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ABSTRACT

This contribution presents a wideband (50 Hz – 7 kHz) speech en-
hancement system that is operating in the frequency domain. As a
novel feature, techniques known from artificial bandwidth extension
(BWE) are used to improve the spectral estimation process by ex-
ploiting the statistical dependencies between the low band (50 Hz –
4 kHz) and the high band (4 – 7 kHz). Conventional noise suppres-
sion is used in the low band, while a novel approach is applied to the
high band. Features from the processed (enhanced) low band sig-
nal are extracted and used to estimate subband energies of the high
band. The weighting gains determined from these energy estimates
are adaptively combined with conventional gains obtained in addi-
tion for the high band. The performance of the proposed method
is shown to be consistently better than the conventional approach,
especially at low input SNR values.

Index Terms— Wideband speech enhancement, noise reduc-
tion, artificial bandwidth extension

1. INTRODUCTION

The quality of today’s telephone speech was designed to achieve a
sufficient intelligibility. The acoustic bandwidth in telephony sys-
tems is typically limited to the frequency range between 300 Hz and
3.4 kHz. However, this typical "telephone sound" cannot satisfy the
increased demands as the perceived speech quality is considerably
reduced compared to the full audio bandwidth. As a reasonable com-
promise, various wideband (50 Hz – 7 kHz) speech codecs have been
developed in the past (e.g., the Adaptive Multi-Rate (AMR) Wide-
band Codec) and are about to be introduced in current mobile net-
works. Nevertheless, most of these codecs are mainly designed for
nearly noise-free input speech signals and do not perform well when
the input signal is degraded by acoustic background noise. In order
to improve the listening comfort and to keep the high quality also in
noisy environments, noise suppression techniques are required for
wideband communication systems.

One of the popular methods for enhancing degraded speech is
based on modeling the noisy input coefficients in the short-time
Fourier transform (STFT) domain and to apply individual adaptive
gains for each frequency bin. Most of the rules proposed in litera-
ture have been derived for low band (50 Hz – 4 kHz) signals under
certain assumptions about the statistics of the speech and noise sig-
nals, e.g., [1–3]. When it comes to wideband noise reduction, an
established method is to double sampling rate and transform length
and to apply the low band algorithms also for higher frequencies.
Thereby, neither the unequal spectral energy distribution of a speech
and noise signal nor the properties of the human auditory system are
considered. For typical realistic noise sources, it can be shown that
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the signal-to-noise ratio (SNR) significantly degrades beyond 4 kHz
leading to imprecise noise reduction and fluctuating weighting gains
that result in the increased occurrence of musical noise especially at
higher frequencies. So far, only a very limited number of proposals
are known which take into account the afore mentioned aspects
when enhancing wideband speech signals, e.g., [4].

It is known from the field of speech coding that the spectral de-
pendencies of speech signals can be exploited to recover missing
high frequency components by utilizing only the low band speech
signal. This technique, called artificial bandwidth extension (BWE),
aims at increasing the perceived speech quality if only the low band
signal is available. In this paper, wideband speech enhancement is
combined with techniques known from artificial BWE. While a con-
ventional noise suppression technique is used in the low band, a joint
approach is applied for the speech enhancement in the high band
(4 – 7 kHz). Based on a trained hidden Markov model (HMM), fea-
tures from the processed (enhanced) low band signal are extracted
and used to estimate subband energies of the high band speech sig-
nal. The resulting weighting gains determined from these energy
estimates are adaptively combined with conventional gains for the
high band. The remainder of this paper is organized as follows: In
Sec. 2, a brief overview of the proposed system is given. Section 3
comprises the procedure of the combined noise suppression in the
high band in detail. Experimental results are shown in Sec. 4 and
conclusions are drawn in Sec. 5.

2. SYSTEM OVERVIEW

A simplified block diagram of the proposed wideband speech en-
hancement system is depicted in Fig. 1. It is assumed that the noisy
input signal y(k) consists of the clean speech signal s(k) which is
degraded by an additive noise signal n(k) according to:

y(k) = s(k) + n(k), (1)

where k is the discrete time index. Different processing schemes
are applied in the low band (50 Hz – 4 kHz) and the high band (4 –
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Fig. 1. Wideband noise reduction using different techniques in low
band and high band exploiting spectral dependencies.
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Fig. 2. High band noise reduction exploiting spectral dependencies between low band and high band.

7 kHz). Therefore, a 2-channel finite impulse response (FIR) quadra-
ture mirror filter (QMF) bank with critical sampling and perfect re-
construction is used to split the wideband signal y(k) into the low
band and the high band signal. Due to the decomposition, individual
analysis-synthesis structures and different algorithms can be used in
each band enabling the re-use of existing low band noise reduction
systems. After downsampling the lowpass and highpass filtered sig-
nals by a factor of 2, a conventional noise reduction technique is ap-
plied to the low band signal ylb(k

′) where k′ represents the discrete
time index in the subsampled domain. In the high band, the noisy
signal yhb(k

′) is enhanced by using additional information from the

improved low band signal. For this, features from the vector Ŝlb,
consisting of the spectral coefficients from the processed low band
signal, are extracted as will be explained in the next section.

In both bands, the noise suppression is performed in the fre-
quency domain. Therefore, yxx(k

′) is segmented into overlapping
frames of length LF, where the index ‘xx’ denotes either the low
band ‘lb’ or the high band ‘hb’. After windowing and zero-padding,
the fast Fourier transform (FFT) of length MF is applied to these
frames. Hence, the spectral coefficients of the noisy input signal at
frequency bin μ and frame λ are given by:

Yxx(λ, μ) = Sxx(λ, μ) +Nxx(λ, μ), (2)

where Sxx(λ, μ) and Nxx(λ, μ) represent the spectral coefficients of
the speech and the noise signal. For the sake of brevity, the frame
index λ is omitted in the following.

The respective enhanced signals ŝlb(k
′) and ŝhb(k

′) are upsam-
pled and lowpass and highpass filtered again. Finally, both signals
are added in order to obtain the enhanced wideband signal ŝ(k).

Average Deviation of the Low Band SNR
Noise Type from the High Band SNR for

Male Speakers Female Speakers

Cockpit +15.39 dB +13.98 dB

Babble +0.55 dB -0.86 dB

Factory +12.55 dB +11.14 dB

Buccaneer +15.64 dB +14.23 dB

WGN +26.81 dB +25.39 dB

Table 1. SNR deviation of the low band from the high band for
different noise types. For the measurement, six speech signals (three
male and three female speakers) from the NTT database were used.
The noise signals have been taken from the NOISEX-92 database.

3. JOINT NOISE REDUCTION IN THE HIGH BAND

The main energy of a speech signal is usually located in the fre-
quency range between 500 Hz and 3 kHz. Assuming that the en-
ergy of speech signals declines stronger than the energy of noise sig-
nals beyond 3 kHz, the SNR in the low band is usually significantly
higher than in the high band. Table 1 shows some quantitative exam-
ples of how much the SNR in the low band is better than in the high
band for different speakers and different noise environments. It can
be seen that in most cases the SNR significantly degrades in the high
band which leads to an imprecise noise reduction and fluctuating
weighting gains if solely a conventional noise suppression technique
is applied to the higher frequencies. To counteract this problem, a
joint noise reduction method is presented in this paper for the high
band signal which makes use of the spectral dependencies between
low band and high band.

Figure 2 shows the basic principle of the combined noise reduc-
tion scheme in the high band. The analysis and synthesis structure
remains the same as for the low band signal. After the transformation
into the frequency domain, two separate noise suppression methods
are applied to the noisy high band spectrum Yhb(λ) resulting in the
calculation of the high band weighting gains Ghb(μ

′) where μ′ rep-
resents the subsampled frequency index as will be explained later.

As depicted in Fig. 2, a first (conventional) and a second (new)
gain calculation is performed for the high band spectrum. The con-
ventional noise reduction technique includes noise power estima-
tion (e.g., [5]), SNR estimation (e.g., [2]) and the calculation of
the weighting gains Gconv(μ) (e.g., [1–3]). In order to reduce the
variance of the weighting gains, a post processing stage follows in
which the frequency resolution is decreased from MF to M ′

F. Adja-
cent frequency-bins are combined using overlapping Hann windows
of the same length. The reduction of the frequency resolution al-
lows for an increased suppression of musical tones and corresponds
to the properties of our human auditory system where the frequency
selectivity decreases with higher frequencies.

In the upper branch of Fig. 2, artificial BWE techniques are
used to perform the second gain calculation (see next section for
details). All required processing steps are thereby performed at the
reduced frequency resolution M ′

F as well. The resulting weighting
gains Gbwe(μ

′) are adaptively combined with Gconv(μ
′) according

to:

Ghb(μ
′) = α(μ′) ·Gbwe(μ

′) +
(
1− α(μ′)

)
·Gconv(μ

′), (3)

where α(μ′) ∈ [0, 1] represents a cross-fading factor that is frame
and frequency dependent as will be shown later. Finally, the fre-
quency resolution of the high band weighting gains Ghb(μ

′) is ex-
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panded back from M ′
F to the original resolution MF using overlap-

add of scaled Hann windows. A spectral weighting of the noisy high
band coefficients Yhb(μ) with the weighting gains Ghb(μ) yields an

estimate Ŝhb(μ) of the clean high band coefficients Shb(μ):

Ŝhb(μ) = Yhb(μ) ·Ghb(μ). (4)

An inverse fast Fourier transform (IFFT) and overlap-add is applied
to obtain the enhanced signal ŝhb(k

′) in the time domain.

3.1. Noise Reduction Exploiting Spectral Dependencies

In order to exploit the dependencies in the frequency domain be-
tween low band and high band, techniques known from artificial
BWE are applied for the wideband speech enhancement. The main
principle that is used here for the BWE is partly included in [6]. The
concept consists of estimating high band signal parameters based on
features that are extracted only from the enhanced low band signal
using a trained Hidden Markov Model (HMM).

Usually, representations of the spectral envelope of the low band
signal are used as features that are extracted on a frame-by-frame
basis [7]. In this realization, the feature vector x from the low
band consists of NC mel-frequency cepstral coefficients (MFCCs)
and the zero-crossing rate (ZCR) of the low band signal. Accord-
ing to [6], a trained HMM is used to estimate the feature vector y,
representing the M ′

F subband energies of the high band signal. Let
X = {x(1), ...,x(λ)} be a sequence of feature vectors from the
low band of frames 1 to λ. The criterion for MMSE estimation of
a vector y, with given observations X is E{||y − ŷ||2|X} = min,
where ŷ is the respective estimate. The solution to this optimization
problem is the conditional expectation yMMSE = E{y|X}. Using a
precomputed codebook C = {ŷ1, ..., ŷMC

} for the vectors y (e.g.,
obtained with the LBG algorithm [8]), this MMSE estimate can be
expressed as [7, 9]:

ŷMMSE =
∑
ŷi∈C

ŷi · P (ŷi|X), (5)

which essentially is a weighted sum over the MC centroids of the
codebook C. Thereby, the weights P (ŷi|X) specify a posteriori
probabilities which can be calculated using HMM techniques [6].

Once the instantaneous energies of the M ′
F subbands

ŷ = {|Ŝhb(0)|
2, ..., |Ŝhb(M

′
F − 1)|2} have been estimated, they

are used to estimate the noise power in the high band signal:

|N̂hb(μ
′)|2 = max

(
|Yhb(μ

′)|2 − |Ŝhb(μ
′)|2, 0

)
, (6)

with 0 ≤ μ′ ≤ M ′
F − 1. Finally, the a posteriori SNR γ(μ′) and a

priori SNR ξ(μ′) can be estimated according to:

γ̂hb(μ
′) =

|Yhb(μ
′)|2

|N̂hb(μ′)|2
and ξ̂hb(μ

′) =
|Ŝhb(μ

′)|2

|N̂hb(μ′)|2
, (7)

which are required in order to calculate the weighting gains Gbwe(μ
′)

to be used in Eq. 3.

3.2. Cross-Fading Factor

It has already been mentioned that the two weighting gains Gconv(μ
′)

and Gbwe(μ
′) are adaptively combined using the cross-fading factor

α(μ′), see Eq. 3. In the following, the ideal cross-fading factor
αopt(μ

′) is defined as:

αopt(μ
′) =

(Gopt(μ
′)−Gconv(μ

′))
2

(Gopt(μ′)−Gconv(μ′))2 + (Gopt(μ′)−Gbwe(μ′))2
,

(8)
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Fig. 3. Visualization example of look-up table to determine ᾱ.

where Gopt(μ
′) represents the ideal weighting gain that could in

theory (or by a dedicated simulation setup) be determined from the
clean speech and noise signal according to the ideal a posteriori SNR
γhb

opt(μ
′) and a priori SNR ξhb

opt(μ
′):

γ
hb
opt(μ

′) =
|Yhb(μ

′)|2

|Nhb(μ′)|2
and ξ

hb
opt(μ

′) =
|Shb(μ

′)|2

|Nhb(μ′)|2
, (9)

which are also determined at the reduced frequency resolution M ′
F

by combining adjacent frequency bins as before. If the conven-
tional noise suppression technique performs better than the BWE

approach, i.e., (Gopt −Gconv)
2
< (Gopt −Gbwe)

2
, αopt in Eq. 8

tends to smaller values leading to a stronger weighting of Gconv in
Eq. 3 and vice versa.

In order to estimate the optimal cross-fading factor in a realistic
scenario, first αopt(μ

′) is recorded in a training process for every
frame λ and every subband μ′ together with the respective subband
SNR ξhb

opt(μ
′) of the high band and the averaged SNR ξ̄lb

opt of the low
band:

ξ̄
lb
opt =

1

MF

MF−1∑
μ=0

|Slb(μ)|
2

|Nlb(μ)|2
. (10)

Based on the training data, a look-up table for the estimation of
α(μ′) is generated for every subband. Therefore, ξhb

opt(μ
′) and ξ̄lb

opt

are quantized (e.g., 1 dB step size) and the associated values for
αopt(μ

′) are averaged within the quantization levels. At the end,
the final look-up table provides one estimate ᾱ(μ′) for each quan-

tized combination of ξhb
opt(μ

′) and ξ̄lb
opt. A typical example of this

two-dimensional look-up table can be seen in Fig. 3. The figure
demonstrates a strong correlation between the averaged factor ᾱ and
the two SNR quantities showing that the BWE approach in Eq. 3 is
preferred with a decreasing high band SNR. Moreover, in the high
band SNR range −15 dB ≤ ξhb ≤ 0 dB, it can be seen that the
cross-fading factor ᾱ becomes larger for higher low band SNR val-
ues ξ̄lb showing that the BWE (trained with clean speech) performs
better the higher the input SNR is in the low band.

In a real application, ξhb
opt and ξ̄lb

opt are not available. Here, the re-
spective SNR estimates of the conventional noise suppression tech-
niques in the low band and high band are utilized to determine ᾱ(μ′)
using a pre-trained look-up table.

4. RESULTS

In principle, any noise reduction technique can be applied within the
proposed system to perform the suppression in the low band and to
estimate the conventional weighting gains Gconv in the high band.
For the evaluation in this paper, the well-known Wiener filter [1]
as well as the super-Gaussian joint MAP (JMAP) estimator [3] are
used. In this investigation, the proposed noise suppression tech-
niques with the use of αopt and ᾱ are thereby compared with the
conventional case, where only the Wiener filter or only the JMAP
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Parameter Settings

Sampling frequency 16 kHz

Frame length LF 160 (=̂20 ms due to downsampling)

FFT length MF 256 (including zero-padding)

Frame overlap 50% (Hann window)

QMF filter length 64

Input SNR -10 dB ... 35 dB (step size: 5 dB)

Noise estimation Minimum Statistics [5]

SNR estimation Decision-directed approach [2]

Number subbands M ′
F 24

Number MFCCs NC 13

Codebook size MC 128 (training based on 1.5 h speech)

Table 2. System settings.

estimator is applied to both the low band and the high band. The pa-
rameters that have been used in the simulations are listed in Tab. 2.
The look-up tables which are required for the estimation of αopt were
generated based on 10 min of clean speech from the NTT database
disturbed by white Gaussian noise at different input SNR values.

In the simulation setup, the speech and noise signal can be
filtered separately with weighting gains adapted for the noisy
signal. Hence, the output signal can additionally be stated as
ŝ(k) = s̃(k) + ñ(k), where s̃(k) is merely the filtered speech
signal and ñ(k) the filtered noise signal. Based on these quantities,
the segmental speech SNR (SpSNR) and the segmental noise atten-
uation (NA) were calculated according to [10]. For the objective
evaluation of the noise reduction schemes, seven speech signals
from the NTT speech database were each degraded by four different
noise types (cockpit, babble, factory1, buccaneer), taken from the
NOISEX-92 database. Among the seven speech signals, there were
four sequences from a male and three from a female speaker, each
with a length of 8 seconds. The speech signals used for the evalu-
ation were not included in the training data for the HMM and the
look-up tables.

Figure 4 depicts the averaged results for SpSNR plotted over
NA with the input SNR as control variable. Thus, a fair comparison
with respect to the tradeoff noise attenuation and speech distortion
is possible. The points of best performance would be placed in the
upper right corner of the figure.

The objective measurements show that the additional use of the
artificial BWE in the high band improves the results of conventional
noise suppression techniques consistently. Especially at low input
SNR values, where mainly the BWE approach is used (see Fig. 3),
the new method outperforms either the Wiener filter or the JMAP
estimator. As expected, the curves in Fig. 4 converge at higher input
SNR values. Moreover, it can be seen that for the proposed method
using ᾱ, the benefits of the noise attenuation are at the expense of a
slightly lower segmental speech SNR for high SNR values. This can
be explained by SNR estimation errors which lead to a suboptimal
determination of the fading factor. Informal listening tests confirmed
the instrumental measurements and showed that the occurrence of
musical tones is reduced by the proposed method.

5. CONCLUSIONS

A novel approach to wideband speech enhancement has been pre-
sented in this paper that exploits spectral dependencies of speech
signals. In an objective and subjective evaluation, it could be shown
that the enhanced low band signal can be re-used to improve the re-
sults of a conventional noise suppression technique in the high band
based on an artificial bandwidth extension. Although the computa-
tional complexity is increased by the new approach, the results mo-
tivate further investigations of this topic. In order to increase the
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perceived speech quality if only a noisy low band signal has been
received, a slightly modified version of the system can additionally
be used to perform a joint noise reduction and BWE.
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