated as:

ÊS(λ ,µ) = E
{

ES(λ ,µ)|D(λ ,µ)
}

(23)

=
ξ (λ ,µ)

ξ (λ ,µ)+1
︸ ︷︷ ︸

KG(λ ,µ)

D(λ ,µ), (24)

Note that this MMSE estimator in the update step equals the
conventional Kalman filter gain as it arises from the same as-
sumption that the prediction errors for speech and noise are
Gaussian distributed [6].

2. Super-Gaussian Joint MAP Estimator
Applied to the update step, this generalized super-Gaussian
estimator [4] uses the following parametric function to ap-
proximate the probability density function (PDF) of the spec-
tral magnitude |ES|:

p(|ES|) =
δ η+1

Γ(η +1)

|ES|η

σ
η+1
ES

exp

{

−δ
|ES|
σES

}

, (25)

where Γ(·) states the Gamma function and σES
the standard

deviation of the speech prediction error. The parameters δ
and η can be selected in order to obtain the optimal approx-
imation. Therefore, the Kullback-Leibler distance between
measured and modeled PDF is used [4]. In combination with
a Gaussian noise model, this MAP estimator jointly maxi-
mizes the a posteriori PDF of amplitude and phase of the pre-
diction error ES, given the noisy sample D:

|ÊS| = argmax
|ES|

p(|ES|, 6 {ES}|D) (26)

6 {ÊS} = arg max
6 {ES}

p(|ES|, 6 {ES}|D) , (27)

resulting in the following weighting rule:

ÊS(λ ,µ) =

(

u(λ ,µ)+

√

u2(λ ,µ)+
η

2γ(λ ,µ)

)

︸ ︷︷ ︸

KS(λ ,µ)

D(λ ,µ),

(28)

where u(λ ,µ) = 1
2 − δ

4
√

γ(λ ,µ)ξ (λ ,µ)
.

Based on the calculation of either KG or KS, the noise prediction
error can be estimated according to Eq. 12.

5 Results
For the evaluation of the proposed noise reduction scheme, five
speech signals from the NTT speech database were each degraded
by six different noise types (f16, babble, car, factory1, factory2,
white), taken from the NOISEX-92 database. Among the five
speech signals, there were three sqeuences from a male and two
from a female speaker, each with a length of 8 seconds. The
input SNR was varied between -10 dB and 35 dB (step size: 5
dB). For the analysis and synthesis structure, 75% overlapping
Hann windows with a length of 20 ms and a 256-FFT (includ-
ing zero-padding) were used. It turned out that good results
were achieved by the following parameters applied to the mod-
ified Kalman filter: LAC = 6, NK = 3 and MK = 2 (sampling
frequency fs=8 kHz). While the power of the noise prediction

error E {|EN(λ ,µ)|2} was estimated by using [11], the decision-
directed approach [2] was utilized for the estimation of the a pri-
ori SNR.

A total of six different noise suppression techniques were in-
vestigated. Among them were the purely statistical weighting
rules: Wiener filter [1] and super-Gaussian joint MAP (JMAP)
estimator [4]. They were compared with the modified Kalman
filter in [9] (Kalman filter S) and the new approach (Kalman filter
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Figure 3: Speech attenuation vs. noise attenuation
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Figure 4: Segmental speech SNR vs. noise attenuation

|S| and |N|) that is proposed in this paper. For each Kalman filter,
the above mentioned weighting rules (cf. Sec. 4) were applied
in the update step respectively. For the evaluation, three different
kinds of instrumental measurements were used, namely the seg-
mental noise attenuation (NA), the segmental speech attenuation
(SA) and the segmental speech SNR (SegSNR) (e.g., [12]).

Figs. 3 and 4 illustrate the averaged results for SA and
SegSNR, respectively, both plotted over NA with the input SNR
as control variable. This procedure makes a fair comparison be-
tween noise attenuation and speech distortion possible. In Fig. 3,
a low SA and a high NA is desirable, in Fig. 4 a high SegSNR
and a high NA. In the upper plots of Figs. 3 and 4, the Gaus-
sian MMSE estimator was used in the update step of the Kalman
filters, in the lower plots the super-Gaussian JMAP estimator re-
spectively. A lower a priori SNR threshold was applied to all
estimators in a way that they yield nearly the same SA at 5 dB
input SNR (cf. Fig. 3).

The results show that both types of Kalman filters achieve
better results than the corresponding purely statistical estimator.
In addition, the new Kalman filter based on consecutive magni-
tude and phase estimation in the propagation step outperforms
the approach in [9]. The results show a considerable enhance-
ment by the new estimator, e.g., if keeping the SA and SegSNR
constant, the new approach increases the NA by a maximum of
2 dB in case the super-Gaussian JMAP estimator is applied in
the update step. Furthermore, it can be seen that the utilization
of the super-Gaussian JMAP estimator, i.e., the adaptation to the
PDF of the prediction error signal, leads to better results than the
application of the Gaussian MMSE estimator. The instrumental
measurements were confirmed by informal listening tests.

6 Conclusions
A new method for single channel speech enhancement is pre-
sented in this paper which relies on a Kalman filter structure. In
the first step, this model-based approach exploits the temporal
correlation of successive speech and noise magnitudes. Based on
these predictions, the phase samples are estimated subsequently.
In the second step, the statistics of the differential signal are uti-
lized to estimate the prediction errors by applying two different
statistical estimators. Although the complexity is moderately in-
creased by the proposed technique, the instrumental measure-
ments in terms of segmental speech SNR, speech and noise at-
tenuation clearly show the better performance compared to the
Wiener filter, the super-Gaussian JMAP estimator and another
recently published Kalman filter approach.
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