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ABSTRACT

Noise reduction techniques that are relying on spectral weighting

rules often generate annoying musical noise artifacts in the processed

signal. In this paper, we present a postfilter (PF) for the spectral

weighting gains that is capable of reducing musical noise in a simple

but efficient way. It includes a robust detector for speech pauses and

low SNR conditions and adaptively smoothes the weighting gains

over frequency based on soft-decisions. Objective and subjective

measurements show consistent improvements if the postfilter is ap-

plied to conventional noise reduction techniques.

Index Terms— Speech enhancement, musical noise, adaptive

smoothing, postfilter

1. INTRODUCTION

In speech communication systems (e.g., mobile communications,

hearing aids and hands-free devices), the reduction of background

noise in disturbed speech remains a challenging task. Most speech

enhancement systems are based on the decomposition of speech and

noise in the frequency domain using the Short-Time Fourier Trans-

form (STFT) and the modification of the spectral coefficients with

a gain function, e.g., [1], [2], [3]. Although these methods provide

an improvement in terms of noise attenuation, they often produce a

new randomly fluctuating type of noise, referred to as musical noise.

This phenomenon can be explained by noise or signal-to-noise

ratio (SNR) estimation errors leading to spurious peaks in the pro-

cessed spectrum. When the enhanced signal is reconstructed in the

time domain, these peaks result in short sinusoidals whose frequen-

cies vary from frame to frame. In particular, musical noise is very

annoying during speech pauses and in low SNR conditions when it

is not masked by the speech signal.

In the literature, a variety of different methods for reducing mu-

sical tones has been proposed. A lower limit to the a priori SNR

was applied in [4] resulting in a flooring of the weighting gains.

The well-known decision directed approach [3] prevents the musical

noise phenomenon by recursive smoothing of the a priori SNR. A

time smoothed gain factor was proposed in [5] in order to reduce the

dynamics of the weights. In [6], a postprocessing method was pre-

sented to suppress the annoying artifacts based on a speech/musical

noise classification. Cepstral smoothing was applied to the spectral

weighting gains in [7] enabling selective smoothing of speech and

musical tones.

In this paper, a postfilter (PF) for the spectral weighting gains is

presented that efficiently suppresses musical noise. As it treats the

estimation of the initial weighting gains as black box, it can be ap-

plied to any noise reduction method. The postfilter consists of two
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steps. In the first step, speech pauses and low SNR regions are ro-

bustly detected. Based on these results, adaptive spectral smoothing

of the weighting gains is performed in the second step. The remain-

der of this paper is organized as follows: In Sec. 2, a brief overview

of a conventional noise reduction system is given. Section 3 com-

prises the new postfilter concept in detail. Experimental results are

shown in Sec. 4 and conclusions are drawn in Sec. 5.

2. SYSTEM OVERVIEW

A simplified block diagram of a conventional noise reduction system

is depicted in Fig. 1(a). The speech signal s(k) is assumed to be

degraded by an additive uncorrelated noise signal n(k) producing

the noisy speech signal

y(k) = s(k) + n(k), (1)

where k is the discrete time index. For the transformation into the

frequency domain, the noisy input signal y(k) is first segmented into

overlapping frames of length L. After windowing (e.g., applying a

Hann window), these frames are transformed via Fast Fourier Trans-

form (FFT) with an FFT length M . The spectrum of the noisy input

signal is therefore given by:

Y (λ, μ) = S(λ, μ) + N(λ, μ), (2)

where S(λ, μ) and N(λ, μ) represent the spectral coefficients of

speech and noise at frequency bin μ and frame λ. All statistical

estimators that are discussed and evaluated in the following sections

require knowledge of the power spectral density (PSD) of the noise

signal. As the noise PSD is in general not known a priori, it has to

be estimated and updated while executing the noise reduction algo-

rithm. For this purpose, many approaches can be found in the liter-

ature, prominent ones are the application of a voice activity detector

(VAD) (e.g., [8]) and the minimum statistics approach [9].

Based on the estimate σ̂2
N of the noise PSD, two SNR parameters

are estimated, namely the a posteriori SNR γ(λ, μ) and the a priori

SNR ξ(λ, μ):

γ(λ, μ) =
|Y (λ, μ)|2

σ̂2
N (λ, μ)

and ξ(λ, μ) =
E{|S(λ, μ)|2}

σ̂2
N (λ, μ)

. (3)

The a priori SNR can be estimated using the decision-directed ap-

proach [3]. The actual spectral weighting is performed by multiply-

ing the noisy spectrum Y (λ, μ) with a weighting gain G(λ, μ):

Ŝ(λ, μ) = G(λ, μ) · Y (λ, μ). (4)

The weighting gains are dependent on the noise reduction algorithm

and are usually a function of the noise PSD estimate σ̂2
N (λ, μ) and
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Fig. 1. System block diagram of conventional noise reduction system

(a) without and (b) with postfilter.

the SNR estimates γ̂(λ, μ) and ξ̂(λ, μ), as stated before. The spec-

tral weighting results in an estimate Ŝ(λ, μ) of the clean speech co-

efficient S(λ, μ). In order to obtain the enhanced signal in the time

domain, an Inverse Fast Fourier Transform (IFFT) and overlap-add

is applied.

3. POSTFILTER CONCEPT

The main idea of the proposed concept is to reduce the annoying mu-

sical tones especially in the mentioned low SNR regions. Therefore,

a reliable and robust detector for those regions is required which is

presented in the next section. Based on the results of this detec-

tor, spectral smoothing of the magnitudes |G(λ, μ)| is performed.

Fig. 1(b) illustrates the block diagram of the system that was consid-

ered within this work.

3.1. Low SNR Detector

In order to keep the proposed method simple, we directly use the

output of the initial noise reduction system, i.e., the weighting gains

G(λ, μ) as depicted in Fig. 1(b). It turned out that the power ratio

ζ(λ) of the processed signal Ŝ(λ, μ) and the noisy signal Y (λ, μ)
provides a good indicator of speech presence or absence in the cur-

rent frame λ:

ζ(λ) =

M−1P
μ=0

|G(λ, μ) · Y (λ, μ)|2

M−1P
μ=0

|Y (λ, μ)|2
=

M−1P
μ=0

|Ŝ(λ, μ)|2

M−1P
μ=0

|Y (λ, μ)|2
. (5)

If the frame mainly contains speech (high SNR), the power of the

processed frame is equal or only slightly lower to the power of the

noisy input frame, i.e., ζ(λ) ≈ 1. By contrast, the noise reduc-

tion system is supposed to strongly attenuate the input signal in low
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Fig. 2. Example of low SNR detector. Upper plot: Spectrogram of

the clean speech signal: ”Help the woman get back to her

feet. A pot of tea helps to pass the evening.” (male voice).

Lower plots: Results for the factor ζ(λ) for different input

SNR values (noise type: F16).

SNR conditions (or during a speech pause), resulting in a power ratio

ζ(λ) ≈ 0.

In order to detect only low SNR regions, a threshold ζthr is ap-

plied to the factor ζ(λ) as follows:

ζT (λ) =

(
1, if ζ(λ) ≥ ζthr

ζ(λ), if ζ(λ) < ζthr.
(6)

The threshold ζthr later controls the trade-off between speech dis-

tortions and musical noise reduction (cf. Sec. 3.2). An example is

depicted in Fig. 2 for a noisy sequence of 8 seconds length. The

upper plot shows the spectrogram of the clean speech signal, the

lower plots the results for the power ratio ζ(λ) for different input

SNR values (-5, 5 and 15 dB) respectively. The speech signal (NTT

speech database) was disturbed by F16 noise (NOISEX-92 database)

and the weighting gains that were necessary in Eq. 5 were calculated

with the Wiener filter rule [2]. As can be seen, good detection results

were achieved even at low input SNR values.

The detection of low SNR regions based on the power ratio ζ(λ)
performs better than directly utilizing the a priori SNR that has al-

ready been estimated in the noise reduction system (cf. Sec. 2). The

reason for this lies in an improved estimation due to the additional

application of the noise suppression algorithm. Moreover, we can

treat the noise reduction system as black box as we only need the

noisy input signal and the enhanced output signal or the weighting

gains for this detection.

3.2. Adaptive Spectral Smoothing

The aim of the postprocessing method is to retain the naturalness

of the background noise and to reduce the occurrence of musical

noise in low SNR regions. The power ratio ζT (λ) from the previous

section provides a reliable method to detect those regions. Based on
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Fig. 3. Fourier transform of Hλ(μ) for different values of N .

ζT (λ), the magnitudes of the weighting gains G(λ, μ) of frame λ are

adaptively smoothed over frequency using a moving average win-

dow. The odd window length N(λ) is set to:

N(λ) =

(
1, if ζT (λ) = 1

2 · round
h“

1 − ζT (λ)
ζthr

”
· Ψ

i
+ 1, else.

(7)

The term 1− ζT (λ)
ζthr

provides a soft-decision that states the reliability

of the low SNR detection. The function round[·] rounds the element

to the nearest integer and Ψ is a scaling factor that determines the

maximum degree of smoothing. Equation 7 ensures that the more

reliable a low SNR frame was detected, the longer the window length

resulting in a stronger smoothing of the weighting gains.

Applying a moving average window of length N(λ) is equiva-

lent to a linear filtering with the impulse respond Hλ(μ) as follows:

Hλ(μ) =

(
1

N(λ)
, if μ < N(λ)

0, else
, where μ ∈ [0, M − 1].

(8)
Fig. 3 depicts the Fourier transform of Hλ(μ) for different values

of N . Please note that the term ”frequency” in this context is some-

what misleading as Hλ(μ) is already applied in the frequency do-

main. However, Fig. 3 shows the low-pass characteristic of the fil-

ter Hλ(μ) whose cut-off ”frequency” is decreasing with an increas-

ing window length N .

Within the postfilter, the weighting gain magnitudes of the initial

noise reduction system are convoluted by the low-pass filter Hλ(μ)
in every frame λ:

GPF(λ, μ) = |G(λ, μ)| ∗ Hλ(μ). (9)

Finally, the new weighting gains GPF(λ, μ) are applied to the noisy

input coefficients Y (λ, μ):

ŜPF(λ, μ) = GPF(λ, μ) · Y (λ, μ) (10)

and the enhanced signal is transformed back into the time domain.

4. EVALUATION

The postfilter that is presented in this paper can be applied to the

weighting gains of an arbitrary noise reduction system. In the fol-

lowing, we investigate the postfilter in combination with four statis-

tical noise suppression techniques that were known from literature:

1. Spectral Subtraction [1],

2. Wiener filter [2],

3. MMSE1 estimator based on a Laplacian model for the speech

and a Gaussian model for the noise signal [10],

1MMSE - Minimum mean square error

Parameter Settings

Sampling frequency 8 kHz

Frame length L 160 (20 ms)

FFT length M 256 (including zero-padding)

Frame overlap 50% (Hann window)

Input SNR -5 dB ... 30 dB (step size: 5 dB)

Noise estimation Minimum Statistics [9]

SNR estimation Decision-directed approach [3]

Threshold ζthr 0.4 (see Fig. 2)

Scaling factor Ψ 10

Table 1. System settings.

4. MAP2 estimator based on a super-Gaussian speech model and

a Gaussian noise model [11].

In the initial systems, the following commonly used countermea-

sures were already utilized to avoid musical noise. The a priori SNR

was estimated according to the decision-directed approach [3] and a

lower limit was applied to the a priori SNR as recommended in [4].

This is equivalent to defining a lower limit Gmin to the weighting

gains G(λ, μ). We set 20log10(Gmin) = −15 dB. In addition, the

dynamics of the weights were reduced by averaging over time ac-

cording to [5]. On top of that, the proposed postfilter was applied to

the resulting weighting gains. Both system setups - with and with-

out the postfilter - are investigated in the following for each noise

reduction method.

The evaluation is based on both objective and subjective mea-

surements. The parameters that are used in the simulations are listed

in Tab. 1. The values for the threshold ζthr and the scaling fac-

tor Ψ were determined empirically and provide a good compromise

between speech distortion and musical noise suppression.

In the simulation, the speech and noise signal can be filtered

separately with weighting gains adapted for the noisy signal. Hence,

the output signal can additionally be stated as ŝ(k) = s̃(k) + ñ(k),

where s̃(k) is merely the filtered speech signal and ñ(k) the filtered

noise signal. Based on these quantities, the segmental speech SNR

(SegSNR), the cepstral distance (CD) and the segmental noise at-

tenuation (NA) were calculated according to [12]. For the objective

evaluation of the noise reduction schemes, five speech signals from

the NTT speech database were each degraded by six different noise

types (F16, babble, car, factory1, factory2, white), taken from the

NOISEX-92 database. Among the five speech signals, there were

three sequences from a male and two from a female speaker, each

with a length of 8 seconds.

Figs. 4 and 5 depict the averaged results for SegSNR and CD

respectively, both plotted over NA with the input SNR as control

variable. Thus, a fair comparison with respect to the tradeoff noise

attenuation and speech distortion is possible. In Fig. 4, the points of

best performance would be placed in the upper right corner, in Fig. 5

in the lower right corner.

The objective measurements show that the presented postpro-

cessing scheme improves the results of all investigated estimators.

While keeping the SegSNR or the CD constant for instance, the in-

corporation of the postfilter increases the NA. The biggest improve-

ment is obtained for the Spectral Subtraction rule. The weighting

gains that were additionally smoothed over frequency contribute to

the extra NA without affecting the speech quality. This shows that

the low SNR detector works very reliable, even if the input SNR is

low.

2MAP - Maximum a posteriori
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In addition to the instrumental measurements, an informal lis-

tening test was conducted where three different signals were pre-

sented to the participants: the noisy signal, the processed signal from

method A and the processed signal from method B. The options A

and B had been randomly assigned to one of the four statistical es-

timators with and without the postfilter. The noisy signal consisted

of a speech signal randomly taken from the NTT speech database

disturbed by a noise signal from the NOISEX-92 database at an in-

put SNR varying from -5 dB to 10 dB. Thirteen experienced listen-

ers were asked to judge the overall speech quality and could choose

between ‘A sounds better than B’, ‘B sounds better than A’ or ‘no

preference’ if they did not favor one of both methods. Each test per-

son had to judge 16 signals (4 per noise reduction method), i.e., the

results are based on 16 · 13 = 208 votes. The samples could be

played ad libitum before the probands had to make their judgments.

The results are listed in Tab. 2. In total, approximately 72% of the

test listeners preferred the samples that were generated with the new

postprocessing technique. As reason, they stated the reduction of

musical noise while preserving the speech quality. The results of the

Wiener filter slightly differ from the results of the other estimators.

This can be explained by the fact that the processed signal of the

Wiener filter itself already contains less musical tones than that of

the other statistical weighting rules.

Technique
no

preference
Conv.

NR system

Conv.

NR system

+ postfilter

Spec. Subtr. 7.70 % 15.38 % 76.92 %

Wiener filter 19.23 % 19.23 % 61.54 %

MMSE (Lap-Gau) 9.62 % 11.54 % 78.84 %

MAP (SupG-Gau) 7.69 % 23.08 % 69.23 %

Total 11.06 % 17.31 % 71.63 %

Table 2. Results of the informal listening test.

5. CONCLUSIONS

In this paper, a simple postprocessing method for the spectral

weighting gains is presented that efficiently suppresses musical

noise. The postfilter adaptively smoothes the weighting gains over

frequency based on soft-decisions of a low SNR detector. Instru-

mental measurements in terms of segmental speech SNR, cepstral

distance and noise attenuation show improvements of the new ap-

proach when it is applied in addition to commonly used musical

noise countermeasures. The objective results were confirmed by an

informal listening test.
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