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ABSTRACT

This contribution presents a modified Kalman filter approach for sin-
gle channel speech enhancement which is operating in the frequency
domain. In the first step, temporal correlation of successive frames
is exploited yielding estimates of the current speech and noise DFT
coefficients. This first prediction is updated in the second step ap-
plying an SNR dependent MMSE estimator which is adapted to the
(measured) statistics of the speech prediction error signal. Objective
measurements show consistent improvements compared to estima-
tors which do not take into account the temporal correlation or the
influence of the input SNR on the statistics of the prediction error
signal.

Index Terms— Speech enhancement, noise reduction, Kalman
filter, generalized Gamma distribution

1. INTRODUCTION

The problem of improving the speech quality of modern communi-
cation devices in noisy environments remains challenging and is still
an active field of research, even though many techniques have been
introduced in the past decades.

One of the popular methods for enhancing degraded speech is
based on applying individual adaptive gains to the noisy input coef-
ficients in the short-time Fourier transform (STFT) domain. Most of
the rules proposed in literature have been derived under certain as-
sumptions about the statistics of the speech and noise signal. While
a Gaussian model is often used for the noise signal, the distribution
of the speech signal is typically modeled either as Gaussian [1, 2]
or as super-Gaussian [3, 4, 5]. Except for smoothing purposes as
in [2], these statistical approaches only rely on memory-less a priori
knowledge.

In contrast to the statistical estimators, the Kalman filter per-
forms optimal estimation in linear dynamic systems in which a non-
stationary target signal is disturbed by additive noise. The authors
of [6] were the first who proposed the use of a Kalman filter for the
purpose of speech enhancement. Compared to the common Wiener
filtering method, the performance of this model-based approach was
shown to be considerably better. In order to reduce complexity, the
authors of [7] introduced a Kalman filtering system in the sub-band
domain that additionally achieved better results than the full-band
time domain approach. In [8], the application of a Kalman filter in
sub-bands was further investigated and improved. In addition to the
exploitation of intra-frame correlation, model-based approaches that
consider the correlation of successive speech frames can be found,
e.g., in [9, 10].

In this paper, a modified Kalman filter approach is considered
which is applied in the frequency domain to the complex-valued dis-
crete Fourier transform (DFT) coefficients. The proposed system

consists of two steps, namely propagation and update step. It is
shown that the input signal-to-noise ratio (SNR) influences the statis-
tics of the speech prediction error signal in the propagation step. In
contrast to [10], this characteristic is taken into account in the up-
date step by using an SNR dependent minimum mean square error
(MMSE) estimator that relies on generalized Gamma priors. The
remainder of this paper is organized as follows: In Sec. 2, a brief
overview of the considered system is given. Section 3 investigates
the influence of the input SNR on the statistics of the speech predic-
tion error signal and proposes the application of an adaptive weight-
ing rule exploiting the SNR dependency. Experimental results are
shown in Sec. 4 and conclusions are drawn in Sec. 5.

2. SYSTEM OVERVIEW

Figure 1 illustrates a simplified block diagram of the proposed sys-
tem. It is assumed that the noisy input signal y(k) consists of the
clean speech signal s(k) which is degraded by an additive noise sig-
nal n(k) according to:

y(k) = s(k) + n(k), (1)

where k is the discrete time index. For the decomposition of the
speech and the noise signal, the noisy signal y(k) is segmented into
overlapping frames and is transformed into the frequency domain.
Therefore, the fast Fourier transform (FFT) is applied to these frames
after windowing and zero-padding. Hence, the spectral coefficients
of the noisy input signal at frequency bin μ and frame λ are given
by:

Y (λ, μ) = S(λ, μ) +N(λ, μ), (2)

where S(λ, μ) and N(λ, μ) represent the spectral coefficients of the
speech and the noise signal.

The proposed system is based on a Kalman filter structure which
is applied to the complex-valued DFT coefficients Y (λ, μ), cf. [10].
Therefore, a two step approach is used consisting of a propagation
and an update step. In contrast to [10], where both steps are carried
out only for the speech signal, the propagation step in this system is
extended to the noise signal in order to additionally take into account
correlated noise signals.

In the propagation step, temporal correlation (a priori informa-
tion of higher order) of successive frames is exploited. The current
DFT coefficients of speech S(λ, μ) and noise N(λ, μ) are propa-
gated in time based on information taken from previous, enhanced
samples using linear prediction techniques. The resulting estimates
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Fig. 1. Block diagram of the proposed Kalman filter structure.

Ŝprop(λ, μ) and N̂ prop(λ, μ) can be stated as:

Ŝ
prop(λ, μ) =

NK∑

i=1

âi(λ, μ)Ŝ
up(λ− i, μ) and (3)

N̂
prop(λ, μ) =

MK∑

i=1

b̂i(λ, μ)N̂
up(λ− i, μ), (4)

where NK and MK represent the orders of the speech and the noise
models, respectively. The problem of estimating the required au-
toregressive (AR) coefficients ai(λ, μ) and bi(λ, μ) in noisy envi-
ronments has been extensively studied in literature, e.g., [11]. In this
work, a simpler approach is used which minimizes the energies of
the prediction errors. Therefore, the well-known Levinson-Durbin
algorithm is used, e.g., [12]. The required autocorrelation vectors
and matrices are calculated from the previous LAC enhanced DFT
coefficients of either speech or noise.

The estimates Ŝprop(λ, μ) and N̂ prop(λ, μ) are summed up to get
an estimation of the current noisy DFT coefficients:

Ŷ
prop(λ, μ) = Ŝ

prop(λ, μ) + N̂
prop(λ, μ). (5)

The prediction in the propagation step generally is erroneous, result-
ing in the following prediction errors:

ES(λ, μ) = S(λ, μ)− Ŝ
prop(λ, μ) and (6)

EN(λ, μ) = N(λ, μ)− N̂
prop(λ, μ) (7)

for the speech and the noise, respectively. The objective in the fol-
lowing update step is to estimate the prediction errors ES(λ, μ) and
EN(λ, μ) based on the differential signal D(λ, μ):

D(λ, μ) = Y (λ, μ)− Ŷ
prop(λ, μ). (8)

As shown in [10], the differential signal D(λ, μ) consists of the sum
of the two prediction errors:

D(λ, μ) = ES(λ, μ) + EN(λ, μ). (9)

Hence, the estimation problem in the update step reduces to a ‘classi-
cal’ noise reduction problem: The target signal ES(λ, μ) is degraded
by the additive ‘noise’ signal EN(λ, μ). For the decomposition of the
‘noisy’ signal D(λ, μ), a conventional statistical estimator, e.g., the

well-known Wiener filter [1] can be used. In [10], the use of esti-
mators relying on super-Gaussian speech models is evaluated within
the update step. Therefore, a spectral weighting gain G(λ, μ) is de-
termined for each frequency bin of each frame that is multiplied with
the differential signal in order to estimate the two prediction errors:

ÊS(λ, μ) = G(λ, μ) ·D(λ, μ) (10)

ÊN(λ, μ) = (1−G(λ, μ)) ·D(λ, μ). (11)

To obtain the final enhanced DFT coefficients Ŝup(λ, μ) and

N̂ up(λ, μ), the initial predictions of the propagation step are up-
dated:

Ŝ
up(λ, μ) = Ŝ

prop(λ, μ) + ÊS(λ, μ) (12)

N̂
up(λ, μ) = N̂

prop(λ, μ) + ÊN(λ, μ). (13)

The application of an inverse fast Fourier transform (IFFT) and the
overlap-add method yield an estimate of the enhanced output signal
ŝ(k) in the time domain.

3. SNR INFLUENCE ON STATISTICS OF PREDICTION

ERROR SIGNAL

It was shown in [10] that the prediction gain within the propagation
step is depending on the input SNR: the higher the SNR, the higher
the prediction gain. Therefore, it seems obvious that the input SNR
also influences the statistics of the prediction error signals, which
can be exploited within the update step by using an appropriate sta-
tistical, SNR dependent estimator. In order to keep the algorithm
general and to not become dependent on a particular noise signal, it
is still assumed that the noise prediction error coefficients EN follow
a complex Gaussian distribution and only the statistics of the speech
prediction error signal ES are investigated in the following.

For the evaluation, the Kalman filter system of Sec. 2 based
on the Wiener filter applied in the update step was used. Depend-
ing on the input SNR, which was varied in the range from -20 dB
to 35 dB (step size: 5 dB), the histogram of the speech prediction
error ES was measured. For this, about 1 hour of speech (taken
randomly from the NTT database) was disturbed by white Gaussian
noise. Fig. 2 shows the measured histograms of the absolute value of
ES for different SNR values. The magnitudes have been normalized
to a power of σ2

ES
= 1 to illustrate the dependencies of the shape
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Fig. 2. Normalized histograms of |ES| dependent on input SNR.

of the PDF on the input SNR. The SNR dependency can clearly be
seen. The steepness of the respective probability functions (PDFs)
around zero is getting larger for higher input SNR values showing
that smaller prediction error values occur proportionally more often
at higher SNR values. This behavior goes along with the fact that
the prediction in the propagation step performs better the higher the
input SNR is.

In order to exploit the SNR dependency, the complex DFT es-
timator of [5] is used within the update step. This MMSE estima-
tor relies on a (complex) Gaussian distribution for the noise signal
(here: EN ). For the magnitude of the target signal ES , the following
single-sided generalized Gamma density is assumed [5]:

p|ES |(x) =
γδν

Γ(ν)
x
γν−1

exp(−δx
γ) (14)

with δ > 0, γ > 0, ν > 0 and 0 ≤ x < ∞. Γ(·) represents
the Gamma function and γ, δ and ν are model parameters which
can be adjusted according to the measured histograms. Thereby the
parameter δ depends on γ, ν and σ2

ES
. Several special cases are

included in Eq. 14, e.g., a Rayleigh or a Gamma PDF. In [5], the
complex DFT estimator is derived for the cases γ = 1 and γ = 2
and computes the conditional expectation E{ES|D} which directly
can be used here in the update step to obtain the weighting gains
required in Eqs. 10 and 11.

In order to get a good approximation to the measured histograms
of Fig. 2, the Kullback Leibler distance [4] between modeled and
measured PDFs is minimized. The resulting parameter settings are
given in Tab. 1 and contribute to different MMSE estimators depen-
dent on the input SNR.

In the simulations, the averaged and quantized a priori SNR es-
timates of the previous NK frames decide which parameter settings
are used in the current frame. The decision is made individually for
each frequency bin.

4. RESULTS

The investigation is based on four different noise suppression tech-
niques. The purely statistical weighting rules Wiener filter [1] and
super-Gaussian MMSE estimator [3] on the one hand are compared
with two Kalman filter techniques based on the system presented in

SNR [dB] ≤ −20 -15 -10 -5 0 5

γ 1 1 1 1 1 1

ν 1.41 1.05 0.87 0.76 0.72 0.67

SNR [dB] 10 15 20 25 30 ≥ 35
γ 1 1 1 1 1 1

ν 0.63 0.60 0.57 0.54 0.52 0.50

Table 1. Parameter settings for complex DFT estimator.

Sec. 2 on the other hand. In the first Kalman filter approach, the SNR
dependent MMSE estimator (Kalman SNR dependent) as illustrated
in Sec. 3 was applied in the update step. For comparison, the com-
plex DFT estimator of [5] was also adapted to the statistics of the
prediction error signal Es independent of the input SNR. Therefore,
the normalized data which was recorded for the separate evaluation
at different SNR values in Sec. 3 was merged in order to obtain an
overall histogram of |Es|, which does not reflect its dependency on
the input SNR. This measured histogram was also approximated by
the model PDF of Eq. 14 (resulting in γ = 1 and ν = 0.64) and
used within the MMSE estimator [5] in the update step independent
of the input SNR (Kalman SNR independent).

In the simulation, the speech and noise signal can be filtered
separately with weighting gains adapted for the noisy signal. Hence,
the output signal can additionally be stated as ŝ(k) = s̃(k) + ñ(k),
where s̃(k) is merely the filtered speech signal and ñ(k) the fil-
tered noise signal. Based on these quantities, the segmental speech
and noise attenuation (SA and NA) and the segmental speech SNR
(SegSSNR) were calculated according to [13]. The main parame-
ter settings that were used in the simulations are listed in Tab. 2.
Five speech signals (3 male, 2 female, each 8 s length) from the
NTT speech database were each degraded by six different noise se-
quences (f16, babble, car, factory1, factory2, white) taken from the
NOISEX-92 database.

The averaged results are depicted in Figs. 3 and 4. Figure 3
shows the difference between noise and speech attenuation over the
input SNR and Fig. 4 the segmental speech SNR plotted over the
noise attenuation with the input SNR as control variable. In Fig. 3, a
higher score indicates a better performance in which a value greater
than 0 dB justifies the application of noise suppression. In Fig. 4, a
high SegSSNR and a high NA is desirable.

The results show that both Kalman filter approaches yield a bet-
ter performance than the corresponding statistical estimators espe-

Parameter Settings

Sampling frequency 8 kHz

Frame length 160 (20 ms)

FFT length 256 (including zero-padding)

Frame overlap 75% (Hann window)

Input SNR -10 dB ... 35 dB (step size: 5 dB)

Propagation Step

AC length LAC 6

Model order NK 3

Model order MK 2

Update Step

Noise estimation Minimum Statistics [14]

SNR estimation Decision-directed approach [2]

Table 2. System settings.
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Fig. 3. Difference between noise attenuation and speech attenuation
plotted over input SNR.

cially for input SNR values greater than 0 dB. Compared to the SNR
independent MMSE estimator applied in the update step, the new
approach achieves better results in terms of noise attenuation and
speech distortion for the entire SNR range. Thus, the additional ex-
ploitation of the prediction error SNR dependency leads to a further
improvement. The proposed approach yields the best compromise
between speech and noise attenuation in Fig. 3 and the highest noise
attenuation if the SegSSNR is kept constant in Fig. 4. The instru-
mental measurements were confirmed by informal listening tests.

5. CONCLUSIONS

The noise reduction system proposed in this paper uses a modified
Kalman filter approach in the frequency domain. The method con-
siders the SNR dependency of the resulting speech prediction error
signal by modeling the measured histograms separately for several
quantized SNR values with generalized gamma priors. A complex
DFT estimator which is applied in the update step exploits these SNR
dependent statistics and shows a better performance compared to the
Wiener filter [1], the super-Gaussian MMSE estimator [3] and the
corresponding Kalman filter system which is not adapted to the SNR
dependency.
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