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ABSTRACT

Artificial Bandwidth Extension (ABWE) exploits spectral dependen-
cies of speech signals and aims at recovering missing high frequency
components if only the narrowband speech signal is available. This
contribution provides an information theoretic view on ABWE when
used in noisy conditions. Based on the results of [1], a performance
bound of ABWE is formulated if the narrowband signal is disturbed
by additive noise. The performance bound is evaluated using real
entropy measurements and the influence of noise suppression prior
to ABWE is investigated.

Index Terms— Artificial bandwidth extension, mutual informa-
tion, noise reduction

1. INTRODUCTION

Various wideband (50 Hz – 7 kHz) speech codecs have been devel-
oped in the past in order to increase the quality of today’s telephone
speech and are about to be introduced in current mobile networks.
Depending on the infrastructure and the terminals that are available,
several possibilities exist how to set up a wideband connection. The
use of dedicated wideband codecs achieves the highest speech qual-
ity but requires a modification of the whole communication system.
In contrast, when using Artificial Bandwidth Extension (ABWE),
only the decoder has to be changed. This technique exploits spec-
tral dependencies of speech signals in order to recover missing high
frequency components by utilizing only the narrowband (50 Hz –
3.4 kHz) speech signal, e.g., [2]. The use of ABWE techniques is
fully compatible with existing narrowband speech communication
systems. This is important as the change of the current bandwidth
limitation in public telephony systems will not happen abruptly. Al-
though the concept of ABWE does not achieve the full quality of
true wideband coding, it can be used to improve the acceptance by
the user while achieving a smooth transition between narrowband
and wideband speech coding.

In the derivation and training phase of an ABWE system, clean
speech signals are available and can be applied to the system. How-
ever, if the algorithm is used in practical speech communication sys-
tems, the quality of the narrowband signal is often impaired due to
background noise. In this case, the performance of ABWE signif-
icantly degrades. This paper investigates ABWE in noisy environ-
ments from an information theoretic point of view.

The mutual information between frequency bands in clean
speech is examined, e.g., in [3] and [1]. Following the approach of
[4], an upper bound on the quality of ABWE techniques is derived
in [1] for the case that the clean narrowband signal is available. As
it is likely that the recorded signal is disturbed by ambient noise in a
realistic scenario, the derivation of [1] is extended in this contribu-
tion. A theoretic bound on the performance of ABWE is formulated
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Fig. 1. Block diagram of the artificial bandwidth extension system
for a noise-free input signal snb.

if the narrowband signal is disturbed by Additive White Gaussian
Noise (AWGN). Afterwards, real entropy measurements demon-
strate the existence of spectral dependencies between low and high
frequencies for a broad SNR range. Moreover, the influence of noise
reduction techniques applied to the disturbed narrowband signal
prior to ABWE is analyzed.

The remainder of this paper is organized as follows. In Sec. 2,
a brief overview of the considered ABWE system is given. The per-
formance bound of the system is derived in Sec. 3 incorporating a
possibly disturbed narrowband signal. Real entropy measurements
are presented in Sec. 4 and finally, conclusions are drawn in Sec. 5.

2. SYSTEM OVERVIEW

In Fig. 1, a simplified block diagram of the analyzed ABWE sys-
tem is depicted which is proposed in [2]. At first, the sampling fre-
quency of the narrowband input speech signal snb(k) is increased
from fs = 8 kHz to fs = 16 kHz by interpolation and subsequent
low-pass filtering. From now on all further steps are applied to the
upsampled narrowband signal snb(k

′) at the sampling frequency
fs = 16 kHz where k and k′ denote the time instances in the re-
spective domains.

Based on snb(k
′) the spectral envelope of the narrowband signal

is extended in the upper part of the block diagram. An estimate âwb

of the feature vector awb representing the spectral envelope of the
wideband signal swb(k

′) is calculated using, e.g., a Hidden Markov
Model (HMM) as proposed in [2]. The vector âwb consists, e.g., of
Autoregressive (AR) coefficients and is determined by exploiting in-
formation from an observation vector xnb as well as a priori knowl-
edge provided by a pre-trained statistical model. Usually the vector
xnb itself also contains information about the spectral envelope of
the input signal snb(k

′).
The estimated vector âwb is used to form a Finite Impulse

Response (FIR) analysis filter which is applied to the input sig-
nal snb(k

′) in order to obtain an estimate of the bandlimited nar-
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rowband excitation signal ênb(k
′). In the next step, the missing

extension band frequencies in the excitation signal are determined.
As the human ear is relatively insensitive to variations of the spectral
fine structure at high frequencies, the procedure can be implemented
quite efficiently. Different approaches can be found, e.g., in [2].

Finally, the estimated wideband excitation signal êwb(k
′) is

combined with the envelope features of the vector âwb using a
synthesis filter which is inverse to the applied analysis filter. The re-
sulting signal ŝwb(k

′) provides an estimate of the wideband speech
signal and exhibits transparency with respect to the narrowband
input signal snb(k

′).

3. PERFORMANCE BOUND IN NOISY ENVIRONMENTS

In this section, the spectral dependencies between the disturbed
narrowband and the clean extension band speech signal (3.4 kHz –
7 kHz) are analyzed based on the observation vector xnb and the
feature vector aeb representing the spectral envelope of the exten-
sion band only, i.e., awb = f(xnb,aeb).

In order to determine a performance bound for the quality of
ABWE in noisy environments, the derivation of the bound in [1] is
extended considering the signal-flow model shown in Fig. 2a). The
bnb-dimensional observation vector xnb is assumed to be degraded
by the additive noise vector nnb of dimension bnb as well. After-
wards, ABWE is performed based on the resulting noisy observation
vector xdnb. Therefore, ABWE is described by the function fbwe(·),
yielding the estimated feature vector âeb of dimension beb according
to:

âeb = fbwe (xdnb) . (1)

The estimation error of the ABWE process is defined as beb-
dimensional vector neb and states the difference between aeb

and âeb:

neb = aeb − âeb. (2)

Following the concept of [1], it is assumed that the ABWE system
uses a memoryless estimator fbwe(·) which is not relying on infor-
mation from previous or subsequent frames. Moreover, the process
of the disturbances by nnb and neb including the ABWE estimation
is modeled by two independent memoryless, additive noisy chan-
nels. The resulting information theoretic dependencies between xnb,
xdnb and aeb are depicted in Fig. 2b) based on (conditional) differ-
ential entropies h(·). The mutual information I(xnb;aeb) describes
the linear and non-linear dependencies between xnb and aeb, i.e.,
a high mutual information between the two vectors is desirable in
order to obtain a good estimate of aeb. As shown in Fig. 2b), the
mutual information I(xnb;aeb) can be expressed as:

I(xnb;aeb) = I(xdnb;aeb)− h(xdnb|xnb)

= h(aeb)− h(aeb|xdnb)− h(xdnb|xnb), (3)

where I(xdnb;aeb) represents the mutual information between
xdnb and aeb, h(aeb) the differential entropy of aeb, h(aeb|xdnb)
the conditional differential entropy of aeb when xdnb is given and
h(xdnb|xnb) the conditional differential entropy of xdnb when xnb

is known. The latter can further be simplified [5]:

h(xdnb|xnb) = h(xnb + nnb|xnb)

= h(nnb|xnb)

= h(nnb). (4)

The disturbance of the observation vector xnb by nnb can be inter-
preted as transmission over bnb different channels in parallel. As-
suming a fixed variance for the observation vector, an upper bound
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âeb

fbwe (xdnb)

xdnb

h(xnb)

h(aeb)

I(xnb;aeb)
I(xdnb;aeb)

h(xdnb|xnb)

h(aeb|xdnb)

h(xnb|xdnb)

h(xdnb|aeb)

Fig. 2. Artificial bandwidth extension in noisy environments based
on two memoryless channels: a) signal-flow model and b) mutual
information between xnb and aeb.

for the entropy h(nnb) is given for the case that all channels are sta-

tistically independent(a) AWGN(b) channels with same variances(c)

σ2
nnb,j

= σ2
nnb

for 0 ≤ j < bnb [5]:

h(nnb) = h(nnb,0, nnb,1, ... , nnb,bnb−1)

(a)
=

bnb−1∑
j=0

h(nnb,j)

(b)

≤
bnb−1∑
j=0

1

2
log2(2πeσ

2
nnb,j

)

(c)
= bnb log2

(√
2πeσ2

nnb

)
. (5)

The variable e states the Euler number and the unit of the (differ-
ential) entropies and mutual information is bits/vector. Under the
assumption that the observation vector xnb consists of the first bnb
cepstral coefficients1 cnb,j of the clean narrowband signal snb(k),
i.e.:

xnb,j =

{
1√
2
cnb,0 for j = 0,

cnb,j for 1 ≤ j < bnb,
(6)

the noise vector nnb is related to the Log Spectral Distortion (LSD)
between the spectral envelopes of the clean narrowband signal and
the disturbed narrowband signal, represented by the vectors xnb and
xdnb, respectively. The LSD measure dLSD

nb correlates well with the
subjective speech quality and is defined as [1]:

d
LSD
nb =

√
2 · 10

loge(10)

√
E

{
1

2
(cnb,0 − cdnb,0)

2
...

+

∞∑
j=1

(cnb,j − cdnb,j)
2

}
, (7)

where E{·} represents the expectation operator and cdnb,j the j-th
cepstral coefficient of the disturbed narrowband signal included in
xdnb. The unit of dLSD

nb is dB. A lower bound for dLSD
nb is given by:

d
LSD
nb ≥

√
2 · 10

loge(10)

√
E {|nnb|2} ≥

√
2 · 10

loge(10)

√
bnb · σ2

nnb
, (8)

1It is shown in [6] that cepstral coefficients provide high information on
the spectral envelope of the extension band.

4074



which can be rearranged to:√
σ2
nnb

≤ dLSD
nb · loge(10)√
2 · 10 · √bnb

. (9)

Using Ineqs. 9 and 5 and Eq. 4, the mutual information I(xnb;aeb)
in Eq. 3 is bounded by:

I(xnb;aeb) ≥h(aeb)− h(aeb|xdnb)︸ ︷︷ ︸
I(xdnb;aeb)

− bnb log2

(√
πe loge(10)

10 · √bnb
d
LSD
nb

)
. (10)

The mutual information I(xdnb;aeb) incorporates estimation errors
of the artificial bandwidth extension which are represented in Fig. 2
by neb. An expression for I(xdnb;aeb) is derived in [1] using very
similar calculus as above. Assuming that the upper frequency band
is represented in aeb by cepstral coefficients of the extension band
as well, the conditional entropy h(aeb|xdnb) is also bounded by the

LSD dLSD
eb of the extension band according to:

h(aeb|xdnb) = h(neb) ≤ beb log2

(√
πe loge(10)

10 · √beb
d
LSD
eb

)
, (11)

finally leading to the following lower bound for the mutual informa-
tion between xnb and aeb:

I(xnb;aeb) ≥h(aeb)− beb log2

(√
πe loge(10)

10 · √beb
d
LSD
eb

)

− bnb log2

(√
πe loge(10)

10 · √bnb
d
LSD
nb

)
. (12)

Thereby, estimation errors occurring in the ABWE process are con-
sidered in the first subtrahend and the information loss due to distur-
bance of the narrowband signal is expressed by the second subtra-
hend. Knowing the distortion caused by a specific ABWE estimator
as well as the degradation of the narrowband signal, the mutual infor-
mation which is at least included in xnb and aeb is given by Ineq. 12.
In the following, two scenarios are considered in which ABWE in
noisy environments is analyzed based on real entropy measurements.

4. RESULTS

In this section, the performance bound is applied to real speech data
and the influence of narrowband noise reduction prior to ABWE is
investigated. Therefore, the noise suppression system proposed in
[7] is applied to the disturbed narrowband signal yielding the narrow-
band speech estimate. In order to compare the cases before and af-
ter noise suppression, the observation vector xdnb is extracted from
both, the noisy narrowband signal and the enhanced narrowband sig-
nal after noise reduction.

Two scenarios characterized by the choice of parameters used
for the observation vectors xnb and xdnb as well as the feature
vector aeb are considered. In Scenario I, the theoretical bound of
Ineq. 12 is analyzed according to the measured differential entropy
h(aI

eb) and the LSD measures dLSD
nb and dLSD

eb . With respect to the
derivation of this lower bound, cepstral coefficients are chosen as
parameters for the narrowband as well as for the extension band
according to:

Scenario I Parameter(s) Dimension

Observ. vector xI
nb Cepstral coefficients bnb = 10

Observ. vector xI
dnb Cepstral coefficients bnb = 10

Feature vector aI
eb Cepstral coefficients beb = 10

Scenario II considers the wideband noise suppression system which
is proposed in [8]. The system uses ABWE techniques in order
to improve the spectral estimation process in the extension band.
Therefore, features from the processed (enhanced) narrowband sig-
nal are extracted and used to estimate subband energies of the ex-
tension band. These energy estimates support a conventional noise
reduction technique in the extension band. In Scenario II, the effec-
tive mutual information I(xII

dnb; a
II
eb) which can be achieved in [8]

by ABWE is investigated and its dependency on the input SNR is
shown. In order to get results which can be transferred to the ac-
tual system in [8], the same parameters and dimensions as used in
[8] are applied for the observation and feature vectors, namely Mel
Frequency Cepstral Coefficients (MFCCs), the Zero Crossing Rate
(ZCR) as well as subband energies as follows:

Scenario II Parameter(s) Dimension

Observ. vector xII
nb MFCCs + ZCR bnb = 14

Observ. vector xII
dnb MFCCs + ZCR bnb = 14

Feature vector aII
eb Subband energies beb = 12

The measurements of h(aI
eb), h(a

II
eb) and I(xII

dnb;a
II
eb) are carried

out by using the well-known k-nearest neighbor algorithm [9] to es-
timate the required probability density functions [5]. The algorithm
is data efficient, adaptive and achieves minimal bias. The number k
here decides how many neighbors influence the final classification.
In the sequel, the results for the two scenarios are presented using
k = 1.

For the evaluation, about 16 minutes of speech taken from the
NTT speech database (sampling frequency fs =16 kHz) are dis-
turbed by AWGN at different SNR values. The wideband signals
are split into the respective narrowband and extension band part be-
fore the signals are downsampled by a factor of 2. In the simula-
tion setup, the speech and noise signals are both available and can
therefore be filtered and downsampled separately. Hence, clean and
noisy versions of narrowband as well as extension band signals are
accessible. Based on these signals, the observation vectors xnb and
xdnb as well as the feature vector aeb are extracted using 20 ms non-
overlapping frames contributing to speech activity.

4.1. Scenario I (Narrowband Noise Reduction)

In order to apply Ineq. 12, this scenario considers the use of cep-
stral coefficients as parameters within the observation and feature
vectors. The LSD dLSD

nb of the narrowband as well as the differen-
tial entropy h(aI

eb) are determined from real data. The narrowband
speech signal snb(k) is disturbed by AWGN at input SNR values of
-15 dB, 0 dB and 15 dB. It has to be mentioned that the disturbance
of snb(k) by AWGN does not necessarily mean that the elements
of the vector nnb are Gaussian distributed as well. However, in any
case Ineq. 12 is valid as the entropy of a scalar signal with variance
σ2
nnb

is upper bounded by the entropy of a normally distributed vari-
able with the same variance [5]. Table 1 shows the averaged LSD
values dLSD

nb measured before and after noise suppression is applied.
Moreover, the differential entropy h(aI

eb) is measured and yields

Log. spectral dist. dLSD
nb

Input SNR
-15 dB 0 dB 15 dB

Without noise reduction 4.627 dB 2.529 dB 1.083 dB

With noise reduction 2.047 dB 1.115 dB 0.944 dB

Table 1. Averaged log spectral distortion dLSD
nb of disturbed narrow-

band signal measured before and after noise suppression.
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h(aI
eb) ≈ 9.533 bits/vector in this setup. Based on these measure-

ments, Fig. 3 depicts the theoretical lower bounds for the mutual
information I(xI

nb;a
I
eb) according to Ineq. 12 while varying dLSD

eb

from 1 dB to 6 dB. The figure clearly shows the dependency on the
two distortion measures: the lower dLSD

nb or dLSD
eb the higher the the-

oretical bound and vice versa. In addition, the advantage of applying
noise suppression prior to ABWE can be seen. According to Tab. 1,
noise reduction achieves a reduction of the LSD measure dLSD

nb lead-
ing to a higher bound I(xI

nb;a
I
eb) compared to the case when no

noise reduction is applied. Figure 3 illustrates this behavior for the
three investigated SNR values where the discrepancy is especially
high for -15 dB input SNR.

4.2. Scenario II (Noise Reduction Supported by ABWE)

In this scenario, the ABWE which is used in [8] is considered. The
system exploits mutual information between the enhanced narrow-
band signal and the extension band speech signal by ABWE tech-
niques. In the following, the mutual information I(xII

dnb;a
II
eb) be-

tween the disturbed observation vector xII
dnb, which is available in

the system, and the feature vector aII
eb is measured. The measure-

ment is conducted in dependence on the input SNR and whether
noise suppression is applied to the narrowband signal or not. For
the evaluation purpose, the feature vector aII

eb is extracted directly
from the extension band of the original wideband signal and not from
the estimated signal after ABWE. The results are shown in Fig. 4
for input SNR values varying from -20 dB to 35 dB. It can be seen
that the mutual information is continuously increasing with the in-
put SNR and finally converges to I(xII

nb;a
II
eb), i.e., the case where

x
II
dnb = x

II
nb or nnb = 0. In addition, the figure also motivates the

application of noise suppression before ABWE is performed: the
mutual information with prior noise reduction is significantly higher
than without noise reduction.

5. CONCLUSIONS

This paper covers artificial bandwidth extension in noisy environ-
ments from an information theoretic point of view. A performance
bound for the quality of ABWE is derived assuming the narrowband
speech signal to be disturbed by AWGN. The theoretical bound is
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analyzed by real entropy measurements showing the existence of
dependencies between narrowband and extension band even if the
narrowband signal is severely disturbed by additive noise. In order
to exploit this mutual information, the application of noise suppres-
sion to the narrowband signal is advantageous by all means before
estimating the extension band parameters.
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