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Abstract

Mobile telephony has become an integral part of everyday life for billions of people
around the world. The exchange of information via speech is nowadays possible
from almost all places at anytime. However, even though the vision of permanent
reachability and connectivity has been realized in the meantime nearly worldwide,
there is still room for improvements when it comes to the transmission of speech
under noisy conditions. The performance of any speech communication system may
significantly deteriorate when the speech signal is disturbed by ambient interferences
such as traffic noise or office noise, possibly leading to a poor speech quality and
intelligibility.

In this thesis, a novel model-based speech enhancement system is presented which per-
forms single-channel noise reduction of degraded speech signals. In contrast to state-
of-the-art noise suppression techniques, the developed algorithms explicitly exploit
temporal and spectral dependencies of speech and noise signals. To account for the
temporal correlation, a modified Kalman filter is derived in the frequency domain. As
main novelties, the proposed solution performs complex-valued prediction of speech
and noise DFT coefficients and uses SNR-dependent MMSE estimators which are
adapted to measured statistics of the input signal. In order to incorporate the spec-
tral dependencies of speech signals, a new wideband speech enhancement system is
presented which utilizes techniques known from artificial bandwidth extension. The
developed method re-uses the processed and enhanced signal from lower frequencies
to improve the results of a conventional noise suppression technique at higher fre-
quencies. As additional part, this work proposes effective countermeasures to reduce
the occurrence of musical noise and provides a novel solution for the suppression of
rapidly time-varying harmonic noise.

All developed speech enhancement techniques within this thesis are thoroughly
evaluated by means of instrumental measurements and auditory judgments. It turns
out that the proposed algorithms achieve distinctly better results compared to state-
of-the-art approaches with respect to noise attenuation and speech distortions. The
novel model-based system is not restricted to the application in mobile phones. It can
be used in addition to improve the speech quality of hands-free devices, conferencing
systems or digital hearing aids.
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Notations, Symbols & Abbreviations

Mathematical Notation

In this thesis, the following conventions are used: capital bold letters refer to matrices,
e.g., X, vectors are written in bold letters, e.g., x and scalars are not bold, e.g., x.
Quantities in the time domain are usually written in lower-case letters, e.g., x(k)
while quantities in the frequency domain are written in upper-case letters, e.g., X(μ).
Estimated quantities are labeled by a hat, e.g., x̂.

List of Principal Symbols

Latin Symbols

A speech transition matrix
A magnitude of short-time speech DFT coefficient
ahb feature vector representing spectral envelope of high band signal
aκ κ-th AR coefficient of speech model

Âprop magnitude estimate of short-time speech DFT coefficient in propagation
step

awb feature vector representing spectral envelope of wideband signal
B noise transition matrix
B Minimum Statistics bias correction factor
b Bark band index
bhb dimension of ahb
Bl lower frequency bin limit
blb dimension of xlb

bτ τ -th AR coefficient of noise model
Bu upper frequency bin limit
bwb dimension of awb

cdlb,j j-th cepstral coefficient in xdlb

clb,j j-th cepstral coefficient in xlb

D differential signal in frequency domain
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d differential signal in time domain (speech and noise prediction)
dLSDhb log spectral distortion in high band
dLSDlb log spectral distortion in low band
DMS Minimum Statistics search window length
ds differential signal in time domain (only speech prediction)
E{·} expectation operator
e Euler number
elb low band speech excitation signal
EN noise excitation signal in frequency domain
en noise excitation signal in time domain
EN

prop vector containing noise prediction errors in frequency domain (propaga-
tion step)

EN
prop noise prediction error in frequency domain (propagation step)

enprop vector containing noise prediction errors in time domain (propagation
step)

enprop noise prediction error in time domain (propagation step)
ES

prop vector containing speech prediction errors in frequency domain (propa-
gation step)

ES
prop speech prediction error in frequency domain (propagation step)

esprop vector containing speech prediction errors in time domain (propagation
step)

esprop speech prediction error in time domain (propagation step)
ES speech excitation signal in frequency domain
es speech excitation signal in time domain
EN

up vector containing noise estimation errors in frequency domain (update
step)

EN
up noise estimation error in frequency domain (update step)

enup vector containing noise estimation errors in time domain (update step)
enup noise estimation error in time domain (update step)
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up vector containing speech estimation errors step in frequency domain (up-
date step)

ES
up speech estimation error in frequency domain (update step)

esup vector containing speech estimation errors in time domain (update step)
esup speech estimation error in time domain (update step)
ewb wideband speech excitation signal
exp(·) exponential function
f0 fundamental frequency of harmonic noise
fs sampling frequency
G spectral weighting gain
Gh spectral weighting gain for harmonic noise reduction
Ghb overall spectral weighting gain in high band
Gbwe

hb spectral weighting gain in high band determined by ABWE techniques
Gconv

hb spectral weighting gain of conventional noise reduction in high band
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hb optimum spectral weighting gain in high band

gN unit vector of dimension MK

gn unit vector of dimension MK
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GP,S speech prediction gain
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ŝup speech estimate in time domain (update step)
swb wideband speech signal
xdlb observation vector representing disturbed envelope of low band signal
Xlb sequence of observation vectors xlb

xlb observation vector representing spectral envelope of low band signal
Y short-time DFT coefficient of noisy signal
y vector containing noisy samples
y noisy signal
Yhb short-time DFT coefficient of noisy signal in high band
yhb noisy signal in high band
Ylb short-time DFT coefficient of noisy signal in low band
ylb noisy signal in low band
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1

Introduction

Since time immemorial, speech is one of the most important communication forms
of humanity. While in former times conversations were possible only face-to-face,
the invention of the telephone was a breakthrough into the era of telecommunication.
Since that time, people are able to make long-distance calls and to communicate with
other persons from all around the world. In the course of time, the telecommunication
sector has become a very important asset in economy. With the progress in technology
and the increasing demand for permanent reachability and connectivity, the exchange
of information via speech is feasible nowadays from anywhere at anytime. The use of
mobile phones has become an inherent part in everyday life.

In order to ensure a high transmission quality in mobile telephone networks, digital
signal processing plays a very important role. The increasing computational perfor-
mance of technical platforms allows the realization of more and more sophisticated
and complex algorithms in mobile phones. An effective and efficient concatenation of
all parts within the transmission chain from the acoustic front-end to the radio link
leads to a satisfying end-to-end speech quality in the ideal case. However, the quality
as well as the intelligibility of any speech communication system may significantly
deteriorate if the input signal is degraded by ambient interferences such as echoes,
background noises and reverberation. A possible degradation may have severe influ-
ence on the required listening effort. Depending on the Signal-to-Noise-Ratio (SNR),
interferences make a conversation uncomfortable or even impossible in the worst case.
In order to cope with such acoustic environments, speech enhancement algorithms
are meanwhile implemented in many digital speech communication systems. These
algorithms aim at reducing echoes, background noises or reverberation by means of
digital signal processing without affecting the speech signal. In literature, a large
number of different solutions can be found for speech enhancement. In general, the
approaches can be separated into two main classes: single and multi-sensor (micro-
phone) systems. While multi-sensor speech enhancement systems can additionally
exploit spatial properties of the environment, e.g., by beamforming or adaptive noise
cancellation, single-sensor systems are restricted to one microphone signal and usually
rely on A Priori Knowledge (AK) of speech and interference.

This thesis covers single-sensor speech enhancement in noisy environments where
the speech signal is disturbed by additive background noises like traffic noise, office



2 1 Introduction

noise or ‘babble noise’ of other speakers. Therefore, the terms speech enhancement,
noise reduction and noise suppression are used interchangeably from now on. A
typical application example is depicted in Fig. 1.1. A person is standing in a noisy
environment and wants to communicate with another person using a mobile phone.
The noisy signal y, consisting of the clean speech signal s and the environmental
noise n, is captured by the phone’s microphone. Before the signal is transmitted over
the radio channel, noise suppression is applied resulting in an estimate ŝ of the clean
speech signal at the output. Afterwards, the enhanced signal ŝ is further processed
by speech coding, channel coding and modulation and is finally transmitted to the
far-end person. If the noise suppression works successfully, the background noise
is effectively reduced, leading to a much more comfortable listening condition. The
utilization of noise reduction algorithms is not only limited to mobile phones. Further
application areas are, e.g., hands-free devices, conferencing systems, digital hearing
aids and speech recognition systems.

1.1 Related Works

In literature, a large variety of different approaches can be found for the purpose
of single-channel noise reduction. Overviews can be found, e.g., in [VM06, VHH98,
BCHC09, HS06, Loi07, Ben07, Dav02]. The first approaches go back to the year 1965.

y=
s+n ŝNoise

Reduction

Further Proc.
(Coding, Mo-
dulation, etc.)

Figure 1.1: Application example for noise reduction by means of a mobile phone.
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In [Sch65], the first patent on spectral subtraction was published and was realized
as an analog circuit. However, noise reduction did not gather momentum until the
digital age. Digital Signal Processors (DSPs) paved the way to develop and implement
sophisticated algorithms in the digital domain. The first digital techniques can be
found in [Bol79, LO79, MM80] and are based on the spectral subtraction approach
and the Wiener filtering method. In principle, all solutions can be divided into two
categories: transformation techniques and model-based approaches.

The transformation techniques transform the noisy input signal in an adequate do-
main where speech and noise can be separated in a simpler way by exploiting appro-
priate signal characteristics. One of the most utilized domains is the Fourier domain
due to the efficient implementation of the Discrete Fourier Transform (DFT). In this
domain, a statistical estimation framework is usually used, which applies individual
adaptive weighting gains to either the complex-valued noisy DFT coefficients or the
real-valued noisy magnitudes where the phase of the input signal is maintained. In
order to derive the weighting gains, in most cases a specific distortion measure is min-
imized relying on a mathematical cost function like Minimum Mean Square Error
(MMSE), Maximum A Posteriori (MAP) or Maximum Likelihood (ML). Moreover,
certain assumptions on the statistics of the speech and noise signals are made. While a
Gaussian model is often used for the noise signal, the distribution of the speech signal
is typically modeled either as Gaussian or super-Gaussian. Distinguished solutions in
this area can be found, e.g., in [EM84, EM85, Var85, Mar05, LV05, EHHJ07, BKM08].
The application of a DFT provides a uniform resolution in the frequency domain.
In order to adjust the spectral resolution with respect to psychoacoustical criteria,
e.g., wavelet-based transforms [GEH98, LGO+96, SB97] or allpass transformed DFT
filter-banks [HS08, Chapter 2] can be used. These approaches make non-uniform time-
frequency resolutions possible which can be adapted for instance to the well-known
Bark scale [ZF90]. Another technique, which belongs to this important category of
noise suppression algorithms, is the so-called subspace approach. Within the sub-
space, it is assumed that the noisy signal can be represented as speech-plus-noise
subspace and noise-only subspace. Hence, the objective is to eliminate the noise-only
subspace while reconstructing the speech signal from the remaining speech-plus-noise
subspace. Common subspace transforms are, e.g., the Karhunen-Loève transform as
well as the singular value decomposition. Techniques based on subspace decomposi-
tion are proposed, e.g., in [DBC91, EVT95, HL03].

In contrast to the transformation techniques, model-based approaches additionally
take into account models of the human speech production process or the human
auditory system in order to further improve the noise reduction performance. The
model-based approaches include, e.g., psychoacoustically-based techniques [TPM93,
GMJV02], the application of Hidden Markov Models (HMMs) [EMJ89, Eph92] and
Kalman filtering techniques [PB87, WC98, Pud02].
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1.2 Structure of this Thesis

In the first part of this work, a model-based speech enhancement system is proposed
which focuses on the exploitation of temporal and spectral dependencies of speech as
well as noise signals. In the second part, two well-known problems of state-of-the-art
noise reduction techniques are addressed, namely the reduction of musical noise and
speech enhancement in highly non-stationary noise environments. The remainder of
this thesis is divided into 5 chapters as follows.

Chapter 2 provides a brief overview of noise suppression techniques working in the
frequency domain. The basic principles of statistically-based noise reduction algo-
rithms are outlined which are required in the sequel of this thesis. After introducing
the applied analysis-synthesis structure for the transformation into the frequency do-
main, several methods for noise Power Spectral Density (PSD) estimation and SNR
estimation are presented. Finally, a short literature survey of state-of-the-art weight-
ing rules is given relying on different optimization criteria and different statistical
assumptions concerning the Probability Density Functions (PDFs) of the speech as
well as the noise signal.

In Chapter 3, a novel model-based speech enhancement system is presented which
exploits temporal correlation of speech and noise signals. The proposed scheme is
based on a Kalman filter structure that is applied in the frequency domain to the
complex-valued input DFT coefficients by using a two step approach. In the first step,
information from previous, enhanced speech and noise DFT coefficients is exploited to
perform estimates of the current DFT coefficients. In general, the predictions in this
first step are erroneous resulting in non-zero prediction errors. Thus, a second step is
applied in which the first estimates of speech and noise are updated by using adequate
statistical weighting rules, amongst others SNR-dependent MMSE estimators which
are explicitly adapted to (measured) statistics of the speech prediction error signal.
In addition to instrumental measurements, the results of an informal listening test
are presented in order to investigate the potential of the proposed model-based noise
reduction technique.

In Chapter 4, spectral dependencies of speech signals are analyzed and it is shown how
to benefit from these dependencies for the purpose of wideband speech enhancement
(50 Hz – 7 kHz). As a novel feature, techniques known from Artificial Bandwidth Ex-
tension (ABWE) are used in this chapter to improve the spectral estimation process
in the high band (4 kHz – 7 kHz). Therefore, the spectral dependencies between low
band (50 Hz – 4 kHz) and high band are exploited. While a conventional noise sup-
pression technique is used in the low band, a joint approach is applied for the speech
enhancement in the high band. Based on a trained Hidden Markov Model (HMM),
features from the processed (enhanced) low band signal are extracted and used to esti-
mate subband energies of the high band speech signal. The resulting weighting gains
determined from these energy estimates are adaptively combined with conventional
gains for the high band. The performance of the proposed noise reduction technique
is evaluated by means of instrumental measurements as well as auditory judgments.
In addition to the wideband speech enhancement system, this chapter provides an
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information theoretic view on ABWE under noisy conditions. A performance bound
is formulated and the influence of noise reduction prior to ABWE is investigated by
real entropy measurements.

Chapter 5 covers additional methods for quality improvements. When a noise sup-
pression system is applied in a real-world scenario, the user often has to cope with a
tradeoff between noise attenuation, speech distortions and the occurrence of annoying
musical noise artifacts in the processed output signal. This chapter provides helpful
techniques to be used in order to achieve a good compromise between these three
aspects. In the first part, two different musical noise countermeasures are presented
which can be applied to an arbitrary noise reduction system in a postprocessing stage.
Method A performs adaptive spectral smoothing of the weighting gains relying on a
low input SNR detector. In contrast, Method B is based on noise suppression with
adaptive frequency resolution where the resolution is lower during speech pauses in
order to reduce the tonality of the residual noise. The second part of this chapter
deals with speech enhancement in non-stationary noise environments which is still a
very challenging problem. A noise reduction system is presented which is capable of
tracking and suppressing rapidly time-varying harmonic noise as well as stationary
noise. In a first stage, the harmonic noise power is estimated and attenuated using a
modified Minimum Statistics approach which performs frequency warping according
to the harmonic’s fundamental frequency. A conventional noise estimation technique
is applied in a second stage in order to reduce the remaining random components
of the noise spectrum. Instrumental measurements and informal listening tests are
carried out in order to evaluate the performance of the proposed methods.

Chapter 6 summarizes the developed speech enhancement techniques and gives some
concluding remarks on the main results of this thesis.

In the Appendix, particular equations are derived and certain assumptions made
within the thesis are further analyzed. Moreover, the computational complexity as
well as the memory requirements of the proposed Kalman filter approach are evalu-
ated and the applied instrumental measurements are presented in detail.

Parts of the results of this thesis are presented in the following references published
by the author: [EV11, HEV11, ERHV10b, ERHV10a, EHGV10, JSEV10, HEGV10,
EV09, KSE+09, EV08c, EV08b, EV08a, Esc06]. These references are highlighted by
underlines in the following, i.e., [ ].



6 1 Introduction



2

Statistical Noise Suppression

Techniques

Noise reduction is covered in literature for more than 30 years. Depending on the
environment, the application, the number of available microphones, the source signals
and the type of noise, the solutions look very different. In order to perform single-
channel speech enhancement in communication systems, a widely used method is the
so-called spectral decomposition of the noisy input signal using statistical noise sup-
pression techniques. Thereby, at first an appropriate block-based analysis system is
applied in order to segment the microphone signal into overlapping frames. Utilizing
the Short-Time Fourier Transform (STFT), the resulting segments are transformed
into the frequency domain where the respective spectral STFT coefficients are mod-
ified by a gain function. This gain function aims to minimize a specific distortion
measure between clean and estimated speech signal usually in terms of magnitude
and phase modifications. In most cases, the corresponding weighting rules rely on a
mathematical cost function like Minimum Mean Square Error (MMSE), Maximum A
Posteriori (MAP) or Maximum Likelihood (ML) as well as statistical characteristics
of the speech and the noise signal. The resulting weighting gains are determined
for each frame and frequency bin and their absolute values vary between 0 and 1.
They should be high, i.e., near 1, in good Signal-to-Noise-Ratio (SNR) conditions
in order to minimize speech distortions and low, i.e., near 0, if the current noisy
STFT coefficients contain no speech or only weak speech components. In addition to
appropriate statistical models and adequate distortion measures, a statistical noise
reduction method usually also requires knowledge about the noise Power Spectral
Density (PSD) and the frequency domain input SNR. As both entities are in general
not known a priori, they have to be estimated and updated during runtime. Eventu-
ally, after weighting the input STFT coefficients according to the specific statistical
estimator, the processed spectrum is transformed back into the time domain.

This chapter provides the basic principles of noise reduction in the frequency domain
which are required in the sequel of this thesis. It gives a general overview about
statistical noise reduction techniques including different statistical models for speech
and noise, different cost functions and state-of-the-art approaches for the estimation
of the required noise PSD and input SNR. In order to get a more detailed insight



8 2 Statistical Noise Suppression Techniques

into statistical noise suppression techniques, the author refers to the literature, e.g.,
[VM06, Ben07, BCHC09, HS06, Lim83].

The remainder of this chapter is organized according to the signal flow of a typical
statistical noise reduction system depicted in Fig. 2.1. After introducing the under-
lying signal model, the analysis-synthesis structure which is applied in this thesis is
outlined including the transformation into the frequency domain. Thereafter, differ-
ent techniques for the estimation of the noise power as well as the input SNR are
presented. Eventually, several gain calculation rules using different cost functions
and different Probability Density Functions (PDFs) to model the statistics of speech
and noise are comprised in detail.

2.1 Problem Formulation

A clean speech signal s(k) is assumed to be degraded by an additive noise signal n(k).
The resulting noisy signal y(k) picked up by the microphone is given by:

y(k) = s(k) + n(k), (2.1)

where k is the discrete time index. Speech and noise signals are supposed to be
uncorrelated and can be described by zero-mean random processes. The aim of any
noise suppression system is then to estimate the clean speech signal having access only
to the noisy microphone signal y(k). It is desirable to attenuate the noise signal as
much as possible while keeping the distortions of the speech signal as low as possible
at the same time. The resulting estimate at the output is denoted by ŝ(k).

In the following, the functionality of each block in Fig. 2.1 between noisy input and
processed output signal is described in detail incorporating state-of-the-art examples
for the respective topics.

2.2 Analysis and Synthesis

In the derivation of most statistical noise reduction algorithms, speech and noise is
often assumed to be stationary. In this case, the resulting filter coefficients would be
fixed during runtime and the noise suppression could easily be realized using simple
Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters. However,
noise and in particular speech can be highly non-stationary as the production of
human speech follows a time-varying process. Especially plosive sounds arise from
dynamically transient changes of the vocal tract leading to the fact that some proper-
ties of speech signals as, e.g., energy or correlation, can be assumed to be stationary
or at least quasi-stationary only for short time segments of 10 – 100 ms [RS78].

To account for the temporal changes of speech and noise, the processing of the noisy
input signal is performed framewise and the filter coefficients are updated continuously.
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Figure 2.1: System block diagram of a conventional noise suppression system working in
the frequency domain.

For this purpose, an analysis-synthesis system with perfect reconstruction is applied
as depicted in Fig. 2.2.

At first, the noisy input signal y(k) is segmented into overlapping frames of length LF

with a frame shift size LFS, cf. Fig. 2.2(a). The choice of the frame length determines
the temporal resolution of the analysis-synthesis system. As the temporal resolution
directly affects the spectral resolution, each spectral noise suppression system has to
cope with a tradeoff between both. On the one hand, a high spectral resolution is
desirable in order to preserve speech components as, e.g., pitch harmonics. However,
on the other hand, for the enhancement of highly dynamic speech parts (plosives,
onsets and offsets), it is better to work with a high temporal resolution. Typical sizes
for the frame length LF are within the range from 5 ms to 40 ms [VM06, PLW10].
The frame overlap commonly varies between 50% and 75% [Ben07].

In order to counteract the spectral leakage effect, the samples in each frame are mul-
tiplied by a tapered window. Frequently used window functions are, e.g., the Hann
window, the Hamming window or the Blackman window [OS98]. After segmenta-
tion, windowing and if necessary zero padding, the noisy short-time segments are
transformed into the frequency domain using a short-time Discrete Fourier Trans-
form (DFT) of length MF. The spectrum of the noisy input signal is given by:

Y (λ, μ) = R(λ, μ) · ejϑ(λ,μ) (2.2)

= S(λ, μ) +N(λ, μ) (2.3)

= A(λ, μ) · ejφ(λ,μ) +N(λ, μ), (2.4)

where R(λ, μ) and ϑ(λ, μ) are the noisy magnitude and the corresponding phase at
frame λ and frequency bin μ. S(λ, μ) and N(λ, μ) represent the complex-valued
spectral DFT coefficients of speech and noise and A(λ, μ) and φ(λ, μ) denote the
spectral amplitude and phase of the clean speech signal.

Transforming the noisy input signal into the spectral domain is a widely accepted
technique for speech enhancement as it strongly corresponds to the processing taking
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Figure 2.2: Analysis-synthesis system: insights into (a) analysis block including segmenta-
tion, windowing and FFT, (b) synthesis block including IFFT and overlap-add.

place in the human auditory system [ZF90]. In addition, the weighting gains can
be designed independently for each frequency bin and an efficient realization of the
Fourier transform is possible using the Fast Fourier Transform (FFT).

Using the noisy input spectrum Y (λ, μ), the short-time noise PSD as well as the
frequency domain SNR are estimated and the weighting gains are determined, see
Fig. 2.1. The actual spectral weighting is performed by multiplying the noisy spec-
trum Y (λ, μ) by weighting gains G(λ, μ) resulting in estimates Ŝ(λ, μ) of the clean
speech DFT coefficients S(λ, μ) according to:

Ŝ(λ, μ) = G(λ, μ) · Y (λ, μ)

= G(λ, μ) ·R(λ, μ) · ejϑ(λ,μ). (2.5)

The weighting gains can be complex-valued. However, as the human ear is rather
insensitive w.r.t. phase distortions [WL82], most estimators only modify the spectral
magnitudes and use the phases ϑ(λ, μ) of the noisy input signal for reconstruction. As
mentioned before, the absolute values of G(λ, μ) lie in the range between 0 and 1. In
order to obtain the enhanced signal also in the time domain, all operations applied in
the analysis are reversed in a subsequent synthesis. As shown in Fig. 2.2(b), an Inverse
Fast Fourier Transform (IFFT) and overlap-add are utilized for this purpose [GL84].
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2.3 Noise PSD Estimation

A crucial component of any practical speech enhancement system is the estimation of
the short-term noise PSD σ2

N (λ, μ). Especially in non-stationary noise environments
an accurate tracking of σ2

N (λ, μ) becomes very challenging and requires adaptive
methods which are able to estimate the noise power also during speech activity. If
the noise PSD is overestimated, the suppression of the input signal might be too
strong leading to speech distortions and a loss in intelligibility. In contrast, high
noise levels might remain as consequence of a noise underestimation.

Various single-channel noise PSD estimation algorithms can be found in literature. A
comparison of some state-of-the-art estimators is presented in [TTM+11]. The most
prominent techniques are briefly outlined in the following.

2.3.1 Voice Activity Detection

One of the first methods known in literature for noise PSD estimation is based on
Voice Activity Detection (VAD), e.g., [MM80] and [vC89]. The estimate σ̂2

N (λ, μ)
is obtained by smoothing the noisy periodogram over time in noise-only frames and
keeping this estimate fixed during speech activity. In order to decide whether the
current noisy DFT coefficients contain speech or not, a hypothesis-based framework
with final threshold decision is applied usually. However, especially in low SNR con-
ditions, it remains very difficult to achieve an accurate VAD [VM06]. Moreover,
noise is often non-stationary. Thus, the accuracy of this estimation technique is
limited and performs well only in situations with a moderate noise level. A compar-
ison of International Telecommunication Union -Telecommunication Standardization
Sector (ITU-T) and European Telecommunications Standards Institute (ETSI) voice
activity detection approaches can be found, e.g., in [BCR01].

2.3.2 Minimum Statistics

In contrast to a VAD driven estimator, the Minimum Statistics algorithm is able to
update the estimated noise PSD also during speech activity [Mar01]. The approach
relies on two assumptions:

• Speech and noise are statistically independent and

• the power of the noisy signal often decays to the power level of the noise signal
(e.g., in speech pauses).

Based on these assumptions it is possible to track the minimum of the short-term
noisy PSD. As this minimum is always smaller or equal to the mean noise power, a
bias correction is necessary.
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In a first step, the noisy periodogram |Y (λ, μ)|2 is recursively smoothed over time
where | · | represents the magnitude operator. The smoothed signal power σ̂2

Y (λ, μ) is
given by:

σ̂2
Y (λ, μ) = αMS(λ, μ) · σ̂2

Y (λ− 1, μ) + (1− αMS(λ, μ)) · |Y (λ, μ)|2, (2.6)

with αMS(λ, μ) ∈ [0, 1] denoting a frame and frequency-dependent smoothing factor.
Afterwards, the minimum σ̂2

Y,min(λ, μ) of the most recent DMS values is tracked for
each frequency bin separately by a sliding time window according to:

σ̂2
Y,min(λ, μ) = min

λ̃∈[λ−DMS+1,λ]
σ̂2
Y (λ̃, μ). (2.7)

The duration of the time window for the minimum search should be equal to approx-
imately 1.5 seconds [Mar01]. Eventually, the minimum value is multiplied by a bias
correction factor B(λ, μ), which is mainly dependent on the variance of the noisy
input periodogram. The final noise PSD estimate is given by:

σ̂2
N (λ, μ) = B(λ, μ) · σ̂2

Y,min(λ, μ). (2.8)

Minimum Statistics shows good estimation results in stationary and slowly changing
noise conditions. However, due to the large window length DMS, it is not able to track
a sudden rise in noise energy leading to an underestimation of the noise power in this
case. The concept of noise estimators based on Minimum Statistics has been further
studied in order to enhance the noise tracking capabilities, e.g., in [PC08, TJ09].

2.3.3 Minima Controlled Recursive Averaging

The Minima Controlled Recursive Averaging approach performs noise estimation
by using a weighted recursion which averages previous noise PSD estimates over
time [CB02]. The final estimate is given by:

σ̂2
N (λ+ 1, μ) = α̃MC(λ, μ) · σ̂2

N (λ, μ) + (1− α̃MC(λ, μ)) · |Y (λ, μ)|2. (2.9)

The frame and frequency-dependent weighting factor α̃MC(λ, μ) is adjusted by the
estimated speech presence probability p̂′(λ, μ) according to:

α̃MC(λ, μ) = αMC + (1− αMC) · p̂′(λ, μ), (2.10)

where αMC ∈ [0, 1] denotes a further smoothing parameter. The probability p̂′(λ, μ)
is again determined recursively as follows:

p̂′(λ, μ) = αp · p̂′(λ− 1, μ) + (1− αp) · Ip(λ, μ), (2.11)

with 0 ≤ αp ≤ 1. The function Ip(λ, μ) states an indicator for speech presence and is

set to 1 if the ratio Pr(λ, μ) between current noisy energy σ̂2′
Y (λ, μ) and the minimum
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of the local energy σ̂2′
Y,min(λ, μ) within a specific time window exceeds a predefined

threshold δMC. Otherwise, if Pr(λ, μ) is lower than δMC, the function is set to 0, i.e.:

Ip(λ, μ) =

{
1, if Pr(λ, μ) ≥ δMC

0, if Pr(λ, μ) < δMC

, (2.12)

with Pr(λ, μ) =
σ̂2

′
Y (λ,μ)

σ̂2
′

Y,min
(λ,μ)

. The energy σ̂2′
Y (λ, μ) is obtained by smoothing the

squared magnitudes of the noisy DFT coefficients over time and frequency. The

minimum of the local energy σ̂2′
Y,min(λ, μ) is determined using a simplified version of

the Minimum Statistics algorithm, see Sec. 2.3.2.

In obtaining the current noise PSD estimate, the minima controlled recursive aver-
aging algorithm suffers from the same problems as Minimum Statistics. In order to

determine the minimum σ̂2′
Y,min(λ, μ), a large time window is used making it difficult

to track non-stationarities of noise signals. An improved algorithm is proposed in
[Coh03]. Here, two iterations of smoothing and minimum tracking are applied and
a bias compensation factor is introduced resulting in the possibility to use smaller
lengths for the search window. In [KC09], the approach is extended by a second
order conditional MAP criterion.

2.3.4 MMSE Based Noise PSD Tracking

In this recently published algorithm [HHJ10], the noise PSD is derived from an MMSE
estimate of the squared noise magnitude resulting in the following conditional expec-
tation:

σ̂2
N (λ, μ) = E{|N(λ, μ)|2 ∣∣ |Y (λ, μ)|}, (2.13)

where E{·} represents the expectation operator.

In the derivation, it is assumed that speech and noise DFT coefficients exhibit a
complex Gaussian PDF. The solution according to Eq. 2.13 requires an estimate of
the input SNR which is obtained by using the current noisy periodogram and the
noise PSD estimates from previous frames. Computing the expectation in Eq. 2.13
leads to an unbiased estimator for σ2

N (λ, μ) in theory. In practice however, the esti-
mate of the input SNR might introduce a bias which can be reduced by performing
an additional bias compensation. A final smoothing operation across time is applied
at the end in order to reduce the variance of the noise PSD estimates.

According to [TTM+11], this MMSE based noise PSD tracking algorithm shows a
good noise PSD tracking performance also in challenging noise environments. More-
over, the computational complexity can be reduced by a factor of 8 compared to the
Minimum Statistics approach [HHJ10].
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2.4 Signal-to-Noise-Ratio Estimation

In addition to the estimation of the short-term noise PSD, most statistical noise
suppression techniques require estimates of the a posteriori SNR γ(λ, μ) and a pri-
ori SNR ξ(λ, μ). The a posteriori SNR is defined as the ratio between the noisy
periodogram and the short-term noise PSD according to:

γ(λ, μ) =
|Y (λ, μ)|2
σ2
N (λ, μ)

. (2.14)

If an estimate of σ2
N (λ, μ) is available, the a posteriori SNR can easily be measured.

Much more difficult to determine is the a priori SNR ξ(λ, μ) as it requires an esti-
mate of the unknown short-term speech PSD σ2

S(λ, μ) as well. Assuming speech and
noise to be uncorrelated, it can be expressed dependent on the a posteriori SNR as
follows [VM06]:

ξ(λ, μ) =
σ2
S(λ, μ)

σ2
N (λ, μ)

= E{γ(λ, μ)− 1}. (2.15)

For the estimation of ξ(λ, μ) many approaches can be found in literature. In the
following, two well-known types of a priori SNR estimators are presented: the decision-
directed approach and a method based on Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) models.

2.4.1 Decision-Directed Approach

The decision-directed approach [EM84] is widely accepted in literature and con-
tributes to an improved subjective quality of the enhanced speech signal. For es-
timating the a priori SNR, this approach linearly combines estimates from previous
frames with an instantaneous SNR realization relying on the a posteriori SNR accord-
ing to:

ξ̂(λ, μ) = αDD · |Ŝ(λ− 1, μ)|2
σ̂2
N (λ− 1, μ)

+ (1− αDD) · max
(
γ̂(λ, μ)− 1, 0

)
, (2.16)

where max(·, ·) returns the maximum of its two arguments. The smoothing factor αDD

adjusts the tradeoff between noise reduction and speech distortions and typically lies
in the range 0.9 ≤ αDD ≤ 0.99. In this work, αDD is set to 0.98 according to [EM84].

2.4.2 Estimation Based on GARCH Models

GARCH models are known from financial applications where they are used, e.g., to
model the time-varying volatility of stocks. As speech signals in the frequency domain
also show ‘variability clustering’ and a ‘heavy tail behavior’ which means that large
amplitudes tend to follow large amplitudes and low amplitudes tend to follow low
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amplitudes while the phase can hardly be predicted, the use of GARCH models for
speech variance estimation is proposed in [Coh04].

In [Coh05a], a two step speech PSD estimator is presented. In the first step, the
variance estimate of frame λ is propagated in time from the information that is
available at frame λ− 1. Therefore, the following GARCH model is used:

σ̂2
S,1(λ, μ) = σ2

min + ρG · σ̂2
S,2(λ− 1, μ) + δG · (σ̂2

S,1(λ− 1, μ)− σ2
min), (2.17)

where σ2
min denotes a lower bound, ρG a moving average parameter and δG an au-

toregressive parameter with respect to the constraints σ2
min > 0, ρG ≥ 0, δG ≥ 0 and

ρG + δG < 1.

In the second step, the first estimate σ̂2
S,1(λ, μ) is updated by using the additional

information Y (λ, μ) of the current frame. Therefore, the following conditional expec-
tation is derived:

σ̂2
S,2(λ, μ) = E{|S(λ, μ)|2 |H1(λ, μ), σ̂

2
S,1(λ, μ), Y (λ, μ)}, (2.18)

where H1(λ, μ) denotes the hypothesis that speech is present in the current spectral
coefficient Y (λ, μ). Several solutions for Eq. 2.18 are presented in [Coh05a] based
on different statistical models which are assumed for speech and noise. Finally, the
result of Eq. 2.18 is utilized to determine the a priori SNR according to Eq. 2.15 using
an adequate noise PSD estimate. The model parameters σ2

min, ρG and δG have to be
determined in advance from a training database.

2.5 Statistical Weighting Rules

As depicted in Fig. 2.1, the actual spectral weighting is performed by multiplying the
noisy spectrum Y (λ, μ) by weighting gains G(λ, μ) resulting in estimates of the clean
speech DFT coefficients according to Eq. 2.5. The calculation of these weighting gains
is dependent on the respective noise reduction algorithm and is usually a function
of the short-term noise PSD estimate σ̂2

N (λ, μ) and the SNR estimates γ̂(λ, μ) and

ξ̂(λ, μ) as addressed before. In essence, the determination of the spectral weighting
gains relies on mathematical criteria and specific statistical models which are assumed
either for the complex-valued DFT coefficients of speech and noise or for their real-
valued magnitudes and phases. Motivated by the central limit theorem [ABBN04],
it is often assumed that real and imaginary parts of speech and noise spectra follow
a Gaussian distribution. However, especially for speech signals, this condition is not
exactly met in reality as the respective frame and DFT sizes applied in the analysis
system are too small. A better approximation is obtained by using a super-Gaussian
distribution as, e.g., Laplacian or Gamma for the speech DFT coefficients.

In the following, a selection of some well-known statistical noise suppression tech-
niques relying on both Gaussian and super-Gaussian models is presented. The deriva-
tions and the resulting spectral weighting gains are given for each algorithm. More
detailed information can be found in literature.
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2.5.1 Wiener Filter

The Wiener filter is derived from the optimal filter theory, e.g., [Vas96, LO79].
It is a linear estimator that minimizes the mean square error between the clean
speech DFT coefficients S(λ, μ) and the enhanced DFT coefficients Ŝ(λ, μ). With
Ŝ(λ, μ) = G(λ, μ) · Y (λ, μ) according to Eq. 2.5, it follows:

E{|S(λ, μ)− Ŝ(λ, μ)|2} = E{|S(λ, μ)−G(λ, μ) · Y (λ, μ)|2} → min. (2.19)

Assuming mutual independence of real and imaginary parts, the partial derivations
of Eq. 2.19 with respect to the real and imaginary parts of G(λ, μ) yield [Vas96]:

∂E{|S(λ, μ)− Ŝ(λ, μ)|2}
∂Re{G(λ, μ)} = 0 → Re{G(λ, μ)} =

E{|S(λ, μ)|2}
E{|S(λ, μ)|2}+ E{|N(λ, μ)|2} ,

(2.20)

as well as

∂E{|S(λ, μ)− Ŝ(λ, μ)|2}
∂Im{G(λ, μ)} = 0 → Im{G(λ, μ)} = 0, (2.21)

with Re{·} and Im{·} denoting real and imaginary parts. Hence, the spectral en-
hanced DFT coefficients Ŝ(λ, μ) can be stated as:

Ŝ(λ, μ) =
E{|S(λ, μ)|2}

E{|S(λ, μ)|2}+ E{|N(λ, μ)|2} · Y (λ, μ) =
ξ(λ, μ)

ξ(λ, μ) + 1︸ ︷︷ ︸
G(λ,μ)

·Y (λ, μ), (2.22)

resulting in a weighting gain G(λ, μ) which is only dependent on the a priori
SNR ξ(λ, μ):

G(λ, μ) =
ξ(λ, μ)

ξ(λ, μ) + 1
. (2.23)

Using a Gaussian signal model for the real and imaginary parts of speech and noise,
the Wiener filter solution equals the conditional expectation E{S(λ, μ) |Y (λ, μ)},
e.g., [VM06].

2.5.2 MMSE Short-Time Spectral Amplitude Estimator

In speech and audio applications, a certain amount of phase distortions is mostly
tolerable due to the mentioned insensitivity of the human ear with respect to phase
errors [WL82, Var85, ZF99]. Moreover, the estimation of the magnitudes of the short-
time Fourier speech coefficients is much easier to achieve than the estimation of the
corresponding phases. The MMSE Short-Time Spectral Amplitude (STSA) estimator
[EM84] belongs to this important class of amplitude estimators, as it only estimates
the spectral magnitudes and uses the noisy input phase ϑ(λ, μ) for reconstruction.
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The STSA estimator minimizes the quadratic error of the spectral speech amplitudes
according to:

E{(A(λ, μ)− Â(λ, μ))2} → min. (2.24)

Under the assumption of a Gaussian speech and noise model and statistical indepen-
dence of the respective real and imaginary parts of S(λ, μ), N(λ, μ) and Y (λ, μ), the
final weighting rule is given by [EM84]:

Ŝ(λ, μ) = E{A(λ, μ)|Y (λ, μ)} · exp(j · ϑ(λ, μ))

=

√
ν(λ, μ)

γ(λ, μ)
Γ(1.5)F1(−0.5, 1,−ν)︸ ︷︷ ︸

G(λ,μ)

·Y (λ, μ), (2.25)

where ν(λ, μ) = ξ(λ,μ)
1+ξ(λ,μ) · γ(λ, μ), Γ(·) denotes the Gamma function and F1(·, ·, ·) the

hypergeometric function [GRJZ00]. In addition, exp(·) represents the exponential
function and j the imaginary unit.

2.5.3 MMSE Log Spectral Amplitude Estimator

Similar to the MMSE STSA estimator the MMSE Log Spectral Amplitude (LSA)
weighting rule estimates only the magnitudes of the short-time Fourier coefficients
of the clean speech signal [EM85]. However, in order to adapt to the logarithmic
response of the human ear to sound intensity changes [ZF90], this estimator minimizes
the mean square error of the logarithmically weighted amplitudes as follows:

E{(loge(A(λ, μ))− loge(Â(λ, μ)))2} → min., (2.26)

with e the Euler number. Using the same assumptions as for the MMSE STSA
estimator that speech and noise DFT coefficients are complex-Gaussian distributed
and that real and imaginary parts of S(λ, μ), N(λ, μ) and Y (λ, μ) are statistically
independent, it follows:

Ŝ(λ, μ) = exp (E{loge(A(λ, μ))|Y (λ, μ)}) · exp(j · ϑ(λ, μ))

=
ξ(λ, μ)

1 + ξ(λ, μ)
· exp

⎛
⎜⎝1

2

∞∫
ν(λ,μ)

exp(−t)

t
dt

⎞
⎟⎠

︸ ︷︷ ︸
G(λ,μ)

·Y (λ, μ), (2.27)

where again ν(λ, μ) = ξ(λ,μ)
1+ξ(λ,μ) · γ(λ, μ). In literature, the MMSE LSA estimator

is often used as reference and is probably the most cited weighting rule for noise
reduction.
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2.5.4 Laplacian MMSE Estimator

In [MB03], a super-Gaussian MMSE estimator is proposed which uses a Laplacian
speech and a Gaussian noise model. The algorithm minimizes the quadratic error of
the clean and estimated speech DFT coefficients as follows:

E{(S(λ, μ)− Ŝ(λ, μ))2} → min. (2.28)

Under the assumption that real and imaginary parts of S(λ, μ), N(λ, μ) and Y (λ, μ)
are statistically independent, the estimator can be divided into a separate estimator
for both parts according to:

Ŝ(λ, μ) = E{S(λ, μ)|Y (λ, μ)}
= E{Re{S(λ, μ)}|Re{Y (λ, μ)}}+ j · E{Im{S(λ, μ)}|Im{Y (λ, μ)}}. (2.29)

Using the abbreviated forms YRe = Re{Y (λ, μ)}, YIm = Im{Y (λ, μ)}, SRe =
Re{S(λ, μ)} and SIm = Im{S(λ, μ)}, real as well as imaginary parts of Ŝ(λ, μ) re-
sult in:

E{SRe|YRe} = ...

σN (λ, μ)
(
LRe+ exp

(
L2
Re+

)
erfc(LRe+)− LRe− exp

(
L2
Re−

)
erfc(LRe−)

)
exp
(
L2
Re+

)
erfc(LRe+) + exp

(
L2
Re−

)
erfc(LRe−)

,

(2.30)

and

E{SIm|YIm} = ...

σN (λ, μ)
(
LIm+ exp

(
L2
Im+

)
erfc(LIm+)− LIm− exp

(
L2
Im−

)
erfc(LIm−)

)
exp
(
L2
Im+

)
erfc(LIm+) + exp

(
L2
Im−

)
erfc(LIm−)

,

(2.31)

where LRe+ = 1√
ξ(λ,μ)

+
YRe

σN (λ,μ) , LRe− = 1√
ξ(λ,μ)

− YRe
σN (λ,μ) , LIm+ = 1√

ξ(λ,μ)
+

YIm
σN (λ,μ) , LIm− = 1√

ξ(λ,μ)
− YIm

σN (λ,μ) and erfc(·) denotes the complementary error

function [GRJZ00].

2.5.5 Super-Gaussian MAP Estimator

A more generalized super-Gaussian approach is proposed in [LV05]. Here, the fol-
lowing parametric function is used to approximate the PDF of the spectral speech
amplitude A(λ, μ):

p(A(λ, μ)) =
δ
ηM+1

M

Γ(ηM + 1)

A(λ, μ)ηM

σS(λ, μ)ηM+1 exp

(
−δM

A(λ, μ)

σS(λ, μ)

)
, (2.32)
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where ηM and δM denote the model parameters. Thereby, ηM describes the PDF at
small values and δM represents the slope of the decay at higher values. The model
function allows the approximation, e.g., of a Laplacian PDF (for ηM=1 and δM=2.5)
or of a Gamma PDF (for ηM=0.01 and δM=1.5).

In [LV05], the histogram of real speech amplitudes is measured based on a large
speech database. After normalization, the measured PDF is approximated by the
model PDF in Eq. 2.32. Therefore, the model parameters are adjusted according to
the Kullback Leibler distance [KL51] which is an information theoretic measure for
the similarity of two PDFs. The optimal approximation, i.e., the minimum Kullback
Leibler distance, is given for the parameters ηM=0.126 and δM=1.74 [LV05] and lies
between a Laplacian and a Gamma Probability Density Function (PDF).

The proposed MAP estimator jointly maximizes the a posteriori PDF of the ampli-
tude A(λ, μ) and the phase φ(λ, μ) of the clean speech signal given the noisy magni-
tude R(λ, μ) according to:

Â(λ, μ) = arg max
A(λ,μ)

p (A(λ, μ), φ(λ, μ) |R(λ, μ)) and (2.33)

φ̂(λ, μ) = arg max
φ(λ,μ)

p (A(λ, μ), φ(λ, μ) |R(λ, μ)) . (2.34)

Using a Gaussian model for the noise signal and assuming that the phase distribu-
tion of φ(λ, μ) is independent from the amplitude distribution given in Eq. 2.32, the
resulting weighting rule yields:

G(λ, μ) = uM(λ, μ) +

√
u2
M(λ, μ) +

ηM
2γ(λ, μ)

, (2.35)

where uM(λ, μ) = 1
2 − δM

4
√

γ(λ,μ)ξ(λ,μ)
.
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3

Speech Enhancement Incorporating

Temporal Correlation

Most state-of-the-art noise suppression systems are based on the so-called spectral
subtraction approach. Spectral subtraction was introduced in [Bol79] and originally
denotes the subtraction of the estimated noise spectrum from the noisy input spec-
trum in order to estimate the speech signal. In the meantime, the term ‘spectral
subtraction’ is also used in literature to perform noise suppression in the short-term
Discrete Fourier Transform (DFT) domain by applying individual adaptive gains
to the noisy frequency domain coefficients. There exists a huge amount of different
weighting rules. Most of these rules aim to minimize a specific distortion measure
of a mathematical cost function between original and estimated speech signal under
certain assumptions about the statistics of speech and noise, cf. Chapter 2. As these
methods only consider the probability distributions of the DFT coefficients, they can
be classified as methods relying on memory-less A Priori Knowledge (AK) (or A
Priori Knowledge of order zero, AK0). Temporal correlation of speech and noise is
explicitly not taken into account except for smoothing purposes, e.g., in [EM84].

In literature, the so-called source-filter model is widely accepted and often used in
order to model the speech production process, e.g., [RS78, Par86, Qua01, VM06]. In
its most simple form, this model consists of two components: the excitation signal
generator representing the physical effects caused by the lungs as well as the vocal
cords and the time-varying digital vocal tract filter that approximates the influence
of the human vocal tract. The spectral envelope of a speech signal and its parametric
representation are often realized by using Autoregressive (AR) modeling in conjunc-
tion with Linear Prediction (LP) techniques [VM06, AS70, MGj76]. A speech signal
exhibits correlation across time originating on the one hand from a pulsed excitation
signal (in voiced speech segments) and on the other hand from the vocal tract filter.
Nevertheless, speech signals can be considered to be correlated only for short-time pe-
riods between 10 and 100 ms as the coefficients of the vocal tract filter change quickly
over time [RS78, PLW10, Hab05].

Almost every speech coding standard is explicitly taking advantage from the men-
tioned model of speech production by exploiting the fact that the AR filter directly
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corresponds to the vocal tract filter [JN84]. Moreover, it is known from the field of
error concealment and joint source channel decoding that the performance of a com-
munication system can be improved dramatically if temporal correlation of speech
signals is additionally exploited [FV01, HGV98], e.g., in terms of transition probabil-
ities of a first order Markov model (AK1) as used in [CVA06, SV10]. Furthermore, it
should be noted that speech and audio coding techniques do not only rely on purely
mathematical criteria. Depending on the application, more sophisticated models for
the speech production process as well as for the human auditory system are used.

For noise suppression so far, only a very limited number of proposals is known which
take into account the correlation of either speech or noise samples. Generally, speech
and noise are assumed to be stationary at least for a short period of time and the
speech production process is not incorporated in the respective derivations. In con-
trast to the statistical estimators that are discussed in Chapter 2, the Kalman filter
performs optimal estimation in a linear dynamic system in which a non-stationary
target signal is disturbed by additive noise [Kal60]. The authors in [PB87] were the
first to propose the use of a Kalman filter for the purpose of speech enhancement
assuming the speech signal to be disturbed by White Gaussian Noise (WGN). Com-
pared to the Wiener filtering method, the performance of this model-based approach
was shown to be considerably better. In [GKG91], the Kalman filter was extended
in order to exploit correlation of colored noise signals as well. Kalman filtering in
subbands was proposed in [WC98] and [Pud02] and achieved better results than the
corresponding full-band time domain approaches as well as a reduction in complexity.
Most of these techniques only consider the temporal correlation within one frame and
only a few publications are known which also take into account the correlation of
successive speech frames, e.g., [EV11, EV08c, EV08b, EV08a, ZVY06b, ZVY06a].

In this chapter, a novel Kalman filter approach is derived which is applied in the
frequency domain to the noisy short-time DFT coefficients. In a first step, a complex-
valued predictor is used in order to exploit the temporal correlation of speech and noise
in successive frames. The resulting estimates of the DFT coefficients are updated in a
second step by applying adequate statistical weighting rules, amongst others Signal-
to-Noise-Ratio (SNR)-dependent Minimum Mean Square Error (MMSE) estimators
which are adapted to (measured) statistics of the speech prediction error signal.

The approach is mainly designed for speech communication systems. As the acoustic
bandwidth of today’s fixed-line and mobile networks is still limited to narrowband, i.e.,
the frequency range between 300 Hz and 3.4 kHz, the presented speech enhancement
technique in this chapter is developed and evaluated for narrowband signals using a
sampling frequency fs = 8 kHz. However, by doubling sampling rate and transform
length, the same algorithm can in principle be applied to higher frequencies as well,
e.g., in wideband communication systems (fs = 16 kHz). An alternative method for
wideband noise suppression can be found in Chapter 4.

The remainder of this chapter is organized as follows. At first, the general concept
of Kalman filtering for speech enhancement is introduced. Afterwards it is shown
how correlation between adjacent frames can be exploited in the frequency domain.
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Therefore, the Probability Density Function (PDF) of the speech prediction error sig-
nal within the Kalman filter is approximated either as Gaussian PDF or as generalized
Gamma PDF. In addition, the influence of the input SNR on the statistics of the
speech prediction error signal is investigated leading to an adaptive weighting rule
which takes into account the mentioned SNR-dependency. The developed noise sup-
pression technique is evaluated by means of instrumental measurements and auditory
judgments. Finally, conclusions are drawn at the end of this chapter.

3.1 Kalman Filter for Speech Enhancement

The following section covers the derivation of the well-known Kalman filter [Kal60]
for the purpose of speech enhancement. The Kalman filter is a recursive filter which
estimates the state of a linear dynamic system from a series of noisy measurements.
In contrast to the purely statistical estimators presented in Chapter 2, it explicitly
incorporates changes in the temporal course of the input signals, i.e., it is not based on
the stationarity assumption and can exploit correlation over time. The Kalman filter
consists of two steps. In the first step, called propagation step, noisy measurements up
to the previous time instance are considered and used to predict the target (speech)
signal at the current time instance. In order to update this first prediction, a second
step is applied in which the current noisy measurement is included in the estimation
process. The second step is therefore called update step.

In the following, it is assumed that the speech signal s(k) can be modeled as AR
process given by:

s(k) =

NK∑
κ=1

aκ(k)s(k − κ) + es(k), (3.1)

where NK is the model order, aκ(k) the κ-th AR coefficient at time instance k and
es(k) the excitation signal or so-called process noise. In this application, the Kalman
filter addresses the general problem of trying to estimate the state vector

s(k) =

⎛
⎜⎜⎜⎜⎜⎝
s(k −NK + 1)
s(k −NK + 2)

...
s(k − 1)
s(k)

⎞
⎟⎟⎟⎟⎟⎠ (3.2)

of the discrete-time AR process that is governed by the linear stochastic difference
equation

s(k) = A(k)s(k − 1) + gses(k) (3.3)

from the measurement

y(k) = hT
s s(k) + n(k), (3.4)
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where (·)T denotes the transpose of a vector or matrix,

A(k) =

⎛
⎜⎜⎜⎝

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

aNK
(k) aNK−1(k) . . . a1(k)

⎞
⎟⎟⎟⎠ (3.5)

states the transition matrix consisting of AR coefficients, n(k) the additive (so-called
measurement) noise and

gs = hs =

⎛
⎜⎜⎜⎝
0
...
0
1

⎞
⎟⎟⎟⎠ . (3.6)

The composition of the noisy signal y(k) is illustrated in Fig. 3.1. The matrix A(k)
in Eq. 3.3 relates the state at the previous time step k− 1 to the state at the current
step k in absence of the process noise. Note that in practice A(k) changes with each
time step and has to be estimated in advance. In the following derivation, A(k) is
assumed to be constant.

The aim of the Kalman filter approach is to estimate the current (updated) state
vector ŝup(k) based on the conditional expectation vector as follows:

ŝup(k) =

⎛
⎜⎜⎜⎜⎜⎝
ŝup(k −NK + 1)
ŝup(k −NK + 2)

...
ŝup(k − 1)
ŝup(k)

⎞
⎟⎟⎟⎟⎟⎠ = E{s(k)|y(k)}, (3.7)

where y(k) is defined as measurement history up to time instance k:

y(k) =

⎛
⎜⎝y(0)

...
y(k)

⎞
⎟⎠ . (3.8)

Since the state of the dynamic system changes over time, it is necessary to define an
intermediate, propagated estimate ŝprop(k):

ŝprop(k) =

⎛
⎜⎜⎜⎜⎜⎝
ŝprop(k −NK + 1)
ŝprop(k −NK + 2)

...
ŝprop(k − 1)
ŝprop(k)

⎞
⎟⎟⎟⎟⎟⎠ = E{s(k)|y(k − 1)}, (3.9)
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es(k)
gs

A(k) T

hT
s

s(k)

n(k)

y(k)

Figure 3.1: Synthesis of noisy signal y(k) modeling the speech signal as AR process.

which describes how the state evolves in between measurements by incorporating
information y(k − 1) only up to time instance k − 1. The corresponding estimation
error vectors are given by:

esup(k) = s(k)− ŝup(k) and (3.10)

esprop(k) = s(k)− ŝprop(k), (3.11)

leading to the following error covariance matrices:

Ps
up(k) = E{esup(k)

(
esup(k)

)H} and (3.12)

Ps
prop(k) = E{esprop(k)

(
esprop(k)

)H}, (3.13)

where (·)H represents the hermitian of the corresponding vector or matrix.

In the next section, the Kalman filter is derived for a discrete-time Gauss-Markov
system assuming that the speech signal s(k) as well as the noise signal n(k) exhibit
a Gaussian PDF.

3.1.1 Gaussian Model

In this section, the problem of estimating s(k) given the noisy measurements y(k) is
covered relying on Eqs. 3.3 and 3.4. It is assumed that y(k), s(k), n(k) as well as
es(k) are Gaussian distributed with zero-mean having the powers σ2

y(k), σ
2
s(k), σ

2
n(k)

and σ2
es(k), respectively. Furthermore, the noise signal n(k) shall be independent of

the speech signal s(k) and the excitation signal es(k).

The following derivation of the Kalman filter is divided into two parts. At first, only
the temporal correlation of speech signals is exploited regarding the AR model in
Eq. 3.1. Afterwards possible correlation of noise signals is utilized as well requiring
an extension of the system.

3.1.1.1 Exploiting Correlation of Speech Signals

As mentioned before, the Kalman filter can be split into two steps, namely the prop-
agation step and the update step. In the propagation step, the process state is
estimated by projecting the previous state forward in time (see Eq. 3.9). In the
subsequent update step, the system obtains feedback information from the current
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(noisy) measurement (see Eq. 3.7) and updates the initial prediction. Both steps are
outlined in the following.

Propagation Step

In this step, measurements y(k− 1) up to time instance k− 1 are considered in order
to estimate the current speech state vector s(k). The previous estimate ŝup(k − 1)
is therefore propagated in time in order to account for the systematic changes of
the underlying system. Using Eqs. 3.3, 3.7 and 3.9, it follows in the stationary case
(A(k)=const.):

ŝprop(k) = E{A(k)s(k − 1) + gses(k)|y(k − 1)}
= A(k)E{s(k − 1)|y(k − 1)}+ E{gses(k)|y(k − 1)}
= A(k)ŝup(k − 1) + E{gses(k)}︸ ︷︷ ︸

=0

= A(k)ŝup(k − 1). (3.14)

Similarly, an expression for the error covariance matrix Ps
prop(n) can be derived with

Eqs. 3.3 and 3.10 for the propagation step:

Ps
prop(n) = E{(s(k)− ŝprop(k)) (s(k)− ŝprop(k))

H}
= E{(s(k)−A(k)ŝup(k − 1)) (s(k)−A(k)ŝup(k − 1))

H}
= E{(A(k)esup(k − 1) + gses(k)

) (
A(k)esup(k − 1) + gses(k)

)H}
= A(k)E{esup(k − 1)

(
esup(k − 1)

)H}A(k)H + gsσ
2
es(k − 1)gH

s

= A(k)Ps
up(k − 1)A(k)H + gsσ

2
es(k − 1)gH

s . (3.15)

In general, the predictions in the propagation step are erroneous and a non-zero
estimation error vector esprop(k) and a non-zero covariance matrix Ps

prop(k) occur.
The following update step estimates the resulting estimation errors by incorporating
the current (noisy) measurement y(k).

Update Step

In contrast to the propagation step, the update step considers all information available
at time instance k, cf. Eq. 3.7. The conditional expectation E{s(k)|y(k)} in Eq. 3.7
is derived using the conditional PDF p(s(k)|y(k)) according to:

ŝup(k) = E{s(k)|y(k)} =

∞∫
−∞

· · ·
∞∫

−∞
s(k) · p(s(k)|y(k)) ds(k). (3.16)

As all signals are assumed to be Gaussian distributed, the PDF p(s(k)|y(k)) follows a
Gaussian distribution as well. The estimate in the update step finally results in (see
Appendix A.1):

ŝup(k) = ŝprop(k) + ks(k)
(
y(k)− hT

s ŝprop(k)
)
, (3.17)
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where ks(k) states the Kalman filter gain (see Appendix A.1):

ks(k) = Ps
prop(k) · hs

(
hT
s P

s
prop(k)hs + σ2

n(k)
)−1

. (3.18)

The difference y(k) − hT
s ŝprop(k) in Eq. 3.17 is called measurement innovation or

differential signal ds(k).

In order to determine an expression for the error covariance matrix Ps
up(k) in the

update step, the estimation error esup(k) is also stated as update recursion at first:

esup(k) = s(k)− ŝprop(k)− ks(k)
(
y(k)− hT

s ŝprop(k)
)

= esprop(k)− ks(k)
(
y(k)− hT

s ŝprop(k)
)
. (3.19)

Inserting Eqs. 3.4 and 3.19 in Eq. 3.12 yields:

Ps
up(k) =E

{(
s(k)− ŝprop(k)− ks(k)

(
hT
s s(k) + n(k)− hT

s ŝprop(k)
))

· (s(k)− ŝprop(k)− ks(k)
(
hT
s s(k) + n(k)− hT

s ŝprop(k)
))H}

=E

{((
I− ks(k)hT

s

)
(s(k)− ŝprop(k))− ks(k)n(k)

)
· ((I− ks(k)hT

s

)
(s(k)− ŝprop(k))− ks(k)n(k)

)H}
=E

{((
I− ks(k)hT

s

)
esprop(k)− ks(k)n(k)

)
· ((I− ks(k)hT

s

)
esprop(k)− ks(k)n(k)

)H}
=
(
I− ks(k)hT

s

)
Ps

prop(k)
(
I− ks(k)hT

s

)H
+ ks(k)σ2

n(k) (k
s(k))

H

=Ps
prop(k)− ks(k)hT

s P
s
prop(k)−Ps

prop(k)hs(k
s(k))H

+ ks(k)(hT
s P

s
prop(k)hs + σ2

n(k))(k
s(k))H , (3.20)

with I being the identity matrix. Using the Kalman filter gain of Eq. 3.18 for the last
summand, the error covariance matrix Ps

up(k) is given by:

Ps
up(k) =Ps

prop(k)− ks(k)hT
s P

s
prop(k)−Ps

prop(k)hs(k
s(k))H

+Ps
prop(k)hs(k

s(k))H

=
(
I− ks(k)hT

s

)
Ps

prop(k). (3.21)
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3.1.1.2 Interpretation

The afore derived Kalman filter can be applied in a noise reduction system and is
able to exploit temporal correlation of speech signals. In principle, the estimator can
be summarized into the following five steps, which have to be carried out recursively
after initialization of the system:

System Initialization
Propagation Step: ŝprop(k) = A(k)ŝup(k − 1)

Ps
prop(k) = A(k)Ps

up(k − 1)A(k)H + gsσ
2
es(k − 1)gH

s

Update Step: ks(k) = Ps
prop(k) · hs

(
hT
s P

s
prop(k)hs + σ2

n(k)
)−1

ŝup(k) = ŝprop(k) + ks(k)
(
y(k)− hT

s ŝprop(k)
)

Ps
up(k) =

(
I− ks(k)hT

s

)
Ps

prop(k).

In this process, the propagation step acts as a predictor yielding a first, initial speech
estimate which is then corrected/updated in the update step.

In the following, the update step is examined in more detail. The covariance matrix
Ps

prop(k) can be written as:

Ps
prop(k) =

⎛
⎜⎜⎜⎝
σ2
esprop

(
k−NK+1
k−NK+1

)
. . . σ2

esprop

(
k−NK+1

k

)
...

. . .
...

σ2
esprop

(
k

k−NK+1

)
. . . σ2

esprop

(
k
k

)
⎞
⎟⎟⎟⎠ , (3.22)

where σ2
esprop

(
k−κ1+1
k−κ2+1

)
= E{esprop(k−κ1+1)

(
esprop(k − κ2 + 1)

)∗}. The operator (·)∗
denotes the complex-conjugate and κ1, κ2 ∈ {1, ..., NK}. Inserting Eq. 3.22 into
Eq. 3.18, the Kalman filter gain is given by:

ks(k) =
1

σ2
esprop

(
k
k

)
+ σ2

n(k)

⎛
⎜⎜⎜⎝
σ2
esprop

(
k−NK+1

k

)
...

σ2
esprop

(
k
k

)
⎞
⎟⎟⎟⎠ . (3.23)

In the update step, ks(k) is applied to the differential signal ds(k) consisting of the
prediction error esprop(k) disturbed by the initial noise signal n(k), cf. Eq. 3.17:

ds(k) = y(k)− hT
s ŝprop(k)

= s(k) + n(k)− ŝprop(k)

= esprop(k) + n(k). (3.24)

Hence, the task in the update step becomes a ‘classical’ noise reduction problem:
Decomposition of the ‘noisy’ input signal ds(k) into the (new) ‘target’ signal esprop(k)
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Figure 3.2: Time domain Kalman filter exploiting correlation of speech signals.

and the noise signal n(k). Using Eq. 3.24, the update part of Eq. 3.17 can be stated
as:

ks(k)
(
y(k)− hT

s ŝprop(k)
)
=

ds(k)

σ2
esprop

(
k
k

)
+ σ2

n(k)

⎛
⎜⎜⎜⎝
σ2
esprop

(
k−NK+1

k

)
...

σ2
esprop

(
k
k

)
⎞
⎟⎟⎟⎠ . (3.25)

It can be shown that this expression equals the conditional expectation
E{esprop(k)|ds(k) = esprop(k) + n(k)} (see Appendix A.2) under the assumption that
esprop(k) and n(k) are Gaussian distributed. The signal flow of the derived Kalman
filter is illustrated in Fig. 3.2. Please note that s(k) and n(k) are depicted separately
just for demonstration purposes. In a real system, only the noisy input vector y(k)
is accessible.

3.1.1.3 Extension to Colored Noise Signals

In order to additionally exploit the temporal correlation of the noise signal n(k), the
Kalman filter system that is presented in the previous sections is extended in the
following. Therefore, the noise signal is also modeled as AR process, cf. Eq. 3.1 and
Fig. 3.3, given by:

n(k) =

MK∑
τ=1

bτ (k)n(k − τ) + en(k), (3.26)

with noise AR coefficients bτ (k), noise model order MK and noise excitation sig-
nal en(k) exhibiting the power σ2

en(k). The corresponding difference equation accord-
ing to the speech case in Eq. 3.3 results in:

n(k) = B(k)n(k − 1) + gnen(k), (3.27)
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Figure 3.3: Synthesis of noisy signal y(k) modeling the speech and noise as AR processes.

depending on the noise state vector n(k):

n(k) =

⎛
⎜⎜⎜⎜⎜⎝
n(k −MK + 1)
n(k −MK + 2)

...
n(k − 1)
n(k)

⎞
⎟⎟⎟⎟⎟⎠ , (3.28)

the noise transition matrix B(k):

B(k) =

⎛
⎜⎜⎜⎝

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

bMK
(k) bMK−1(k) . . . b1(k)

⎞
⎟⎟⎟⎠ , (3.29)

and

gn = hn =

⎛
⎜⎜⎜⎝
0
...
0
1

⎞
⎟⎟⎟⎠ . (3.30)

The extended system also provides a propagation step and an update step for the
noise signal, which can be derived analogously to the speech case in Sec. 3.1.1.1. In
the propagation step, possible correlation of the noise signal is exploited by estimating
the current noise sample n(k) based on the noisy information y(k− 1) from the past:

n̂prop(k) =

⎛
⎜⎜⎜⎜⎜⎝
n̂prop(k −MK + 1)
n̂prop(k −MK + 2)

...
n̂prop(k − 1)
n̂prop(k)

⎞
⎟⎟⎟⎟⎟⎠ = E{n(k)|y(k − 1)}. (3.31)
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This first prediction is updated in the update step by additionally considering the
current (noisy) measurement y(k) resulting in:

n̂up(k) =

⎛
⎜⎜⎜⎜⎜⎝
n̂up(k −MK + 1)
n̂up(k −MK + 2)

...
n̂up(k − 1)
n̂up(k)

⎞
⎟⎟⎟⎟⎟⎠ = E{n(k)|y(k)}. (3.32)

Applying a similar derivation as in Sec. 3.1.1.1, both steps can be summarized for the
noise signal as follows:

System Initialization
Propagation Step: n̂prop(k) = B(k)n̂up(k − 1)

Pn
prop(k) = B(k)Pn

up(k − 1)B(k)H + gnσ
2
en(k − 1)gH

n

Update Step: kn(k) = Pn
prop(k) · hn

(
hT
nP

n
prop(k)hn + σ2

s(k)
)−1

n̂up(k) = n̂prop(k) + kn(k)
(
y(k)− hT

n n̂prop(k)
)

Pn
up(k) =

(
I− kn(k)hT

n

)
Pn

prop(k).

The corresponding error vectors and covariance matrices are given by:

enup(k) = n(k)− n̂up(k), (3.33)

enprop(k) = n(k)− n̂prop(k), (3.34)

Pn
up(k) = E{enup(k)

(
enup(k)

)H} and (3.35)

Pn
prop(k) = E{enprop(k)

(
enprop(k)

)H}. (3.36)

The update steps of the speech and noise signal can be combined by considering the
joint differential signal d(k):

d(k) = y(k)− (hT
s ŝprop(k) + hT

n n̂prop(k)
)︸ ︷︷ ︸

ŷprop(k)

= s(k)− ŝprop(k) + n(k)− n̂prop(k)

= esprop(k) + enprop(k). (3.37)

In this case, the update step equations for speech and noise can be reformulated as:

ks(k) = Ps
prop(k) · hs

(
hT
s P

s
prop(k)hs + σ2

enprop

(
k

k

))−1

, (3.38)

ŝup(k) = ŝprop(k) + ks(k)d(k), (3.39)



32 3 Speech Enhancement Incorporating Temporal Correlation

where σ2
enprop

(
k−τ1+1
k−τ2+1

)
= E{enprop(k − τ1 + 1)

(
enprop(k − τ2 + 1)

)∗} with

τ1, τ2 ∈ {1, ..., MK} and:

kn(k) = Pn
prop(k) · hn

(
hT
nP

n
prop(k)hn + σ2

esprop

(
k

k

))−1

, (3.40)

n̂up(k) = n̂prop(k) + kn(k)d(k). (3.41)

Using the extended system, the task of the update step is to estimate the two predic-
tion errors esprop(k) and enprop(k) given the ‘noisy’ signal d(k) according to Eq. 3.37.
Assuming Gaussian distributions for both prediction error signals and statistical inde-
pendence1 of esprop(k) and enprop(k), this problem results again in estimating the condi-
tional expectation vectors E{esprop(k)|d(k)} and E{enprop(k)|d(k)}, cf. Sec. 3.1.1.2. A
block diagram of the extended Kalman filter system which is capable of exploiting the
correlation of speech and noise signals is shown in Fig. 3.4. Here again, the speech
and noise vectors s(k) and n(k) are usually not available separately in a realistic
scenario and depicted only to illustrate the composition of the two prediction error
vectors.

3.2 Exploiting Inter-Frame Correlation in the

Frequency Domain

In the previous section, speech and noise signals are modeled as AR processes charac-
terized by excitation signals and AR coefficients aκ(k) and bτ (k), respectively. The
AR coefficients describe the spectral envelopes of either the speech or the noise signal
and can be interpreted as filter parameters for the vocal tract filter in the speech
case. In [Pud02], it is shown that for a sampling frequency fs = 8 kHz very high
model orders of NK > 80 are required for speech signals in order to obtain good
approximations of the fine structure of the actual magnitude spectrum. High model
orders are necessary especially during voiced speech segments to be able to resolve
the fine pitch structure. A division into Linear Predictive Coding (LPC) and Long
Term Prediction (LTP) parts, as known from the field of speech coding [VM06, KP95]
in order to reduce the number of AR coefficients, is a challenging task as it is very
difficult to accurately estimate the pitch frequency from a noisy signal, especially in
low SNR conditions [SN09]. The dimension of the required noise model order MK

can not be stated in general as it highly depends on the specific type of noise signal.
Nevertheless, when using such high model orders for speech and/or noise, it is very
difficult to obtain reliable estimates of the corresponding AR coefficients. In order
to prevent this problem, subband Kalman filtering is proposed, e.g., in [Pud02]. In
this approach, the input signal is decomposed into 16 subbands (fs = 8 kHz) and
one Kalman filter is separately applied in each subband to the speech and the noise
signal. Therefore, [Pud02] mainly focuses on an adequate estimation of the required

1Strictly speaking, the independence assumption for the prediction errors only holds if a perfect
prediction in the propagation step is possible, i.e., if esprop(k) = es(k) and enprop(k) = en(k).
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Figure 3.4: Time domain Kalman filter exploiting correlation of speech and noise signals.

model parameters for the subbands if the speech signal is degraded by car noise. Since
the spectral envelopes of speech and noise in each subband are smoother than their
corresponding full-band signals, their shape can be estimated from the noisy data
more easily. Thus, lower model orders NK and MK are sufficient leading to low-order
Kalman filters. The reduction of the model order is proportional to the number of
subbands or the downsampling rate in the subbands, respectively. In addition to
better model estimation properties, subband Kalman filtering can also reduce the
computational complexity of the system. In [WC98], it is shown that the number
of operations required for the Kalman filter structure according to Sec. 3.1.1.3 is of
order O(N2

K + M2
K). Depending on the noise model order MK, the computational

load can be reduced by subband processing up to 80% compared to the full-band
approach [WC98].

For the derivation of the Kalman filter in Sec. 3.1, it is assumed that the transition
matrices A(k) for the speech signal and B(k) for the noise signal remain constant dur-
ing the whole process. In analogy to the autocorrelation method, e.g., [VM06], where
the LPC coefficients are first derived for stationary signals but actually determined
framewise using the short-term autocorrelation, the solution of Sec. 3.1 is also valid
for time-varying AR coefficients assuming the observed process to be stationary only
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over a limited period of time. In this case, the respective AR parameters of speech
and noise have to be estimated in advance either in each time step or in each frame
given the noisy input signal. Common methods for this purpose are, e.g.,:

• Estimation of the autocorrelation matrix based on the noisy input data or en-
hanced signals from the past by means of the Yule Walker equations [Kay88] and
use of the Levinson-Durbin algorithm [MGj76, Hay96] to determine the AR coef-
ficients.

• Recursive estimation using the Burg algorithm [Pud02] which can be combined
with Voice Activity Detection (VAD) in order to improve the estimation re-
sults [Kap05].

• Iterative Expectation Maximization (EM)-based algorithms as proposed, e.g., in
[GBW98], [CD08] and [Ton77].

• Recursive Least-Square (LS) algorithms as proposed, e.g., in [Gab05], [SA79],
[Zhe99] and [JJYW02]. A comparative evaluation of different LS methods can
be found in [JKYW03].

• Model-based approaches exploiting a priori information of the AR coefficients of
speech and noise, e.g., [KK01, KK06, WASA07, LMS96].

In [ZVY06b], a Kalman filter system is applied in the frequency domain to the real
and imaginary parts of the noisy DFT coefficients. The temporal trajectories of the
real and imaginary parts of speech and noise are modeled as low-order AR processes
separately for each frequency bin. Therefore, two Kalman filters are required: the first
one is applied to the real-parts of the noisy DFT coefficients and the second one to the
imaginary parts. Both Kalman filters include propagation and update steps for the
speech and the noise signal. The speech estimates of both filters are finally combined
to get an estimate of the complex-valued speech DFT coefficients. As proposed in
[ZVY06b], the AR coefficients of the noise signal are obtained using a simple VAD
algorithm that assumes speech inactivity in the first few frames. From these frames
a noise model is derived, which is updated in noise-only frames. In contrast, the
AR coefficients of the speech signal are estimated continuously from the previous
enhanced spectral coefficients using the Levinson-Durbin algorithm [MGj76, Hay96].

Kalman filtering in the frequency domain possesses two advantages:

1. The Fast Fourier Transform (FFT) size is usually considerably higher than the
number of subbands used, e.g., in [WC98] and [Pud02]. This has the effect that
the temporal trajectories of speech and noise can be estimated more accurately in
noisy environments using even lower model orders.

2. It is well known that successive speech DFT coefficients are correlated over time
depending on frame shift and frequency [Coh05b]. This temporal correlation can
be exploited in the frequency domain between adjacent frames.
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In this thesis, a novel Kalman filter approach is proposed which is applied in the
frequency domain directly to the complex-valued DFT coefficients. Compared to
previous solutions, modifications and improvements are made in both the propagation
and update step. In the propagation step, complex-valued prediction is used to exploit
the temporal correlation of successive speech and noise DFT coefficients. As will be
shown, this new concept works better than estimating real and imaginary parts or
magnitudes and phases separately. The resulting prediction errors of the propagation
step are estimated in the update step applying different statistical estimators. As a
novelty, the SNR-dependent statistics of the differential signal are intensively studied
and exploited, finally leading to the application of SNR-dependent MMSE estimators
in the update step which are adapted to the (measured) statistics of the speech
prediction error signal.

In the following, the developed model-based approach is presented. Therefore, at
first an overview of the new system is given followed by a detailed description of the
individual Kalman filter steps, i.e., the propagation as well as the update step.

3.2.1 System Overview

Figure 3.5 illustrates a simplified block diagram of the proposed system. For the
decomposition of the speech and the noise signal, the noisy signal y(k) is segmented
into overlapping frames of length LF with frame shift size LFS. The FFT is applied to
these frames after windowing and zero-padding, cf. Sec. 2.2. Hence, the spectral DFT
coefficients of the noisy input signal at frame λ and frequency bin μ are given by:

Y (λ, μ) = S(λ, μ) +N(λ, μ), (3.42)

where S(λ, μ) and N(λ, μ) represent the spectral DFT coefficients of the speech and
the noise signal.

In contrast to [ZVY06b], the proposed model-based system is directly applied to the
complex-valued DFT coefficients Y (λ, μ) with low-order Kalman filters for speech and
noise running in parallel for each frequency bin. In accordance to the Kalman filter
for speech enhancement in the time domain (see Sec. 3.1), this approach also consists
of two steps:

• In the propagation step, temporal correlation of successive frames is exploited. The
current DFT coefficients of speech S(λ, μ) and noise N(λ, μ) are propagated in
time based on information taken from previous, enhanced DFT coefficients using
linear prediction techniques as shown later. From the resulting vectors Ŝprop(λ, μ)

and N̂prop(λ, μ) which consist of the speech and noise estimates from the previ-

ous NK and MK frames, the current predictions Ŝprop(λ, μ) and N̂prop(λ, μ) are
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Figure 3.5: Block diagram of the proposed Kalman filter structure working in the frequency
domain.

summed up to get estimates of the current noisy DFT coefficients:

Ŷprop(λ, μ) = hT
S

⎛
⎜⎜⎜⎜⎜⎝

Ŝprop(λ−NK + 1, μ)

Ŝprop(λ−NK + 2, μ)
...

Ŝprop(λ− 1, μ)

Ŝprop(λ, μ)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ŝprop(λ,μ)

+hT
N

⎛
⎜⎜⎜⎜⎜⎝

N̂prop(λ−MK + 1, μ)

N̂prop(λ−MK + 2, μ)
...

N̂prop(λ− 1, μ)

N̂prop(λ, μ)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N̂prop(λ,μ)

= Ŝprop(λ, μ) + N̂prop(λ, μ), (3.43)

where hS and hN are the equivalents to hs and hn in the time domain.

The prediction in the propagation step generally is erroneous as well, resulting in
the following two prediction error vectors:

ES
prop(λ, μ) =

⎛
⎜⎜⎜⎜⎜⎝
S(λ−NK + 1, μ)
S(λ−NK + 2, μ)

...
S(λ− 1, μ)
S(λ, μ)

⎞
⎟⎟⎟⎟⎟⎠− Ŝprop(λ, μ) and (3.44)

EN
prop(λ, μ) =

⎛
⎜⎜⎜⎜⎜⎝
N(λ−MK + 1, μ)
N(λ−MK + 2, μ)

...
N(λ− 1, μ)
N(λ, μ)

⎞
⎟⎟⎟⎟⎟⎠− N̂prop(λ, μ). (3.45)
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• The objective in the update step is to estimate these error vectors incorporating
the new measurement information Y (λ, μ) of the current frame:

D(λ, μ) = Y (λ, μ)− Ŷprop(λ, μ)

= Y (λ, μ)− hT
S Ŝprop(λ, μ)− hT

NN̂prop(λ, μ). (3.46)

Following the Kalman filter approach in the time domain of Sec. 3.1, the dif-
ferential signal D(λ, μ) is multiplied by Kalman gains K in order to determine
estimates of the prediction error vectors in the update step:

ÊS
prop(λ, μ) = KS(λ, μ) ·D(λ, μ) (3.47)

ÊN
prop(λ, μ) = KN (λ, μ) ·D(λ, μ), (3.48)

where KS(λ, μ) and KN (λ, μ) state the Kalman filter gains for the speech and the
noise cases in the frequency domain. To obtain the final enhanced DFT coefficient
vectors Ŝup(λ, μ) and N̂up(λ, μ), the initial predictions of the propagation step are
updated:

Ŝup(λ, μ) = Ŝprop(λ, μ) + ÊS
prop(λ, μ) (3.49)

N̂up(λ, μ) = N̂prop(λ, μ) + ÊN
prop(λ, μ). (3.50)

The Inverse Fast Fourier Transform (IFFT) of hT
S Ŝup(λ, μ) and the overlap-add

method yield an estimate of the enhanced speech signal ŝ(k) in the time domain,
cf. Sec. 2.2.

3.2.2 Propagation Step

This section addresses the basic principles of the aforementioned propagation steps
for speech and noise as seen in Fig. 3.5. For the estimation of the current speech and
noise DFT coefficients S(λ, μ) and N(λ, μ) within this step, the temporal trajectories
of each frequency bin are separately considered for speech as well as for noise. An
example for speech is shown in Fig. 3.6 where the temporal trajectory of one complex-
valued speech DFT coefficient is depicted for a short time segment. It can clearly
be seen that successive DFT coefficients are correlated over time. In contrast to
conventional time domain Kalman filters where the correlation of consecutive samples
is exploited (e.g., [PB87]), the proposed solution in this thesis utilizes the inter-frame
correlation of speech and noise in the frequency domain.

In analogy to the AR modeling of speech and noise in the time domain, cf. Sec. 3.1,
the current speech and noise DFT coefficients are divided into a prediction part, i.e.,
a function depending on DFT coefficients from the past, and an innovation part
consisting of uncorrelated process noise as follows:

S(λ, μ) = f
(
S(λ−NK, μ), . . . , S(λ− 1, μ)

)
+ ES(λ, μ) and (3.51)

N(λ, μ) = f
(
N(λ−MK, μ), . . . , N(λ− 1, μ)

)
+ EN (λ, μ), (3.52)
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Figure 3.6: Temporal trajectory of one complex-valued speech DFT coefficient for a short
speech segment. The example is taken from the NTT speech database [NC94]
and corresponds to the word ‘Help’ (male voice) at frequency bin μ = 20
using an FFT size MF = 256, a frame shift LFS = 40 and a sampling fre-
quency fs = 8 kHz.

where ES(λ, μ) and EN (λ, μ) represent the ‘excitation’ DFT coefficients of speech
and noise, respectively.

As mentioned before, the authors in [ZVY06b] propose a system that depends on two
separate Kalman filters for real and imaginary parts, i.e., one Kalman filter including
propagation and update step for speech and noise is applied to the real parts and the
other one to the imaginary parts of the noisy input DFT coefficients. Eventually, both
estimates are combined to obtain the desired complex-valued estimation of the speech
DFT coefficients. In contrast to [ZVY06b], the proposed system already requires
one complex-valued prediction after each propagation step. For this purpose, the
following three alternative methods are investigated to perform the estimation in
the propagation step based on the enhanced coefficients Ŝup and N̂up from previous
frames, cf. Fig. 3.5:

1. Prediction of magnitudes and phases separately,

2. Prediction of real and imaginary parts separately,

3. Prediction using complex-valued coefficients.

In the sequel, the evaluation is carried out individually for the speech and the noise
signal. Therefore, the prediction gain, which can be achieved in the propagation
step, is taken as quality measure.
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3.2.2.1 Complex-Valued Prediction of Speech Signals

The first method uses two separate predictors, the first one for the current speech
magnitudes A(λ, μ) and the second one for the current speech phase coefficients φ(λ, μ)
according to:

Âprop(λ, μ) =

NK∑
κ=1

âκ,m(λ, μ)
∣∣∣Ŝup(λ− κ, μ)

∣∣∣ (3.53)

φ̂prop(λ, μ) =

NK∑
κ=1

âκ,p(λ, μ)∠
{
Ŝup(λ− κ, μ)

}
, (3.54)

where |·| represents the magnitude operator, ∠{·} the ‘unwrapped’ phase operator and
aκ the κ-th AR coefficients which have to be estimated in advance. Both predictions
of this method are combined in order to obtain the complex-valued estimates of the
current speech DFT coefficients:

Ŝ(1)
prop(λ, μ) = Âprop(λ, μ) · exp

(
j · φ̂prop(λ, μ)

)
, (3.55)

where exp(·) denotes the exponential function and j the imaginary unit.

For the second method, a similar procedure is carried out relying on separate predictors
for the real and the imaginary parts of the DFT coefficients2:

Ŝ(2)
prop(λ, μ) =

NK∑
κ=1

âκ,Re(λ, μ)Re
{
Ŝup(λ− κ, μ)

}
+j

NK∑
κ=1

âκ,Im(λ, μ)Im
{
Ŝup(λ− κ, μ)

}
,

(3.56)

with Re{·} and Im{·} denoting real and imaginary parts.

In the third method, one complex-valued predictor estimates the temporal trajectory
of the speech signal in the frequency domain. Therefore, complex-valued prediction
coefficients âκ are directly applied to the complex-valued estimates Ŝup from the
previous frames:

Ŝ(3)
prop(λ, μ) =

NK∑
κ=1

âκ(λ, μ)Ŝup(λ− κ, μ). (3.57)

Determination of the prediction coefficients

As mentioned above, all prediction coefficients have to be estimated in advance in
each frame for each frequency bin before the current speech DFT coefficients can be

2Please note that this second method differs from the propagation step which is applied in
[ZVY06b]. In [ZVY06b], estimates of real and imaginary parts are combined not until the update
step.



40 3 Speech Enhancement Incorporating Temporal Correlation

predicted. For the computation of the prediction coefficients, the minimization of the
prediction error energy is used as optimization criterion for all three methods, i.e.:∣∣∣S(λ, μ)− Ŝ(ζ)

prop

∣∣∣2 → min.,

with ζ ∈ {1, 2, 3} indicating the prediction method. The real-valued prediction coeffi-
cients in Eqs. 3.53, 3.54 and 3.56 and also the complex-valued prediction coefficients
in Eq. 3.57 (see Appendix A.3 for details) can be obtained by solving the corre-
sponding Yule-Walker equations [PM96] using, e.g., the well-known Levinson-Durbin
algorithm [MGj76], which can be applied to complex-valued input parameters as well,
e.g., [Hay96]. The autocorrelation vectors and matrices which are required for this
algorithm have to be known a priori or estimated in advance.

Evaluation

In order to investigate which one of the aforementioned methods performs best, the

prediction gains G
(ζ)
P,S are measured for each method as follows:

G
(ζ)
P,S =

E
{|S(λ, μ)|2}

E

{∣∣∣S(λ, μ)− Ŝ
(ζ)
prop(λ, μ)

∣∣∣2} . (3.58)

In the investigation, idealistic conditions are assumed. The predictions in Eqs. 3.55,
3.56 and 3.57 are based on clean speech DFT coefficients, i.e., the estimates
Ŝup(λ− κ, μ) are replaced by S(λ − κ, μ) and the prediction coefficients are deter-
mined from the previous clean speech DFT coefficients. Therefore, the Levinson-
Durbin algorithm is applied as described above3 using the most recent LAC speech
DFT coefficients to estimate the autocorrelation function. The results are averaged
over time and frequency by incorporating only frequency bins contributing to speech
activity4.

The investigation is carried out at a sampling frequency fs = 8 kHz, the frame size
is set to 20 ms (LF = 160) and an FFT length MF = 256 is used. The data is
obtained from about 30 minutes of speech randomly selected from the NTT speech
database [NC94]. As speech data of finite length is used, the measured prediction

gain Ĝ
(ζ)
P,S states only an estimate of G

(ζ)
P,S as defined in Eq. 3.58. In order to determine

appropriate values for the frame shift LFS, the autocorrelation function length LAC

as well as the model order NK, different settings are investigated. The frame shift
is set to the following shift sizes which are commonly used in speech enhancement
applications [Ben07]:

• LFS=40 (=̂ 5 ms corresponding to 75% frame overlap),

• LFS=60 (=̂ 7.5 ms corresponding to 62.5% frame overlap) or

3Idealistic conditions are assumed only for the evaluation. In the final implementation, Ŝ
(ζ)
prop is

determined from entities which are available in the real system.
4A simple power constrained threshold is applied to the clean speech signal for VAD.
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• LFS=80 (=̂ 10 ms corresponding to 50% frame overlap).

In addition, the length of the autocorrelation function is varied between 2 ≤ LAC ≤ 8
and the model order is adapted depending on LAC in the range 1 ≤ NK ≤ LAC.

Figure 3.7 depicts the maximum prediction gains Ĝ
(ζ)
P,S,max(LAC) for the three

complex-valued prediction methods plotted over the autocorrelation function

length LAC for the different frame shift sizes. The entity Ĝ
(ζ)
P,S,max(LAC) is defined

as the maximum prediction gain which can be achieved for a given autocorrelation
function length LAC while varying the model order NK according to:

Ĝ
(ζ)
P,S,max(LAC) = max

NK=1, ..., LAC

Ĝ
(ζ)
P,S(LAC, NK), (3.59)

where Ĝ
(ζ)
P,S(LAC, NK) illustrates the prediction gain Ĝ

(ζ)
P,S using LAC and NK.

The results show that the highest prediction gains are obtained by using complex-
valued prediction coefficients for all three frame shift sizes. This prediction method
consistently outperforms the other two approaches where real and imaginary parts and
magnitudes and phases are predicted separately. In the latter approach, even negative
values are achieved for the prediction gain which is due to the fact that there is only
little temporal correlation in successive phase coefficients. Figure 3.7 also illustrates
that the prediction gain is depending on the autocorrelation length LAC as well as
on the frame shift size LFS. With increasing autocorrelation length, the prediction
gains of the Methods (2) and (3) are increasing at first and finally decreasing again
at higher values of LAC. For Method (1), the opposite effect can be recognized.
In contrast to common LPC techniques used, e.g., for speech coding, the current
clean speech DFT coefficients or estimates of them are not available in the final
system and therefore not incorporated to determine the autocorrelation function. As
expected, the prediction gain becomes higher for smaller frame shift sizes LFS, i.e., for
a larger frame overlap. If LFS is chosen to be too large, the correlation between DFT
coefficients in consecutive frames can not be exploited any more due to the relative
short period of time in which a speech signal can be assumed to be stationary. Shorter
frame shift sizes are not considered in this work in order to limit the computational
cost of the system. Considering all curves in Fig. 3.7, the highest prediction gain
is achieved using complex-valued prediction coefficients, a frame shift size LFS = 40
corresponding to 75% frame overlap, an autocorrelation function length LAC = 6 and
a speech model order NK = 3. These parameters are used in the final system for the
prediction of the current speech DFT coefficients in the propagation step according
to Eq. 3.57.

3.2.2.2 Complex-Valued Prediction of Noise Signals

Based on the results of the previous section, the investigations for the noise signal
are directly limited to a frame shift size LFS = 40 as well as on the application of
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Figure 3.7: Maximum speech prediction gains for the three complex-valued prediction
methods: (1) separate prediction of magnitudes and phases, (2) separate pre-
diction of real and imaginary parts, (3) prediction using complex-valued pre-
diction coefficients, depending on autocorrelation function length LAC, model
order NK and frame shift LFS. For a given length LAC, the prediction gains for
all model orders in the range 1 ≤ NK ≤ LAC are measured but only the highest
prediction gain out of this set is depicted in the figure in each case. Overall, the
highest prediction gain is achieved by complex-valued linear prediction using
LAC = 6, NK = 3 and LFS = 40.

complex-valued prediction coefficients bτ (λ, μ) for the prediction of the current noise
DFT coefficients according to:

N̂prop(λ, μ) =

MK∑
τ=1

b̂τ (λ, μ)N̂up(λ− τ, μ). (3.60)

In order to find out adequate settings for the noise model order MK and the autocor-
relation function length L′

AC for the noise signal, a similar procedure as for the speech
signal is applied. The investigations are carried out under the same idealistic condi-
tions. The previous MK true noise DFT coefficients N(λ −MK, μ) , ... , N(λ − 1, μ)
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are applied to predict the current noise DFT coefficients N(λ, μ) using prediction
coefficients which are determined from the previous L′

AC true noise DFT coefficients.
Based on the prediction gain:

GP,N =
E
{|N(λ, μ)|2}

E

{∣∣∣N(λ, μ)− N̂prop(λ, μ)
∣∣∣2} , (3.61)

different combinations of L′
AC and MK are evaluated. Figure 3.8 shows the maximum

noise prediction gains ĜP,N,max(L
′
AC) which are achieved for a given length L′

AC of
the autocorrelation function when the model order MK is altered between 1 and L′

AC,
cf. Eq. 3.59. The figure depicts the results for four different types of noise signals
taken from the NOISEX-92 database [VS93]: babble noise, f16 noise, factory noise
and WGN. The highest prediction gain (equivalent to the highest temporal correla-
tion) is achieved for ‘babble noise’, the lowest for WGN. Please note that the frame
overlap leads to an oversampling such that temporal correlation as well as a non-zero
prediction gain is also possible for WGN. The stationarity of the considered noise sig-
nals over time is greater than that of speech signals. Therefore, it would be reasonable
to choose a larger length L′

AC for the noise autocorrelation function as evident from
the continuously increasing predicting gains in Fig. 3.8 beyond L′

AC = 8. However,
the model orders MK which yield the corresponding maximum prediction gains are
lower than that for the speech signals and are all in the range MK ∈ { 1, 2 } indicat-
ing a shorter correlation time compared to the speech signals. With regard to the
computational complexity, the autocorrelation function lengths of speech and noise
are chosen to be equivalent (L′

AC = LAC = 6) accepting a small loss in prediction
performance for the noise signal. The noise model order is set to MK = 2 in the
following and the sizes LAC and L′

AC are used interchangeably from now on.

3.2.2.3 Summary and Remarks

Summarizing the previous two subsections, the application of complex-valued predic-
tion coefficients in the propagation step was shown to be beneficial in comparison to
separately predicting magnitudes and phases or real and imaginary parts. Moreover,
a frame shift of 5 ms (corresponding to a frame overlap of 75%) for the considered
analysis-synthesis system results in a good compromise between good prediction prop-
erties and reasonable computational complexity. The required prediction coefficients
for speech and noise are determined using the Levinson-Durbin algorithm. Therefore,
the previous LAC = 6 enhanced DFT coefficients Ŝup and N̂up will be applied in the
final system to estimate autocorrelation vectors and matrices of speech and noise, re-
spectively. Based on the investigations under idealistic conditions, the model orders
for speech and noise are set to NK = 3 and MK = 2. Please note that the estimation
of the prediction coefficients given a noisy signal is not the main focus of this thesis.
More sophisticated techniques can be found in literature, see, e.g., the list at the
beginning of Sec. 3.2.

The prediction errors made in the propagation step when predicting speech and
noise DFT coefficients are defined as ES

prop(λ, μ) and EN
prop(λ, μ), cf. Eqs. 3.44
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Figure 3.8: Maximum noise prediction gains depending on autocorrelation function
length L′

AC and model order MK using complex-valued prediction coefficients
and a frame shift size LFS = 40. For a given length L′

AC, the prediction gains
for all model orders in the range 1 ≤ MK ≤ L′

AC are measured but only the
highest prediction gain out of this set is depicted in the figure in each case.
Setting L′

AC = 6, the respective highest prediction gain is achieved for MK = 2
independent of the noise type.

and 3.45. Similar to Sec. 3.1.1, an expression for the error covariance matrices
PS

prop(λ, μ) and PN
prop(λ, μ) of the propagation step can be derived from these en-

tities in the frequency domain as well resulting in:

PS
prop(λ, μ) = E{ES

prop(λ, μ)
(
ES

prop(λ, μ)
)H}

= A(λ, μ)PS
up(λ− 1, μ)A(λ, μ)H + gSσ

2
ES

(λ, μ)gH
S (3.62)

PN
prop(λ, μ) = E{EN

prop(λ, μ)
(
EN

prop(λ, μ)
)H}

= B(λ, μ)PN
up(λ− 1, μ)B(λ, μ)H + gNσ2

EN
(λ, μ)gH

N , (3.63)

where A(λ, μ) and B(λ, μ) denote transition matrices of speech and noise including
the respective prediction coefficients. PS

up(λ−1, μ) and PN
up(λ−1, μ) state the covari-

ance matrices of the update step from the previous frame, σ2
ES

(λ, μ) and σ2
ES

(λ, μ) the

powers of ES(λ, μ) and EN (λ, μ) and gS and gN the equivalents to gs and gn in the
time domain. Estimates of the error covariance matrices PS

prop(λ, μ) and PN
prop(λ, μ)

are required in the following update step.
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3.2.3 Update Step

While temporal correlation of successive speech and noise DFT coefficients is ex-
ploited in the propagation step, the update step utilizes the statistical characteristics
of both signals. The objective in this step is to estimate the two prediction error
vectors ES

prop(λ, μ) and EN
prop(λ, μ) arising from the propagation step. Therefore, the

differential signal D(λ, μ) as well as the error covariance matrices PS
prop(λ, μ) and

PN
prop(λ, μ) are available in the current frame. Based on these parameters, the con-

ditional expectation vectors E{ES
prop(λ, μ)|D(λ, μ)} and E{EN

prop(λ, μ)|D(λ, μ)} yield
the required estimates of the prediction error vectors in the update step and finally
update the initial predictions of the propagation step according to Eqs. 3.49 and 3.50.

In order to estimate the aforementioned expectation vectors, the differential signal can
be decomposed into the sum of the two prediction errors ES

prop(λ, μ) and EN
prop(λ, μ)

of the current frame, cf. Sec. 3.1.1.3:

D(λ, μ) = Y (λ, μ)− Ŷprop(λ, μ),

= Y (λ, μ)− hT
S Ŝprop(λ, μ)− hT

NN̂prop(λ, μ),

= S(λ, μ)− hT
S Ŝprop(λ, μ) +N(λ, μ)− hT

NN̂prop(λ, μ),

= ES
prop(λ, μ) + EN

prop(λ, μ). (3.64)

As seen before, the estimation problem in the update step therewith becomes a ‘clas-
sical’ noise reduction problem: The ‘target’ signal ES

prop(λ, μ) is degraded by the

additive ‘noise’ signal EN
prop(λ, μ). Given the ‘noisy’ signal D(λ, μ), a conventional sta-

tistical estimator can be applied in order to estimate the prediction errors ES
prop(λ, μ)

and EN
prop(λ, μ) which can afterwards be used to determine the required prediction

error vectors ES
prop(λ, μ) and EN

prop(λ, μ).

In the following, at first both conditional expectation vectors are derived under the
assumption that the prediction errors of speech and noise follow a Gaussian distri-
bution as assumed in the original Kalman filter approach. Afterwards, it is shown
that the statistics of the speech prediction error rather follow a super-Gaussian model
which is influenced by the input SNR. In order to exploit this fact, an adequate SNR-
dependent statistical weighting rule is proposed. Finally, the procedure for estimating
the required prediction error powers is presented before a brief summary closes this
section.

3.2.3.1 Gaussian Model

The conditional expectation vectors E{ES
prop(λ, μ)|D(λ, μ)} and

E{EN
prop(λ, μ)|D(λ, μ)} are determined in this subsection assuming multivariate

Gaussian distributions for both vectors. Therefore, at first an expression for
E{ES

prop|D(λ, μ)} is derived based on the assumption that real and imaginary parts
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of all DFT coefficients are statistically independent. In this case, the MMSE5

estimate separates into two independent estimators for the real and the imaginary
parts as shown in the following:

E{ES
prop(λ, μ)|D(λ, μ)} =E{Re{ES

prop(λ, μ)}|Re{D(λ, μ)}}
+ j · E{Im{ES

prop(λ, μ)}|Im{D(λ, μ)}}. (3.65)

Considering the real part first and using Bayes’ theorem [Bay63], the conditional
PDF p(Re{ES

prop(λ, μ)}|Re{D(λ, μ)}) can be stated as a function dependent on the

PDFs p(Re{D(λ, μ)}), p(Re{ES
prop(λ, μ)}) and p(Re{D(λ, μ)}|Re{ES

prop(λ, μ)}). Us-

ing the abbreviated forms DR(λ, μ) = Re{D(λ, μ)}, ES
R,prop(λ, μ) = Re{ES

prop(λ, μ)}
and EN

R,prop(λ, μ) = Re{EN
prop(λ, μ)}, the respective PDFs are given as follows for the

Gaussian case:

p(DR(λ, μ))=
1√

2πσ2
DR

(
λ
λ , μ
) exp

⎛
⎝− (DR(λ, μ))

2

2σ2
DR

(
λ
λ , μ
)
⎞
⎠ , (3.66)

p(ES
R,prop(λ, μ))=

1√
2πσ2

ES
R,prop

(
λ
λ , μ
) exp

⎛
⎜⎜⎝−
(
ES

R,prop(λ, μ)
)2

2σ2

ES
R,prop

(
λ
λ , μ
)
⎞
⎟⎟⎠ and

(3.67)

p(DR(λ, μ)|ES
R,prop(λ, μ))=

1√
2πσ2

EN
R,prop

(
λ
λ , μ
) exp

⎛
⎜⎜⎝−
(
DR(λ, μ)−ES

R,prop(λ, μ)
)2

2σ2

EN
R,prop

(
λ
λ , μ
)

⎞
⎟⎟⎠,

(3.68)

where σ2
DR

(
λ
λ , μ
)

= E{|DR(λ, μ)|2}, σ2

ES
R,prop

(
λ
λ , μ
)

= E{|ES
R,prop(λ, μ)|2} and

σ2

EN
R,prop

(
λ
λ , μ
)
= E{|EN

R,prop(λ, μ)|2}. Based on these PDFs, the real part of Eq. 3.65

5In order to form an estimate â for a parameter a by using the disturbed observation b, conditional
estimation can be applied. Therefore, the integral over the joint PDF of the undisturbed and

disturbed value is minimized finally leading to E{C(a, â)|b} =
∞∫

−∞
C(a, â) · p(a|b)da with the cost

function C(·). If the cost function is chosen to be square, i.e., C(a, â) = (a − â)2, the conditional
mean estimator equals the MMSE solution, e.g., [Var08].
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results in (cf. Appendix A.2):

E{ES
R,prop(λ, μ)|DR(λ, μ)} =

∫ ∞

−∞
ES

R,prop(λ, μ)

· p(ES
R,prop(λ, μ)|DR(λ, μ)) dE

S
R,prop(λ, μ)

=

∫ ∞

−∞
ES

R,prop(λ, μ) ·
p(DR(λ, μ)|ES

R,prop(λ, μ))

p(DR(λ, μ))

· p(ES
R,prop(λ, μ)) dE

S
R,prop(λ, μ)

=

σ2

ES
R,prop

(
λ
λ , μ
)

σ2
DR

(
λ
λ , μ
) ·DR(λ, μ)

=

σ2

ES
R,prop

(
λ
λ , μ
)

σ2

ES
R,prop

(
λ
λ , μ
)
+ σ2

EN
R,prop

(
λ
λ , μ
) ·DR(λ, μ).

(3.69)

The expression for the imaginary part can be derived analogously and yields:

E{ES
I,prop(λ, μ)|DI(λ, μ)} =

σ2

ES
I,prop

(
λ
λ , μ
)

σ2

ES
I,prop

(
λ
λ , μ
)
+ σ2

EN
I,prop

(
λ
λ , μ
) ·DI(λ, μ), (3.70)

where the index (·)I is used to denote the imaginary part and σ2

ES
I,prop

(
λ
λ , μ
)

=

E{|ES
I,prop(λ, μ)|2} as well as σ2

EN
I,prop

(
λ
λ , μ
)

= E{|EN
I,prop(λ, μ)|2}. Combined with

the solution for the real part, the conditional expectation of Eq. 3.65 is finally given by:

E{ES
prop(λ, μ)|D(λ, μ)} =

σ2

ES
prop

(
λ
λ , μ
)

σ2
D

(
λ
λ , μ
) ·D(λ, μ)

=
σ2

ES
prop

(
λ
λ , μ
)

σ2

ES
prop

(
λ
λ , μ
)
+ σ2

EN
prop

(
λ
λ , μ
) ·D(λ, μ), (3.71)

with σ2

ES
prop

(
λ−κ1+1
λ−κ2+1

, μ
)

= E{ES
prop(λ − κ1 + 1, μ)

(
ES

prop(λ− κ2 + 1, μ)
)∗},

σ2

EN
prop

(
λ−τ1+1
λ−τ2+1

, μ
)
= E{EN

prop(λ−τ1+1, μ)
(
EN

prop(λ− τ2 + 1, μ)
)∗} and σ2

D

(
λ
λ , μ
)
=

E{|D(λ, μ)|2}.
The result is identical to the well-known Wiener filter solution [LO79], see Sec. 2.5.1.
In the derivation of Eq. 3.71, it is implicitly assumed that ES

prop(λ, μ) and EN
prop(λ, μ)
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are statistically independent, in particular that E{|D(λ, μ)|2} = E{|ES
prop(λ, μ)|2} +

E{|EN
prop(λ, μ)|2}. If the noisy input signal can be decomposed perfectly and the

prediction in the propagation step works ideally, the two prediction errors are equal
to the ‘excitation’ DFT coefficients ES(λ, μ) and EN (λ, μ) and the assumption is
correct, cf. Eqs. 3.51 and 3.52. In reality, the system is not perfect and ES

prop as

well as EN
prop are both estimates from the same observation Y leading to a statistical

dependency. However, the resulting error caused by this approximation is very small
and can be neglected in the sequel as shown in Appendix B.

As known from conventional statistical estimators, the weighting rules can often be
expressed by the a posteriori SNR γK and the a priori SNR ξK which are defined in
the update step as follows:

γK(λ, μ) =
|D(λ, μ)|2

E{|EN
prop(λ, μ)|2}

=
|D(λ, μ)|2

σ2

EN
prop

(
λ
λ , μ
) and (3.72)

ξK(λ, μ) =
E{|ES

prop(λ, μ)|2}
E{|EN

prop(λ, μ)|2}
=

σ2

ES
prop

(
λ
λ , μ
)

σ2

EN
prop

(
λ
λ , μ
) . (3.73)

Using the definitions in Eqs. 3.72 and 3.73, the expression in Eq. 3.71 can be rewritten
as:

E{ES
prop(λ, μ)|D(λ, μ)} =

ξK(λ, μ)

ξK(λ, μ) + 1
·D(λ, μ). (3.74)

Equation 3.71 can be used to obtain the missing conditional expectation values
E{ES

prop(λ − κ + 1, μ)|D(λ, μ)} (1 ≤ κ ≤ NK) which are still required in the

update step to determine E{ES
prop(λ, μ)|D(λ, μ)}. If ES

prop(λ, μ) follows a mul-
tivariate complex-Gaussian distribution of order NK, the conditional expectation
E{ES

prop(λ− κ+ 1, μ)|ES
prop(λ, μ)} is given by [KBJ00]:

E{ES
prop(λ− κ+ 1, μ)|ES

prop(λ, μ)} =
σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
) · ES

prop(λ, μ). (3.75)
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Thus, E{ES
prop(λ− κ+ 1, μ)|D(λ, μ)} results in6:

E{ES
prop(λ− κ+ 1, μ)|D(λ, μ)} = ...

E
{
E
{
ES

prop(λ− κ+ 1, μ)|ES
prop(λ, μ), D(λ, μ)

} |D(λ, μ)
}

= E

⎧⎪⎨
⎪⎩

σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
) ES

prop(λ, μ)

∣∣∣∣∣∣D(λ, μ)

⎫⎬
⎭

=
σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
) E{ES

prop(λ, μ)|D(λ, μ)}

=
σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
) σ2

ES
prop

(
λ
λ , μ
)

σ2

ES
prop

(
λ
λ , μ
)
+ σ2

EN
prop

(
λ
λ , μ
) ·D(λ, μ)

=
σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
)
+ σ2

EN
prop

(
λ
λ , μ
) ·D(λ, μ), (3.76)

which exactly matches the Kalman filter equations that have been derived in Sec. 3.1.1,
cf. Eq. 3.25.

Following a very similar derivation based on the same assumptions for the noise signal,
the noise prediction error vector EN

prop(λ, μ) can be estimated based on:

E{EN
prop(λ− τ + 1, μ)|D(λ, μ)} =

σ2

EN
prop

(
λ−τ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
)
+ σ2

EN
prop

(
λ
λ , μ
) ·D(λ, μ), (3.77)

where 1 ≤ τ ≤ MK. The first factors in Eqs. 3.76 and 3.77 constitute the Kalman
filter gains KS(λ, μ) and KN (λ, μ) in the frequency domain. In matrix notation, they
can be written in their known forms as:

KS(λ, μ) = PS
prop(λ, μ) · hS

(
hT
SP

S
prop(λ, μ)hS + σ2

EN
prop

(
λ

λ
, μ

))−1

(3.78)

KN (λ, μ) = PN
prop(λ, μ) · hN

(
hT
NPN

prop(λ, μ)hN + σ2

ES
prop

(
λ

λ
, μ

))−1

. (3.79)

and are used to update the speech and noise predictions in Eqs. 3.47-3.50. Following
an analog derivation as presented in Sec. 3.1.1, the error covariance matrices of the
update step are finally determined according to:

PS
up(λ, μ) =

(
I−KS(λ, μ)hT

S

)
PS

prop(λ, μ) (3.80)

PN
up(λ, μ) =

(
I−KN (λ, μ)hT

N

)
PN

prop(λ, μ). (3.81)

6Assuming a, b and c to be random variables, a general property of conditional expectation yields
E{a|b} = E {E{a|b, c}|b} [Dur95].
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In addition to the independence assumption of ES
prop and EN

prop, the above derivation
of the spectral Kalman filter approach rests on two more assumptions for the two
prediction errors:

1. Real and imaginary parts of the speech and noise prediction error coefficients ES
prop

and EN
prop are each statistically independent resulting in separate estimators for

real and imaginary parts, cf. Eq. 3.65, and

2. the prediction errors ES
prop as well as EN

prop are complex-Gaussian distributed
leading to the Wiener filter weighting rules in the update step.

Both assumptions are analyzed in the following.

3.2.3.2 Generalized Gamma Model

The Kalman filter solutions, which have been proposed for speech enhancement in
literature so far, assume Gaussian distributions for the prediction errors of speech and
noise, regardless of whether they are implemented in the time domain [PB87, GKG91],
in subbands [WC98, Pud02] or in the DFT domain [ZVY06b]. In this thesis, the
statistics of the speech prediction error signal are explicitly taken into account showing
that the distribution of ES

prop follows a generalized Gamma model rather than a
Gaussian model. As a novel feature, adapted statistical weighting rules are derived
for the use within the update step in the following.

The statistical properties of the noise prediction error coefficients EN
prop vary with

different noise types. In order to keep the algorithm general and to not become
dependent on a particular noise signal, it is still assumed in this section that the DFT
coefficients EN

prop follow a complex-Gaussian distribution and only the statistics of

the speech prediction error signal ES
prop are investigated in the sequel.

The assumption that real and imaginary parts of ES
prop are statistically independent

is evaluated in Fig. 3.9 where contour plots of measured histograms of Re{ES
prop}

and Im{ES
prop} are illustrated. For the measurement, about 1.5 hours of speech taken

from the NTT database [NC94] are processed by the proposed system under the
Gaussian model presented in the previous Sec. 3.2.3.1. As the statistics of ES

prop

might be dependent on the input SNR, the speech signals are disturbed by addi-
tive WGN at SNR values varying between -25 dB and 35 dB (step size: 5 dB) and
the results are averaged. Figure 3.9(a) shows the contours of the joint distribu-
tion p

(
Re{ES

prop}, Im{ES
prop}

)
and Fig. 3.9(b) the contours for the product of the

marginal distributions p
(
Re{ES

prop}
) · p (Im{ES

prop}
)
. It can be seen that both PDFs

are different showing that real and imaginary parts of ES
prop are statistically depen-

dent. Similar investigations are carried out in [EHH08] and [HEH08] for real and
imaginary parts of speech signals.
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Figure 3.9: Contour lines of measured distributions of Re{ES
prop} and Im{ES

prop}: (a) joint
distribution, (b) product of marginal distributions.

In order to prove the assumption that the speech prediction error is complex-Gaussian
distributed, Fig. 3.10 depicts measured histograms of the real part7 of ES

prop and of
its amplitude using the same set of data as before. For comparison reasons, the figure
also shows the PDFs of Gaussian, Rayleigh, Laplacian and Gamma distributions, all
normalized to unit power. It can clearly be seen that the real part of ES

prop is not
Gaussian distributed as implicitly assumed by the original Kalman filter approach
within the update step. This mismatch is equivalent with the fact that the amplitude
histogram is not well fitted by a Rayleigh PDF. Instead, the statistics of the speech
prediction error are better described by a super-Gaussian distribution like Laplace or
Gamma. Similar investigations on the distribution of speech signals have been carried
out in [LV05] and [GM10a].

In the following, a modified statistical estimator is derived for the use within the
update step which is not based on the independence assumption of Re{ES

prop} and

Im{ES
prop}. Moreover, the estimator is adapted to the statistics measured in Fig. 3.10.

As shown in Fig. 3.9, the joint PDF p
(
Re{ES

prop}, Im{ES
prop}

)
is circularly symmetric

meaning that the phase distribution of ES
prop is uniform and independent from the

amplitude distribution. This allows to state the joint PDF of amplitude and phase
of the prediction error ES

prop as:

p(|ES
prop|,∠{ES

prop}) =
p(|ES

prop|)
2π

. (3.82)

7The same distribution holds for the imaginary part.



52 3 Speech Enhancement Incorporating Temporal Correlation

0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 

 

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

(a) (b)

Re{ES
prop} |ES

prop|

N
or

m
al

iz
ed

H
is

to
gr

am

N
or

m
al

iz
ed

H
is

to
gr

am

Histogram of Re{ES
prop} Histogram of |ES

prop|
Gaussian PDF

One-Sided Laplacian PDFTwo-Sided Laplacian PDF

One-Sided Gamma PDFTwo-Sided Gamma PDF

Rayleigh PDF

Figure 3.10: Histograms of speech prediction error ES
prop normalized to unit power: (a) real

part, (b) amplitude.

In the update step, the objective is to estimate the conditional expectation vec-
tors E{ES

prop(λ, μ)|D(λ, μ)} and E{EN
prop(λ, μ)|D(λ, μ)}. Therefore, at first an ex-

pression for E{ES
prop(λ, μ)|D(λ, μ)} is again derived in the sequel under the new con-

siderations. For this purpose, the conditional PDF p(D(λ, μ)|ES
prop(λ, μ)) is required

as well as an adequate PDF for the amplitude |ES
prop| which matches the measured

histogram in Fig. 3.10(b). Still assuming the Gaussian model for the noise prediction
error, the first PDF is given by:

p(D(λ, μ)|ES
prop(λ, μ)) =

1

πσ2

EN
prop

(
λ
λ , μ
) ·exp

⎛
⎜⎝−
∣∣D(λ, μ)− ES

prop(λ, μ)
∣∣2

σ2

EN
prop

(
λ
λ , μ
)

⎞
⎟⎠ . (3.83)

For the amplitude of the speech prediction error ES
prop, the following single-sided

generalized Gamma PDF is applied:

p(|ES
prop(λ, μ)|) =

θδρ

Γ(ρ)
|ES

prop(λ, μ)|(θρ−1) · exp (−δ|ES
prop(λ, μ)|θ

)
, (3.84)

with δ > 0, θ > 0 and ρ > 0. Γ(·) represents the Gamma function and θ, δ
and ρ are model parameters which can be adjusted to approximate the measured

histogram. The parameter δ depends on θ, ρ and σ2

ES
prop

(
λ
λ , μ
)
. For θ = 1,
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δ =

√
ρ(ρ+ 1)/σ

ES
prop

(
λ
λ , μ
)

and for θ = 2, δ = ρ/σ
ES
prop

(
λ
λ , μ
)

[EHHJ07]. Several

special cases are included in Eq. 3.84, e.g., a Laplacian and a Gamma PDF.

In [EHH08], the required expectation E{ES
prop(λ, μ)|D(λ, μ)} is derived based on the

aforementioned PDFs for the cases θ = 1 and θ = 2.

For θ = 1, there is no closed form solution available for the respective integrals which
include modified Bessel functions among other things. However, approximations are
available for low and high SNR values which can be solved analytically [EHH08]
resulting in:

• Approximation for low SNR values using Taylor series expansion of length Lmax:

E{ES
prop(λ, μ)|D(λ, μ)}LSNR = KLSNR(λ, μ) ·D(λ, μ), (3.85)

where

KLSNR(λ, μ) =
1

2

Lmax−1∑
l=0

1
l!(l+1)!

(
γK(λ,μ)

2

)l
Γ(ρ+ 2l + 2)D−(ρ+2l+2) (X )

Lmax−1∑
l=0

(
1
l!

)2 (γK(λ,μ)

2

)l
Γ(ρ+ 2l)D−(ρ+2l) (X )

, (3.86)

and ‘!’ denoting the factorial operator. Dρ′(·) states the parabolic cylinder function

of order ρ′ [GRJZ00] and X =
√
ρ(ρ+ 1)/(2ξK(λ, μ).

• Approximation for high SNR values:

E{ES
prop(λ, μ)|D(λ, μ)}HSNR = KHSNR(λ, μ) ·D(λ, μ), (3.87)

where

KHSNR(λ, μ) =
(ρ− 1/2)

(XD−(ρ+1/2) (X ′) + (ρ+ 1
2 )D−(ρ+3/2) (X ′)

)
2γK(λ, μ)D−(ρ−1/2) (X ′)

− ρ

2γK(λ, μ)
,

(3.88)

with X ′ = X −
√

2γK(λ, μ). The final estimate for θ = 1 combines the two approxi-
mations using the procedure in [EHHJ07]:

E{ES
prop(λ, μ)|D(λ, μ)}θ=1 = max

(
KLSNR(λ, μ),KHSNR(λ, μ)

) ·D(λ, μ). (3.89)

Due to the approximations of the Bessel functions within the derivation, the solution
is inappropriate for ρ < 0.5. According to [EHHJ07], Lmax = 5 is sufficient for the
purpose of speech enhancement leading to an overall approximation error between
+3.7 dB and -0.2 dB where a positive error means that the approximated gain function
is smaller than its actual value.
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For θ = 2, a closed form solution can be derived given as [EHH08]:

E{ES
prop(λ, μ)|D(λ, μ)}θ=2 =

ρξK(λ, μ)

ρ+ ξK(λ, μ)

M
(
ρ+ 1; 2;

γK(λ,μ)ξK(λ,μ)

ρ+ξK(λ,μ)

)
M
(
ρ; 1;

γK(λ,μ)ξK(λ,μ)

ρ+ξK(λ,μ)

) ·D(λ, μ),

(3.90)

with M(·) representing the confluent hypergeometric function [GRJZ00].

In order to get a good approximation to the measured histogram in Fig. 3.10(b), the
minimum Kullback Leibler distance8 between modeled and measured PDF is deter-
mined by varying the model parameters θ and ρ in Eq. 3.84 while keeping the power
normalized to σ2

ES
prop

= 1. Based on the minimum Kullback Leibler distance, the op-

timal approximation is given for the parameters θ0 = 1 and ρ0 = 0.9093. Figure 3.11
illustrates the measured histogram for the amplitude of the speech prediction error
together with the resulting fitted approximation.

The relation given in Eq. 3.75 holds for multivariate Gamma distributed variables
as well, e.g., [Iza65] and [KBJ00]. Thus, the required conditional expectation
vector E{ES

prop(λ, μ)|D(λ, μ)} based on the generalized Gamma model is given by
(cf. Eq. 3.76):

E{ES
prop(λ− κ+ 1, μ)|D(λ, μ)} =

σ2

ES
prop

(
λ−κ+1

λ , μ
)

σ2

ES
prop

(
λ
λ , μ
) E{ES

prop(λ, μ)|D(λ, μ)}θ=1|2,

(3.91)

where 1 ≤ κ ≤ NK and E{ES
prop(λ, μ)|D(λ, μ)}θ=1|2 is obtained using the para-

meters θ0 and ρ0.

In order to determine the expectation of the noise prediction error conditioned
on the differential signal D(λ, μ), Eq. 3.64 can be exploited. Using the afore
derived expression for the speech prediction error, the conditional expectation
E{EN

prop(λ, μ)|D(λ, μ)} at the current frame yields:

E{EN
prop(λ, μ)|D(λ, μ)} = E{D(λ, μ)− ES

prop(λ, μ)|D(λ, μ)}
= E{D(λ, μ)|D(λ, μ)} − E{ES

prop(λ, μ)|D(λ, μ)}
= D(λ, μ)− E{ES

prop(λ, μ)|D(λ, μ)}. (3.92)

Please note that the same expression also holds for the Gaussian model in Sec. 3.2.3.1,
cf. Eqs. 3.76 and 3.77 for κ = 1 and τ = 1, respectively. As the noise prediction error

8Information theoretic measure for the similarity of two PDFs: To differentiate between an an-
alytical PDF pa(x) and a measured PDF pm(x), the Kullback Leibler distance can be calculated

according to [KL51]: J =
∞∫

x=−∞
(pa(x)− pm(x)) log10

(
pa(x)
pm(x)

)
dx.
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Figure 3.11: Histogram of speech prediction error amplitudes |ES
prop| and fitted approxi-

mation of Eq. 3.84 according to minimum Kullback Leibler distance.

is still assumed to be complex-Gaussian distributed, the missing elements of the noise
prediction error vector EN

prop(λ, μ) are given as follows:

E{EN
prop(λ− τ +1, μ)|D(λ, μ)} =

σ2

EN
prop

(
λ−τ+1

λ , μ
)

σ2

EN
prop

(
λ
λ , μ
) E{EN

prop(λ, μ)|D(λ, μ}, (3.93)

for 1 ≤ τ ≤ MK.

3.2.3.3 SNR Influence on Statistics of Prediction Error Signal

Figure 3.11 depicts the measured histogram of |ES
prop| averaged over a broad SNR

range from -25 dB to 35 dB. In this section, it is shown that the input SNR has a
relevant influence on the statistics of the speech prediction error signal in the propa-
gation step. As a novelty, this characteristic is taken into account in the update step
by using different SNR-dependent MMSE estimators which rely on the generalized
Gamma priors introduced in the previous section.

For the following evaluation, the Kalman filter system of Sec. 3.2.3.1 is used again
with the same amount of data as in Sec. 3.2.3.2 relying on about 1.5 hours of speech
taken from the NTT speech database [NC94] and WGN. Depending on the input
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Figure 3.12: Normalized histograms of |ES
prop| dependent on input SNR.

SNR, which is varied in the range from -25 dB to 35 dB (step size: 5 dB), the his-
tograms of the speech prediction error ES

prop are measured, this time separately for
each SNR value and not averaged over the entire SNR range. Figure 3.12 shows the
measured histograms of the amplitude ES

prop depending on different SNR values. The
histograms are normalized to a power of σ2

ES
prop

= 1 to illustrate the dependencies of

the shape of the PDF on the input SNR. The SNR-dependency can clearly be seen.
The steepness of the respective probability density functions around zero is getting
larger for higher input SNR values showing that smaller prediction error values occur
proportionally more often at higher SNR values. This behavior goes along with the
fact that the prediction in the propagation step performs better the higher the input
SNR is [EV08a].

In order to exploit this SNR-dependency, the complex-valued DFT estimator of the
previous section is adapted to each of the measured histograms in Fig. 3.12. For
the approximation, a similar procedure as in Sec. 3.2.3.2 is applied. The Kullback
Leibler distances between modeled and measured PDFs are minimized by altering the
parameters θ and ρ in Eq. 3.84 in the specified domains. The resulting settings which
contribute to the best approximations are given in Tab. 3.1 for each SNR value. Due
to the constraint that the parameter ρ has to be greater than or equal to 0.5 for the
case θ = 1 (see Sec. 3.2.3.2), the parameter sets for SNR values greater than 25 dB
are identical. For all other SNR values, different MMSE estimators arise for the use
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SNR [dB] ≤ −25 -20 -15 -10 -5 0 5
θ 1 1 1 1 1 1 1
ρ 2.2936 1.9541 1.5101 1.1629 0.9491 0.8085 0.7074

SNR [dB] 10 15 20 25 30 ≥ 35
θ 1 1 1 1 1 1
ρ 0.6254 0.5584 0.5137 0.5000 0.5000 0.5000

Table 3.1: Parameter settings for complex-valued DFT MMSE estimator depending on the
input SNR according to the model PDF in Eq. 3.84.

within the update step and the input SNR decides which parameter set to use in the
current frame and frequency bin.

In the real system, the SNR has to estimated based on enhanced speech and noise
DFT coefficients from the past. In order to determine which settings are used in the
current frame, the averaged and quantized SNR estimates of the previous NK frames
are utilized. The decision is made individually for each frequency bin.

3.2.3.4 Estimation of Prediction Error Powers

In order to determine the speech and noise prediction error vectors ES
prop(λ, μ) and

EN
prop(λ, μ) for the Gaussian model as well as for the generalized Gamma model

in Eqs. 3.76, 3.77, 3.91 and 3.93, the prediction error powers σ2

ES
prop

(
λ−κ+1

λ , μ
)

and σ2

EN
prop

(
λ−τ+1

λ , μ
)

are required. These entities can directly be obtained from

the error covariance matrices PS
prop(λ, μ) and PN

prop(λ, μ) in Eqs. 3.62 and 3.63 for
2 ≤ κ ≤ NK and 2 ≤ τ ≤ MK using the transition matrices A and B. For κ = 1

and τ = 1, i.e., the prediction error powers σ2

ES
prop

(
λ
λ , μ
)

and σ2

EN
prop

(
λ
λ , μ
)

of the

current frame, additional estimates of the excitation signal powers σ2
ES

(λ, μ) and

σ2
EN

(λ, μ) are necessary, see Eqs. 3.62 and 3.63. Therefore, the estimated autocor-

relation functions and prediction coefficients of the speech and the noise signals can
be used, e.g., [Pud02]. However, after long periods of speech inactivity, when the
Kalman filter output Ŝup(λ, μ) converges to zero, these estimates are obtained from
past speech DFT coefficients which are all almost zero leading to suppressed speech
at speech onsets. To counteract this behavior, speech onset periods can be detected
and treated separately [ZVY06b] by applying additional computational effort.

As a novel feature, the prediction error powers σ2

ES
prop

(
λ
λ , μ
)

and σ2

EN
prop

(
λ
λ , μ
)

of

the current frame are directly estimated in this approach in order to prevent the
requirement of determining speech onsets. For this, the estimates of the error covari-
ance matrices for κ = 1 and τ = 1 are skipped and the update step is considered again
as stand-alone noise suppression system with the objective to decompose the ‘noisy’
input signal D(λ, μ) into ‘differential target’ signal ES

prop(λ, μ) and ‘differential noise’

signal EN
prop(λ, μ). At first, the ‘noise’ power σ2

EN
prop

(
λ
λ , μ
)

is estimated by applying



58 3 Speech Enhancement Incorporating Temporal Correlation

0 1 2 3 4 5 6 7 8

60

80

100

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

Time [s]

Time [s]

Time [s]

F
re

q
u
en

cy
[H

z]
F
re

q
u
en

cy
[H

z]
P
ow

er
[d

B
]

Figure 3.13: Estimation of noise prediction error power using Minimum Statistics within
the update step. The clean speech signal "Help the woman get back to her
feet. A pot of tea helps to pass the evening." (male voice) in the upper plot is
disturbed by WGN at 10 dB input SNR. The spectrogram of the noisy signal
is depicted in the middle plot. The lower plot illustrates the ‘noisy’ squared

magnitude |D(λ, μ)|2 (light grey), the true ‘noise’ power σ2
EN
prop

(
λ
λ , μ

)
(grey)

and the estimated ‘noise’ power σ̂2
EN
prop

(
λ
λ , μ

)
(black) at frequency bin μ = 15

using an FFT size of MF = 256.

the well-known Minimum Statistics (MS) [Mar01] approach (see Sec. 2.3.2) to the
differential signal D(λ, μ). Although Minimum Statistics was originally developed
for speech signals disturbed by additive background noise, it also works well in the
update step. An example for the estimation performance is depicted in Fig. 3.13 for
a speech signal taken from the NTT speech database [NC94] which is disturbed by
WGN at 10 dB input SNR. As can be seen, the power of the differential signal often
decays to the power level of the ‘noise’ signal EN

prop. Therefore, it is possible to track

the ‘noise’ power σ2

EN
prop

(
λ
λ , μ
)

in the update step using the original MS approach

of [Mar01].

All weighting rules which are presented in Secs. 3.2.3.1, 3.2.3.2 and 3.2.3.3 only depend
on the a posteriori SNR and a priori SNR. If an estimate of the ‘noise’ power is
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available, the a posteriori SNR γK(λ, μ) can easily be measured, see Eq. 3.72. For
the estimation of the a priori SNR ξK(λ, μ), an estimate of the speech prediction

error power σ2

ES
prop

(
λ
λ , μ
)

is required in addition, cf. Eq. 3.73. For this purpose, the

decision-directed approach [EM84] is applied as follows:

ξ̂K(λ, μ) = αDD
K

|ÊS
prop(λ− 1, μ)|2

σ̂2

EN
prop

(
λ−1
λ−1 , μ

) + (1− αDD
K ) max

(
γ̂K(λ, μ)− 1, 0

)
. (3.94)

The smoothing factor αDD
K here also states a tradeoff between noise attenuation and

musical tones. Applied within the update step, a value of αDD
K = 0.875 achieves a

good compromise in the proposed system.

3.2.3.5 Summary

In the following, the procedures in the update step for the Gaussian model as well as
for the generalized Gamma model are briefly summarized.

1. Estimation of noise prediction error power σ2

EN
prop

(
λ
λ , μ
)

using the Minimum

Statistics approach applied to the differential signal D(λ, μ).

2. Estimation of a posteriori SNR γK and a priori SNR ξK based on the decision-
directed approach.

3. Determination of the Kalman gains K(λ, μ) for the current frame λ:

• Gaussian Model

Speech: KS(λ, μ) = KS
G(λ, μ) =

ξ̂K(λ, μ)

ξ̂K(λ, μ) + 1

Noise: KN (λ, μ) = KN
G (λ, μ) = 1−KS

G(λ, μ)

• Generalized Gamma Model9 using Lmax = 5 (see Eq. 3.86)

Speech: KS(λ, μ) = KS
gG(λ, μ) = max (KLSNR(λ, μ),KHSNR(λ, μ))

Noise: KN (λ, μ) = KN
gG(λ, μ) = 1−KS

gG(λ, μ)

4. Estimation of speech prediction error power σ2

ES
prop

(
λ
λ , μ
)
:

σ̂2

ES
prop

(
λ

λ
, μ

)
= ξ̂K(λ, μ) · σ̂2

EN
prop

(
λ

λ
, μ

)
.

9The appropriate values for the model parameter ρ are set according to Secs. 3.2.3.2 and 3.2.3.3.
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5. Determination of missing Kalman gain vector entries for 2 ≤ κ ≤ NK and
2 ≤ τ ≤ MK:

Speech: KS(λ− κ, μ) =
σ̂2

ES
prop

(
λ−κ+1

λ , μ
)

σ̂2

ES
prop

(
λ
λ , μ
) KS(λ, μ)

Noise: KN (λ− τ, μ) =
σ̂2

EN
prop

(
λ−τ+1

λ , μ
)

σ̂2

EN
prop

(
λ
λ , μ
) KN (λ, μ),

where KS(λ, μ) and KN (λ, μ) are the respective gains for the Gaussian or gene-

ralized Gamma model according to Step 3. The values for σ̂2

ES
prop

(
λ−κ+1

λ , μ
)

and

σ̂2

EN
prop

(
λ−τ+1

λ , μ
)

result from the estimated error covariance matrices P̂S
prop(λ, μ)

and P̂N
prop(λ, μ) of the propagation step in Eqs. 3.62 and 3.63.

6. Estimation of prediction error vectors:

ÊS
prop(λ, μ) = KS(λ, μ)D(λ, μ)

ÊN
prop(λ, μ) = KN (λ, μ)D(λ, μ),

where the vectors KS(λ, μ) and KN (λ, μ) contain the afore computed Kalman

gains either for the Gaussian or the generalized Gamma model. ÊS
prop(λ, μ) and

ÊN
prop(λ, μ) are used to update the initial predictions of the propagation step

according to Eqs. 3.49 and 3.50.

7. Update of error covariance matrices P̂S
up(λ, μ) and P̂N

up(λ, μ):

P̂S
up(λ, μ) =

(
I−KS(λ, μ)hT

S

)
P̂S

prop(λ, μ)

P̂N
up(λ, μ) =

(
I−KN (λ, μ)hT

N

)
P̂N

prop(λ, μ).

3.3 Performance Results

The novel noise reduction system developed in this chapter exploits temporal cor-
relation between adjacent frames in the frequency domain and can be realized with
different statistical estimators in the update step. In this section, the presented model-
based approaches are analyzed and compared with several state-of-the-art noise sup-
pression techniques with regard to speech quality, speech distortions and noise attenu-
ation. At first, purely statistical weighting rules as well as the Kalman filter proposed
in [ZVY06b] serve as reference for the Kalman filter presented in Sec. 3.2.3.1 under
the Gaussian model. Thereafter, it is shown that the exploitation of the prediction
error statistics under the generalized Gamma model in Secs. 3.2.3.2 and 3.2.3.3 leads
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to further improvements followed by investigations of the SNR-dependent prediction
gain within the propagation step. The instrumental measurements are confirmed by
an informal listening test and finally, a visualization example of the processed signals
based on spectrograms closes this chapter. The computational complexity as well
as the memory requirements of the proposed modified Kalman filter approach are
analyzed in Appendix C.

3.3.1 Instrumental Measurements

For the investigation, several instrumental measurements are applied, see Appendix D
for more details. The main parameter settings that are used in the simulations are
listed in Tab. 3.2. Five speech signals from the NTT speech database [NC94] are
each degraded by six different noise types (f16, babble, car, factory1, factory2, white),
taken from the NOISEX-92 database [VS93] at an input SNR varying between -10 dB
and 35 dB with an increment of 5 dB. Among the five speech signals, there are three
sequences from male and two from female speakers, each with a length of 8 seconds.

For the simulations, the proposed Kalman filter system is initialized as follows: the
speech transition matrix A(0, μ) is set to 0 whereas the noise transition matrix
B(0, μ) is determined from the first MK noisy coefficients N(λ̌, μ) with 0 ≤ λ̌ < MK.
Moreover, the error covariance matrices of propagation and update step PS

prop(0, μ),

PS
up(0, μ), P

N
prop(0, μ) and PN

up(0, μ) are all initialized by zeros.

3.3.1.1 Gaussian Model

In this section, the developed Kalman filter system as discussed in Sec. 3.2.3.1 is
evaluated using the Gaussian model in the update step. In the propagation step, two
procedures are differentiated:

• Proposed KF (S only, Gauss) – The complex-valued prediction is applied only
to the speech signal. For this approach, the noise prediction vector N̂prop(λ, μ) in
Sec. 3.2.3.1 is set to 0, cf. Fig. 3.5.

• Proposed KF (S+N , Gauss) – The complex-valued prediction is applied to
the speech signal and the noise signal as depicted in Fig. 3.5.

The proposed system is compared with the well-known Wiener filter [LO79] and
the Log Spectral Amplitude (LSA) estimator [EM85] to illustrate the advantage of
exploiting temporal correlation in addition to a priori knowledge of zeroth order.
Moreover, the Kalman filter approach of [ZVY06b] is included in the investigations.
This approach is applied in the frequency domain as well and, as described before, uses
one Kalman filter to estimate the real parts of the speech and noise DFT coefficients
and one Kalman filter for the respective imaginary parts. All investigated noise
reduction techniques in this subsection assume a complex-Gaussian distribution for
the spectral DFT coefficients of the speech and the noise signal.
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Parameter Settings

Sampling frequency 8 kHz
Frame length LF 160 (20 ms)
FFT length MF 256 (including zero-padding)
Frame overlap 75% (Hann window)
Input SNR -10 dB ... 35 dB (step size: 5 dB)

Propagation Step
AC length10LAC 6 (see Fig. 3.7)
Model order NK 3 (see Eq. 3.57)
Model order MK 2 (see Eq. 3.60)

Update Step
Noise estimation Minimum Statistics [Mar01]
SNR estimation Decision-directed approach [EM84]

Table 3.2: System settings.

The averaged results are depicted in Figs. 3.14 and 3.15. Figure 3.14 shows the dif-
ferences between segmental noise and speech attenuation over the input SNR and
Fig. 3.15 the segmental speech SNR plotted over the noise attenuation with the in-
put SNR as control variable. Thus, a fair comparison with respect to the tradeoff
between noise attenuation and speech distortions is possible. In Fig. 3.14, a higher
score indicates a better performance in which a value greater than 0 dB justifies the ap-
plication of noise suppression. In Fig. 3.15, high values for both the segmental speech
SNR and the noise attenuation are desirable. More details about the instrumental
measurements can be found in Appendix D.

The results show that the MMSE-LSA estimator yields a better performance than the
Wiener filter for the entire SNR range as known from literature [Loi07]. In Fig. 3.14,
the reference Kalman filter approach [ZVY06b] performs worst for input SNR values
lower than 5 dB. However, its performance becomes better at higher input SNR values
and it outperforms the two purely statistical weighting rules Wiener filter and MMSE-
LSA estimator beyond an input SNR of 15 dB. Moreover, the reference Kalman filter
approach consistently achieves a higher noise attenuation in Fig. 3.15 compared to
the statistical estimators. However, this benefit comes at the expense of a lower
segmental speech SNR comparing the corresponding markers in Fig. 3.15 for each
input SNR value separately.

The instrumental measurements demonstrate that both novel variants of the proposed
Kalman filter system Proposed KF (S only, Gauss) and Proposed KF (S+N , Gauss)
consistently outperform all other noise reduction techniques including the two con-
ventional approaches [LO79] and [EM85] as well as the reference Kalman filter system
[ZVY06b]. Compared to the Wiener filter, gains of up to 2.2 dB can be achieved in

10The previous LAC enhanced DFT coefficients Ŝup and N̂up are applied to estimate autocorre-
lation vectors and matrices of speech and noise, respectively.
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Figure 3.14: Difference between noise attenuation and speech attenuation plotted over in-
put SNR. The different Kalman Filter (KF) setups are explained on page 61.
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Figure 3.15: Segmental speech SNR plotted over noise attenuation.
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terms of the deviation between noise and speech attenuation. If the segmental speech
SNR is kept constant, an increase in noise attenuation of up to 2 dB is possible with
the new model-based techniques as shown in Fig. 3.15. In addition to the exploita-
tion of the temporal speech correlation, the results show that the temporal correlation
of the applied noise signals can be exploited as well. If the proposed Kalman filter
approach is applied to the speech and noise signal, the performance can be further
increased.

3.3.1.2 Generalized Gamma Model

The investigation in this subsection analyzes the two developed Kalman filter ap-
proaches of Secs. 3.2.3.2 and 3.2.3.3 which explicitly exploit the statistics of the speech
prediction error coefficients:

• Proposed KF (S+N , genGam, SNR-indep.) – The parameter set of the
model PDF in Eq. 3.84 is kept fixed using θ0 and ρ0 for all input SNR values.

• Proposed KF (S+N , genGam, SNR-dep.) – Different parameter sets are
used within the MMSE estimator depending on the input SNR, cf. Tab. 3.1.

They are compared with two purely statistical noise reduction techniques relying on
super-Gaussian models for the speech signal as well: the Laplacian MMSE estima-
tor [MB03] (see Sec. 2.5.4) and the super-Gaussian Maximum A Posteriori (MAP)
estimator [LV05] (see Sec. 2.5.5). As reference, the results of the Wiener filter and
the results of the proposed Kalman filter based on the Gaussian model Proposed KF
(S+N , Gauss) are reproduced from the previous subsection.

The results are illustrated in Figs. 3.16 and 3.17. For the evaluation, the same instru-
mental measurements as in the previous subsection are applied. Figure 3.16 depicts
the deviation between noise and speech attenuation plotted over the input SNR and in
Fig. 3.17, the segmental speech SNR is plotted over the noise attenuation dependent
on the input SNR.

The instrumental measurements in this section illustrate again the advantages of
the proposed novel Kalman filter solutions compared to the considered statistical
weighting rules, i.e., Wiener filter, Laplacian MMSE estimator and super-Gaussian
MAP estimator. In addition, the results of the statistical estimators show that the
more the estimator is adapted to the statistics of the target signal, the better the
overall performance. This behavior can also be observed for the Kalman filter ap-
proaches: Figures 3.16 and 3.17 show consistent improvements due the application of
the generalized Gamma model for the speech prediction error signal. Compared to the
SNR-independent MMSE estimator applied in the update step, the SNR-dependent
approach achieves better results in terms of noise attenuation and speech distortions
for the entire SNR range. Thus, the additional exploitation of the prediction error
SNR-dependency leads to further improvements and clearly outperforms all other
considered noise reduction techniques. The proposed approach Proposed KF (S+N ,
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Figure 3.16: Difference between noise attenuation and speech attenuation plotted over in-
put SNR. The different Kalman Filter (KF) setups are explained on pages 61
and 64.
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Figure 3.18: Prediction gain of speech DFT coefficients achieved in propagation step plot-
ted over input SNR.

genGam, SNR-dep.) yields the best compromise between speech and noise attenua-
tion as shown in Fig. 3.16 and the highest noise attenuation if the segmental speech
SNR is kept constant as shown in Fig. 3.17. Nevertheless, the occurrence of musical
tones is slightly increased the more the respective estimator is adapted to the statis-
tics of the target signal. This applies to the super-Gaussian MAP estimator as well
as to the proposed Kalman filter using the SNR-dependent MMSE estimators within
the update step. However, one of the countermeasures presented in Sec. 5.1 can be
used successfully to prevent the problem of musical noise.

3.3.1.3 Prediction Gain

In Sec. 3.2.3.3, it is shown that the PDF of the speech prediction error ES
prop is

dependent on the input SNR with smaller values occurring proportionally more often
the higher the SNR is. This property results from the fact that the prediction gain
within the propagation step is dependent on the SNR as well: the higher the input
SNR, the better the performance of the complex-valued linear prediction. Figure 3.18
depicts the effective speech prediction gain of the proposed Kalman filter approach
based on the SNR-dependent generalized Gamma model11 plotted over the input SNR.
It can be seen that the proposed system already starts to benefit from the propagation
step at -10 dB input SNR and nearly reaches the level of ‘ideal’ prediction at 20 dB,
cf. Fig. 3.7.

11Similar results are achieved using the proposed Kalman filter approach based on the Gaussian
MMSE estimator in the update step.
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3.3.2 Auditory Judgments

In addition to the instrumental measurements, an informal Comparison Category Rat-
ing (CCR) test according to [ITU96] was conducted which presented two processed
samples per question to the participants: a processed signal from Method A and a
processed signal from Method B. Two different scenarios were evaluated. On the one
hand, two estimators relying on Gaussian models were compared, namely the Wiener
filter [LO79] and the novel Kalman filter Proposed KF (S+N , Gauss) proposed in
Sec. 3.2.3.1. On the other hand, the performance of two weighting rules was analyzed
which can explicitly be adapted to the measured statistics of the respective target
signal. Here, the results of the super-Gaussian MAP estimator [LV05] was compared
with the novel Kalman filter approach Proposed KF (S+N , genGam, SNR-dep.)
based on the SNR-dependent MMSE estimator which is presented in Sec. 3.2.3.3. For
the evaluation, the labels ‘Method A’ and ‘Method B’ were randomly assigned to one
of the respective noise reduction techniques in each scenario. The noisy input signals
consisted of speech signals randomly taken from the NTT speech database disturbed
by a noise signal from the NOISEX-92 database at an input SNR varying between
5 dB and 15 dB. 19 experienced listeners were asked to judge the overall speech qual-
ity in terms of noise attenuation, speech distortions and occurrence of musical tones.
They could choose between the following rating options: Sample A sounds {much bet-
ter | better | slightly better | about the same | slightly worse | worse | much worse} than
Sample B. Each test person had to judge 10 signals (5 per scenario), i.e., the total
results are based on 10 · 19 = 190 votes. The samples could be played ad libitum
before the probands had to make their judgments.

The averaged results are separately illustrated in Fig. 3.19 for the two Scenarios (a)
and (b). Both results clearly show that most listeners preferred the novel Kalman
filter approaches compared to the corresponding purely statistical estimators. When
combining the options {much better | better | slightly better }, approximately 75% of
the test listeners favored the proposed model-based solution in Scenario (a) and about
77% in Scenario (b). The participants who preferred the purely statistical estimators
in some isolated cases, explained their decisions by a slightly higher occurrence of
musical tones in the processed signals of the Kalman filters which, in these cases, was
perceived as more annoying than the higher noise suppression of the model-based
approaches.

When comparing the quality of the novel Kalman filter techniques with the quality
of the investigated reference Kalman filter [ZVY06b], the results of the instrumental
measurements were confirmed as well. Informal listening tests here also showed the
superiority of the Kalman filter solutions proposed in this thesis.

3.3.3 Spectrograms

Figure 3.20 allows a comparison of the proposed Kalman filter techniques by means
of spectrograms. In the upper row, the spectrograms of the clean speech signal
and the noisy input signal are depicted. The utterance "Help the woman get back
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Figure 3.19: Results of the informal listening test comparing (a) the proposed Kalman filter
(S+N , Gauss) with the Wiener filter [LO79] and (b) the proposed Kalman
filter (S+N , genGam, SNR dep.) with the super-Gaussian MAP estimator
[LV05]. The different Kalman filter setups are explained on pages 61 and 64.

to her feet. A pot of tea helps to pass the evening." originates from the NTT
speech database [NC94] and is disturbed by factory noise from the NOISEX-92
database [VS93] at 5 dB input SNR. The middle and lower row show the spectro-
grams of the processed signals, among them the results of the two purely statistical
estimators Wiener filter [LO79] and super-Gaussian MAP estimator [LV05] as well
as the results of the two novel Kalman filter techniques relying on the Gaussian and
the SNR-dependent generalized Gamma model for the speech prediction error signal.
The instrumental measurements presented before are confirmed by the spectrograms
as well. It can be seen that the model-based approaches in the lower row achieve a
higher noise attenuation compared to the corresponding statistical weighting rules in
the middle row without affecting the speech quality. In terms of the tradeoff noise
attenuation and speech distortions, the Kalman filter techniques which uses the SNR-
dependent generalized Gamma MMSE estimator within the update step yields the
best results. Nevertheless, a new randomly fluctuating type of noise, referred to as
musical noise, can be observed in the spectrogram at the bottom right of the figure.
As mentioned before, countermeasures presented in Sec. 5.1 effectively help to avoid
such effects.
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Figure 3.20: Spectrograms of clean speech signal, noisy signal (speech+factory noise,
SNR: 5 dB), processed signals by Wiener filter, super-Gaussian MAP esti-
mator and novel Kalman filter techniques using Gaussian model as well as
SNR-dependent generalized Gamma model. The sentences "Help the woman
get back to her feet. A pot of tea helps to pass the evening." are spoken by a
male voice.
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3.4 Conclusions

In this chapter, a novel Kalman filter for single-channel speech enhancement in the
frequency domain is presented. The approach is based on a modified propagation and
update step which are both applied directly to the complex-valued DFT coefficients
of the noisy input signal. In the propagation step, temporal correlation of successive
frames is exploited using low-order models to approximate the trajectories of speech
and noise DFT coefficients. Investigations show that complex-valued linear prediction
yields higher prediction gains than estimating real and imaginary parts or magnitudes
and phases separately. The proposed system is able to exploit temporal correlation
of speech already at very low input SNR values and nearly reaches the level of ‘ideal’
prediction at 20 dB input SNR. In the second (update) step, the first predictions are
updated utilizing an appropriate statistical weighting rule in order to estimate the
prediction errors caused in the propagation step. As novelty, not only the conventional
Kalman filter gain (assuming Gaussian distributions for speech and noise) is taken
into account for this purpose but also different SNR-dependent MMSE estimators
which are explicitly adapted to measured histograms of the speech prediction error
signal. Moreover, a new possibility to estimate the prediction error powers of speech
and noise is presented. In the evaluation, the proposed system clearly outperforms
several purely statistical estimators as well as the Kalman filter approach presented
in [ZVY06b]. Especially the incorporation of the SNR-dependency on the statistics
of the speech prediction error leads to significant improvements. The instrumental
measurements are confirmed by an informal listening test in which about 75% of
the test listeners preferred the signals processed by the novel Kalman filter solutions.
Compared to state-of-the-art noise suppression systems, the overall computational
load of the proposed system is increased by a factor of 5 – 7. However, possible
methods for an effective reduction of the complexity are presented in Appendix C.



4

Speech Enhancement Exploiting

Spectral Dependencies

The quality of today’s telephone speech is designed to achieve a reasonable
intelligibility. The acoustic bandwidth in telephony systems is typically limited to the
frequency range between 300 Hz and 3.4 kHz. However, the typical ‘telephone sound’
cannot satisfy the increased demands as the perceived speech quality and intelligi-
bility is considerably reduced compared to the full audio bandwidth which usually
ranges between 100 Hz and 10 kHz for human voices [VM06]. As a reasonable com-
promise, various wideband (50 Hz – 7 kHz) speech codecs have been developed in the
past, e.g., [ITU88, ITU99, ITU06a, 3GP01, 3GP04], and are about to be introduced
in current mobile networks. Nevertheless, most of these codecs are mainly designed
for nearly noise-free input speech signals and do not perform well if the input signal
is degraded by acoustic background noise. In order to improve the listening comfort
and to keep the high quality also in noisy environments, noise suppression techniques
are required for wideband communication systems.

One of the popular methods for enhancing degraded speech is based on modeling
the noisy input signal in the Short-Time Fourier Transform (STFT) domain and
to apply individual adaptive gains to the noisy STFT coefficients of each frequency
bin. Most of the rules proposed in literature have been derived for low band sig-
nals (50 Hz – 4 kHz) under certain assumptions about the statistics of the speech and
noise signals (cf. the weighting rules outlined in Chapter 2) or by using model-based
techniques as presented in Chapter 3. When it comes to wideband noise reduction, an
established method is to double sampling rate and transform length and to apply the
low band algorithms also for higher frequencies. Thereby, neither the unequal spectral
energy distribution of a speech and noise signal nor the properties of the human au-
ditory system are considered. For a variety of different noise sources, it can be shown
that the Signal-to-Noise-Ratio (SNR) significantly degrades beyond 4 kHz [EHGV10]
leading to an imprecise noise reduction and fluctuating weighting gains at higher fre-
quencies which result in the increased occurrence of musical noise. So far, only a very
limited number of proposals are known which take into account the aforementioned
aspects when enhancing wideband speech signals, e.g., [EHGV10, HEGV10, BSV06].
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In contrast to wideband noise suppression, wideband speech coding has experienced
a lot of progress in recent years. Depending on the infrastructure that is available at
the terminals and within the telephone network, several possibilities exist how to set
up a wideband connection. The use of dedicated wideband codecs, e.g., [3GP01], and
embedded codecs, e.g., [ITU06a, ITU06b], achieves a high speech quality but requires
a modification of the whole communication system. If the telephone network and ap-
plied protocols only support narrowband connections, additional information about
the high band signal (4 – 7 kHz) can be embedded into the bitstream of a narrow-
band codec by steganographic techniques, e.g., [VG07, GJV05, GV07, GV08, Esc06].
Therefore, the encoder as well as the decoder has to be modified in order to establish a
wideband connection. Only the decoder has to be changed when using Artificial Band-
width Extension (ABWE). This technique exploits spectral dependencies of speech
signals in order to recover missing high frequency components by utilizing only the
low band speech signal, i.e., ABWE aims at increasing the perceived speech quality
if only the low band signal is available, e.g., [JV03b, JV06, GJV+07]. Of course, the
resulting speech quality is slightly worse compared to dedicated wideband codecs.

In the derivation of most noise reduction weighting rules, it is often assumed that adja-
cent Discrete Fourier Transform (DFT) coefficients within one frame are statistically
independent. However, due to the harmonic structure of speech and a frame-based
processing by means of a windowing operation, this assumption may not be justified
in practice. For the purpose of noise reduction, only few publications are known
which make use of correlation between individual frequency bins within one frame,
e.g., [FBS05], [Plo09] and [HS08, Chapter 4].

In this chapter, wideband speech enhancement is combined with techniques known
from ABWE. While a conventional noise suppression technique is used for the low
band, a novel approach is applied for the speech enhancement in the high band.
Based on a trained Hidden Markov Model (HMM), parameters from the processed
(enhanced) low band signal are extracted and used to estimate subband energies of
the high band speech signal. The resulting weighting gains determined from these
energy estimates are adaptively combined with conventional gains for the high band.
In addition, this chapter comprises an information theoretic view on ABWE under
noisy conditions. A performance bound is formulated and the influence of noise
reduction prior to ABWE is investigated by real entropy measurements.

The remainder of this chapter is organized as follows. At first, the general concept
of ABWE is introduced when used for the purpose of speech coding. Afterwards, the
proposed wideband noise reduction system is presented including the procedure of
the combined noise suppression in the high band in detail. Thereafter, the mutual
information between low and high band in noisy environments is analyzed. Finally,
experimental results are shown and conclusions are drawn.
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4.1 Artificial Bandwidth Extension

As mentioned at the beginning of this chapter, the application of artificial bandwidth
extension is independent from the sending side of the transmission and therefore
fully compatible with existing narrowband speech communication systems. This is
important as the change of the current bandwidth limitation in public telephony
systems, especially in the fixed-line networks, will not happen abruptly. Although
ABWE does not achieve the full quality of true wideband coding, it can be used
to improve the acceptance by the user while achieving a smooth transition between
narrowband and wideband speech coding.

In this section, the basic concept of ABWE is summarized. The algorithm is based
on the source-filter model of the human speech production system which is already
briefly introduced at the beginning of Chapter 3. The estimation of the missing
frequency components in the high band can be divided into two parts: extension of
the narrowband excitation signal and estimation of the wideband spectral envelope
using only information from the narrowband signal. After a short overview of the
ABWE system, both steps are outlined in the following.

4.1.1 System Overview

In Fig. 4.1, a simplified block diagram of an ABWE system is depicted as proposed
in [Jax02] and [JV03b]. At first, the sampling frequency of the low band input
speech signal slb(k) is increased from fs = 8 kHz to fs = 16 kHz by interpolation
and subsequent low-pass filtering. From now on all further steps are applied to the
upsampled low band signal slb(k

′) at the sampling frequency fs = 16 kHz where k′

denotes the time instance in the upsampled domain.

Based on slb(k
′) the spectral envelope of the narrowband signal is extended in the

upper part of the block diagram. A feature vector awb representing the spectral
envelope of the wideband signal swb(k

′) is estimated. The vector awb consists, e.g.,
of Autoregressive (AR) coefficients and is determined by exploiting information from
an observation vector xlb as well as a priori knowledge provided by a pre-trained
statistical model. Usually the vector xlb itself also contains information about the
spectral envelope of the input signal slb(k

′).

The estimated vector âwb is used to form a Finite Impulse Response (FIR) analysis
filter which is applied to the input signal slb(k

′) in order to obtain an estimate of
the bandlimited low band excitation signal êlb(k

′). In the next step, the missing
high band frequencies in the excitation signal are determined. As the human ear is
relatively insensitive to variations of the spectral fine structure at high frequencies,
the procedure can be implemented quite efficiently. Different approaches can be found
in literature for this purpose, see Sec. 4.1.2.

Finally, the estimated wideband excitation signal êwb(k
′) is combined with the en-

velope features of the vector âwb using a synthesis filter which is inverse to the ap-
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Figure 4.1: Block diagram of the Artificial Bandwidth Extension (ABWE) System.

plied analysis filter. The resulting signal ŝwb(k
′) provides an estimate of the wide-

band speech signal and exhibits transparency with respect to the low band input
signal slb(k

′).

In the derivation and training phase of an ABWE system, clean speech signals are
available and can be applied to the system. However, if the algorithm is used in
practical speech communication systems, the quality of the low band input signal is
often impaired due to background noise. In this case, the performance of ABWE
significantly degrades and additional procedures are necessary, e.g., [SAD05].

4.1.2 Extension of the Excitation Signal

The objective of this step is to recover the spectral fine structure of the missing
frequency components in the high band. Therefore, it has to be guaranteed that the
estimated wideband excitation signal êwb(k

′) fully includes the low band excitation
signal in order to accomplish the mentioned transparency with respect to the low
band signal. A variety of different methods for the extension of the excitation signal
can be found in literature, e.g., [Jax02]. Although this step is not required in the
proposed wideband speech enhancement system, a selection of extension techniques
is briefly outlined in the following for the sake of completeness.

Explicit Signal Generation

This method is based again on the source-filter model of the speech production sys-
tem. The pitch frequency as well as a voiced/unvoiced decision is extracted from the
low band excitation signal êlb(k

′). Afterwards, the missing components of the high
frequencies are generated synthetically using a signal generator which consists of an
impulse and noise generator. In order to achieve good results, an accurate estimate
of the pitch frequency is necessary.
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Non-Linear Processing

A non-linear function g(·) is employed in order to perform the extension of the excita-
tion signal. Using this technique, the estimated wideband excitation signal results in:

êNLP
wb (k′) = g (êlb(k

′)) , (4.1)

and contains harmonic distortions which reflect the desired new components in the
missing frequency band. For the choice of g(·), various non-linear functions are pos-
sible. It has been shown that good results can be achieved using a simple quadratic
function, i.e., êNLP

wb (k′) = (êlb(k
′))2. Unfortunately, this method also produces unde-

sired non-linear distortions making an additional postprocessing necessary.

Modulation in the Time Domain

Using this method, the wideband excitation signal arises by modulating the low band
signal êlb(k

′) with a weighted cosine function as follows:

êMTD
wb (k′) = êlb(k

′) · ζMTD · cos(ΩMk′). (4.2)

A modulation in the time domain corresponds to a translation in the frequency do-
main, i.e., the low band signal êlb(k

′) is shifted in the frequency domain by ΩM

making a re-use of the original low band excitation signal possible. The factor ζMTD

controls the power correction of the wideband excitation signal.

The frequency ΩM can be chosen to be fixed, e.g., half of the sampling frequency or
set according to the pitch frequency. The latter ensures that the harmonic structure
of the excitation signal is maintained.

Pitch Scaling

Pitch scaling implies a doubling of the pitch frequency realized by a downsampling of
factor two and subsequent time stretching of the low band excitation signal. During
voiced periods, the generated pitch doubled signal contains tonal components at even
integer multiples of the original pitch frequency. After pitch doubling, the signal is
highpass filtered and added to a delayed version of the original low band excitation
signal in order to obtain the wideband excitation signal.

4.1.3 Estimation of the Spectral Envelope

A very crucial part of any ABWE algorithm is the estimation of the spectral wideband
envelope. Therefore, it is exploited that a typical speech vocabulary consists only of a
limited number of sounds. The estimation of these sounds or of the respective feature
vectors awb of dimension bwb which describe the spectral envelopes is performed
using a statistical model that has to be trained in advance. The model is based on
an HMM containing Nbwe different states. Each state Si is assigned to a typical
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speech sound which corresponds to a specific vector âiwb with 1 ≤ i ≤ Nbwe. In a
training phase, a Vector Quantizer (VQ)1 and a large training set of wideband speech
are applied in order to generate Nbwe different vectors âiwb such that the number of
states corresponds to the number of codebook entries. In the real application, the
objective is to estimate the state Si(λ) or coefficient vector âiwb(λ) of the current frame
λ using only the available low band speech signal slb(k

′). Therefore, an observation
vector xlb is extracted from the low band signal containing parameters which should
deliver maximum information about the current state Si(λ). Possible parameters for
this purpose are, e.g., the autocorrelation function, the Zero Crossing Rate (ZCR),
the frame energy or the local kurtosis [JV04].

In the estimation process, the link between observation xlb and the state sequence (en-
velope vector awb) is made by an HMM. The required statistical properties between
both vectors have to be measured offline in terms of the state Probability Mass Func-
tion (PMF) P (Si), the observation Probability Density Function (PDF) p(xlb|Si),
the emission PDF p(awb|Si) as well as the transition PMF P (Si1

(λ+ 1)|Si2
(λ)) with

i1, i2 ∈ {1, ..., Nbwe}. While the vector codebook implicitly gives information about
the emission probability, the state and transition probabilities have to be measured
from the wideband speech data considering the true state transitions. The obser-
vation PDF p(xlb|Si) is approximated using Gaussian Mixture Model (GMM) tech-
niques [RR95].

Let Xlb = (xlb(0), ..., xlb(λ)) be a sequence of observation vectors from the low band
of frames 0 to λ. The final estimate of the vector awb representing the spectral
wideband envelope is derived in the Minimum Mean Square Error (MMSE) sense
by minimizing the conditional expectation E{||awb − âwb||2|Xlb} where âwb is the
respective estimate. The solution yields [JV03a]:

âwb = E{awb|Xlb}
=

∫
R
bwb

awbp (awb|Xlb) dawb

=

∫
R
bwb

awb

Nbwe∑
i=1

p (awb,Si|Xlb) dawb

=

∫
R
bwb

awb

Nbwe∑
i=1

p (awb|Si,xlb)P (Si|Xlb) dawb

=

Nbwe∑
i=1

(
P (Si|Xlb)

∫
R
bwb

awbp (awb|Si,xlb) dawb

)

=

Nbwe∑
i=1

P (Si|Xlb) â
i
wb, (4.3)

which essentially is a weighted sum over the Nbwe centroids of the codebook. The
PMF P (Si|Xlb) can be determined using Bayes’ theorem [Bay63] and the assumption

1The codebook entries âiwb can be generated using, e.g., the well-known LBG algorithm [LBG80].
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that the HMM is of first order [JV03a]. The vector âwb is estimated in each frame
and used to build the analysis and synthesis filters according to Fig. 4.1.

In the following section, techniques of the afore presented ABWE are used in order
to support the noise reduction in the high band.

4.2 Wideband Noise Reduction

Only very few publications can be found in literature so far which explicitly cover
wideband noise reduction. As mentioned before, almost all known approaches pro-
cess the low band signal (50 Hz – 4 kHz) and the components of the high band sig-
nal (4 – 7 kHz) in the same way. In this thesis, a new wideband (50 Hz – 7 kHz) speech
enhancement system is presented that uses techniques known from ABWE in order to
improve the spectral estimation process. Therefore, statistical dependencies between
the low band and the high band are exploited. Conventional noise suppression is
used in the low band, while a novel approach is applied to the high band. Parameters
from the processed (enhanced) low band signal are extracted and used to estimate
subband energies of the high band. The resulting weighting gains determined from
these energy estimates are adaptively combined with conventional gains obtained in
addition for the high band. Thereby, the enhanced low band signal can be re-used in
order to improve the results of a conventional noise suppression technique in the high
band. In the following presentation of the proposed system, a sampling frequency of
fs = 16 kHz is assumed for the noisy input signal y(k′). However, the approach can
also be adapted to other sampling frequencies.

4.2.1 System Overview

A simplified block diagram of the proposed novel wideband speech enhancement sys-
tem is depicted in Fig. 4.2. In analogy to Chapters 2 and 3, it is assumed that
the noisy input signal y(k′) consists of the clean speech signal s(k′) and the additive
noise signal n(k′) according to y(k′) = s(k′) + n(k′). In order to suppress the noise
signal, different processing schemes are applied in the low band and the high band.
Therefore, a 2-channel FIR Quadrature Mirror Filter (QMF) bank with critical sam-
pling and perfect reconstruction is used to split the wideband signal y(k′) into the
low band and the high band signal. The frequency responses of the FIR low-pass
and high-pass filters (filter length: 64) used within the QMF bank are illustrated
in Fig. 4.3. Due to the decomposition, individual analysis-synthesis structures and
different algorithms can be used in each band making it possible to re-use existing
low band noise reduction systems. After downsampling the low-pass and high-pass
filtered signals by a factor of 2, a conventional noise reduction technique is applied to
the low band signal ylb(k). In the high band, the noisy signal yhb(k) is enhanced by
using additional information from the improved low band signal. For this, parameters
from the vector Ŝlb, consisting of the DFT coefficients from the enhanced low band
signal, are extracted as will be explained in the next section.
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Figure 4.2: Wideband noise reduction using different techniques in low band and high band
exploiting spectral dependencies.

In both bands, the noise suppression is performed in the frequency domain. Therefore,
yxx(k) is segmented into overlapping frames of length LF, where the index ‘xx’ denotes
either the low band ‘lb’ or the high band ‘hb’. After windowing and zero-padding, the
Fast Fourier Transform (FFT) of length MF is applied to these frames. The spectral
coefficients of the noisy input signal at frame λ and frequency bin μ are given by:

Yxx(λ, μ) = Sxx(λ, μ) +Nxx(λ, μ), (4.4)

where Sxx(λ, μ) and Nxx(λ, μ) represent the spectral DFT coefficients of the speech
and the noise signal of the low band and the high band, respectively. For the sake of
brevity, the frame index λ is omitted in the sequel.

The enhanced signals ŝlb(k) and ŝhb(k) are upsampled and interpolated by low-pass
and high-pass filtering. Finally, both signals are added in order to obtain the enhanced
wideband signal ŝ(k′).

4.2.2 Joint Noise Reduction in the High Band

The main energy of a speech signal is usually located in the frequency range between
500 Hz and 3 kHz [VM06]. Assuming that the energy of speech signals declines
stronger than the energy of noise signals beyond 3 kHz, the SNR in the low band is
usually significantly higher than in the high band. Table 4.1 shows some quantitative
examples of how much the SNR in the low band is higher than in the high band for
different speakers and different noise environments. It can be seen that in most cases
the SNR significantly degrades in the high band which leads to an imprecise noise
reduction and fluctuating weighting gains if solely a conventional noise suppression
technique is applied at higher frequencies. To counteract this problem, a joint noise
reduction method is presented in the following for the high band signal which makes
use of the spectral dependencies between low band and high band.

Figure 4.4 shows the basic principle of the combined noise suppression scheme in the
high band. The analysis and synthesis structures remain the same as for the low band
signal. After the transformation into the frequency domain, two separate noise sup-
pression modules are applied to the noisy high band spectrum Yhb(λ) finally resulting
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Figure 4.3: Frequency responses of applied FIR QMF bank (filter length: 64, fs = 16 kHz).

in the calculation of the high band weighting gains Ghb(μ
′) where μ′ represents the

frequency index in a subsampled frequency domain as will be explained later.

As depicted in Fig. 4.4, a first (conventional) and a second (novel) gain calculation
is performed for the high band spectrum. For the first gain calculation any ‘regular’
noise reduction technique can be used, e.g., the proposed Kalman filter approach
of Chapter 3 or any other statistical weighting rule like [LO79], [EM84] or [LV05],
including noise power estimation and SNR estimation, cf. Chapter 2. As the resulting
weighting gains Gconv

hb (μ) exhibit a high variance over time, they are further processed
in order to limit temporal fluctuations. In this post processing stage, the frequency
resolution of Gconv

hb (μ) is decreased from MF to M ′
F by combining adjacent frequency

bins to frequency bands using 50 %-overlapping Hann windows of the same length.

Average Deviation of the Low Band SNR
Noise Type from the High Band SNR for

Male Speakers Female Speakers

Cockpit +15.39 dB +13.98 dB
Babble +0.55 dB -0.86 dB
Factory 1 +12.55 dB +11.14 dB
Buccaneer +15.64 dB +14.23 dB
WGN +26.81 dB +25.39 dB

Table 4.1: Average SNR deviation of the low band from the high band for different noise
types. For the measurement, six speech signals (three male and three female
speakers) from the NTT database [NC94] were used. The noise signals have
been taken from the NOISEX-92 database [VS93].
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In the upper branch of Fig. 4.4, artificial bandwidth extension techniques are used
to perform the second gain calculation (see next section for details). All required
processing steps are therefore performed at the reduced frequency resolution M ′

F as
well. The resulting weighting gains Gbwe

hb (μ′) are adaptively combined with Gconv
hb (μ′)

according to:

Ghb(μ
′) = αhb(μ

′) ·Gbwe
hb (μ′) + (1− αhb(μ

′)) ·Gconv
hb (μ′), (4.5)

where 0 ≤ μ′ ≤ M ′
F−1. The cross-fading factor αhb(μ

′) ∈ [0, 1] is frame and frequency-
dependent as will be shown in Sec. 4.2.4. At the end, the frequency resolution of
the high band weighting gains Ghb(μ

′) is expanded back from M ′
F to the original

resolution MF using overlap-add of the scaled Hann windows which have been used
before. A spectral weighting of the noisy high band coefficients Yhb(μ) with the
resulting weighting gains Ghb(μ) yields an estimate Ŝhb(μ) of the clean high band
DFT coefficients Shb(μ):

Ŝhb(μ) = Yhb(μ) ·Ghb(μ). (4.6)

Finally, an Inverse Fast Fourier Transform (IFFT) and overlap-add are applied to
obtain the enhanced signal ŝhb(k) in the time domain.

4.2.3 Noise Reduction Exploiting Spectral Dependencies

In order to exploit the dependencies in the frequency domain between low band and
high band, techniques known from ABWE are applied for the second gain calculation
in Fig. 4.4. The main principle that is used here for the ABWE is partly included
in [GV07] and based on the approach which is presented in Sec. 4.1.

In this realization, the observation vector2 xdlb from the low band consists of
NC Mel-Frequency Cepstral Coefficients (MFCCs) [RJ93] and the Zero Crossing

2In contrast to Sec. 4.1, it is assumed here that only the observation vector xdlb of the disturbed
low band signal is available although noise reduction is applied. The degree of distortion is, of course,
SNR-dependent.
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Rate (ZCR) [RS78] of the low band signal. Both parameters provide high infor-
mation on the spectral envelope of the high band signal [JV04] which is represented
in Fig. 4.4 by the feature vector ahb. Other parameters for the purpose of noise reduc-
tion are investigated in [HEGV10]. In contrast to the approach in Sec. 4.1, only the
spectral envelope of the high band is required in the following and not the envelope
of the full wideband signal as indicated by awb in Fig. 4.1.

Given the observation vector xdlb of the low band, the estimation process described
in Sec. 4.1.3 is applied in order to estimate the feature vector ahb. Therefore, the
HMM comprises Nbwe states and MGM mixture components are used to approximate
the observation probabilities p(xlb|Si) using GMMs.

The estimated feature vector âhb contains the M ′
F logarithmic subband energies of

the high band signal according to:

âhb =
(
log10

(
|Ŝhb(0)|2

)
, ... , log10

(
|Ŝhb(M

′
F − 1)|2

))
, (4.7)

where Ŝhb(μ
′) represents the estimated spectral speech coefficient of the μ′-th subband.

Once the instantaneous energies |Ŝhb(μ
′)|2 of the M ′

F subbands are determined, they
are used to estimate the short-time noise energies in the high band as follows:

|N̂hb(μ
′)|2 = max

(
|Yhb(μ

′)|2 − |Ŝhb(μ
′)|2, 0

)
. (4.8)

Finally, the a posteriori SNR γhb(μ
′) and a priori SNR ξhb(μ

′) of the high band can
be estimated according to:

γ̂hb(μ
′) =

|Yhb(μ
′)|2

|N̂hb(μ′)|2 and ξ̂hb(μ
′) =

|Ŝhb(μ
′)|2

|N̂hb(μ′)|2 . (4.9)

Both SNR quantities are required in order to calculate the weighting gains Gbwe
hb (μ′)

based on a conventional noise reduction algorithm.

4.2.4 Cross-Fading Factor

As mentioned before, the two weighting gains Gconv
hb (μ′) and Gbwe

hb (μ′) are adaptively
combined using the cross-fading factor αhb(μ

′), cf. Eq. 4.5. In the following, the
reference cross-fading factor αref

hb (μ
′) is defined as:

αref
hb (μ

′) =

(
Gopt

hb (μ′)−Gconv
hb (μ′)

)2(
Gopt

hb (μ′)−Gconv
hb (μ′)

)2
+
(
Gopt

hb (μ′)−Gbwe
hb (μ′)

)2 , (4.10)

where Gopt
hb (μ′) represents the optimum weighting gain which could in theory (or

by a dedicated simulation setup) be determined from the clean speech and noise
signal according to the optimum a posteriori SNR γopt

hb (μ′) and optimum a priori

SNR ξopthb (μ′):

γopt
hb (μ′) =

|Yhb(μ
′)|2

|Nhb(μ′)|2 and ξopthb (μ′) =
|Shb(μ

′)|2
|Nhb(μ′)|2 , (4.11)
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which are also determined at the reduced frequency resolution M ′
F by combining

adjacent frequency bins as described before. If the conventional (first) noise sup-
pression technique in Fig. 4.4 performs better than the ABWE approach, i.e., if(
Gopt

hb −Gconv
hb

)2
<
(
Gopt

hb −Gbwe
hb

)2
, αref

hb in Eq. 4.10 tends to smaller values leading
to a stronger weighting of Gconv

hb in Eq. 4.5 and vice versa. Moreover, the extreme
cases are correctly mapped as follows:

Gopt
hb −Gconv

hb = 0 ⇒ αref
hb = 0

Gopt
hb −Gbwe

hb = 0 ⇒ αref
hb = 1

Gopt
hb −Gconv

hb = Gopt
hb −Gbwe

hb ⇒ αref
hb = 0.5

In a realistic scenario αref
hb can not be applied as Gopt

hb is not available. In order to
estimate the reference cross-fading factor, first αref

hb is recorded in an offline train-
ing process for every frame λ and every subband μ′ together with the respective
subband SNR ξopthb (μ′) of the high band and the averaged SNR ξ̄optlb of the low band:

ξ̄optlb =
1

MF

MF−1∑
μ=0

|Slb(μ)|2
|Nlb(μ)|2 . (4.12)

Based on representative training data, a look-up table for the estimation of αref
hb is

generated for each subband. Therefore, ξopthb (μ′) and ξ̄optlb are quantized (e.g., 1 dB
step size) and the associated values for αref

hb (μ
′) are averaged within the quantization

levels. At the end, a final look-up table provides one value ᾱhb(μ
′) for each quantized

combination of ξopthb (μ′) and ξ̄optlb . A typical example of this two-dimensional look-up
table can be seen in Fig. 4.5. The figure demonstrates a strong correlation between the
averaged factor ᾱhb and the two SNR quantities showing that the ABWE approach
in Eq. 4.5 is preferred with a decreasing high band SNR. Moreover, in the high band
SNR range −15 dB ≤ ξhb ≤ 0 dB, it can be seen that the cross-fading factor ᾱhb

becomes larger for higher low band SNR values ξ̄lb showing that the ABWE (trained
with clean speech) performs better the higher the input SNR is in the low band.

In a real application, ξopthb and ξ̄optlb are not available to estimate the reference cross-
fading factor αref

hb . Here, the respective SNR estimates of the conventional noise
suppression technique in the low band and high band are utilized to determine ᾱlb(μ

′)
using M ′

F different pre-trained look-up tables.

The look-up tables implicitly show the existence of spectral dependencies between low
band and high band in noisy environments as is apparent from the different colored
areas in Fig. 4.5. However, in order to quantify the amount of mutual information
and to investigate the benefit of noise suppression before determining the observation
vector xdlb, the subject is approached from an information theoretic point of view in
the following.
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Figure 4.5: Visualization example of look-up table used to estimate αref
hb in subband μ′ = 0

using M ′
F = 24.

4.3 Mutual Information in Noisy Environments

In this section, the mutual information I(xlb;ahb) between the observation vector xlb

from the clean low band signal and the feature vector ahb from the high band signal
is analyzed and a bound for the estimation performance in noisy environments is
formulated. The mutual information I(xlb;ahb) describes the linear and non-linear
dependencies between xlb and ahb, i.e., a high mutual information between the two
vectors is desirable in order to obtain a good estimate of ahb. In the sequel, real
measurements show that the mutual information between the low and high bands is
significantly higher if noise reduction is applied to the disturbed low band signal prior
to ABWE.

The mutual information between frequency bands in speech is examined, e.g., in
[NEH00], [NGAK02] and [JV02]. Following the approach of [Ber98], an upper bound
on the quality of ABWE techniques is derived in [JV02] for the case that the clean low
band signal is available. However, in a realistic scenario, it is likely that the speech
signal is disturbed by ambient noise. Therefore, the derivation of the bound in [JV02]
is extended in this thesis considering the signal-flow model shown in Fig. 4.6a). The
blb-dimensional observation vector xlb is assumed to be degraded by the additive
noise vector nlb of dimension blb as well. Afterwards, ABWE is performed based
on the resulting noisy observation vector xdlb. The ABWE process is described
by the function fbwe(·), yielding the estimated feature vector âhb of dimension bhb
according to:

âhb = fbwe (xdlb) . (4.13)

The estimation error of the ABWE process is defined as bhb-dimensional vector nhb

and states the difference between ahb and âhb:

nhb = ahb − âhb. (4.14)
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Figure 4.6: Artificial bandwidth extension in noisy environments based on two memoryless
channels: a) signal-flow model and b) mutual information between xlb and ahb.

In the following, a lower bound for the mutual information between xlb and ahb is
derived. Following the concept in [JV02], it is assumed that the ABWE system uses
a memoryless estimator fbwe(·) which is not relying on information from previous or
subsequent frames.

4.3.1 Performance Bound

In order to derive a lower bound for the mutual information I(xlb;ahb), the process
of the disturbances by nlb and nhb including the ABWE estimation is modeled by
two independent memoryless, additive noisy channels. The resulting information
theoretic dependencies between xlb, xdlb and ahb are depicted in Fig. 4.6b) based on
(conditional) differential entropies h(·). The mutual information I(xlb;ahb) between
xlb and ahb can be expressed as:

I(xlb;ahb) = I(xdlb;ahb)− h(xdlb|xlb)

= h(ahb)− h(ahb|xdlb)− h(xdlb|xlb), (4.15)

where I(xdlb;ahb) represents the mutual information between xdlb and ahb, h(ahb)
the differential entropy of ahb, h(ahb|xdlb) the conditional differential entropy of ahb
when xdlb is given and h(xdlb|xlb) the conditional differential entropy of xdlb when
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xlb is known. The latter can further be simplified to [CT06]:

h(xdlb|xlb) = h(xlb + nlb|xlb)

= h(nlb|xlb)

= h(nlb). (4.16)

The disturbance of the observation vector xlb by nlb can be interpreted as transmis-
sion over blb different channels in parallel. Assuming a fixed variance for the obser-
vation vector, an upper bound for the entropy h(nlb) is given for the case that all
channels are statistically independent(a) Additive White Gaussian Noise (AWGN)(b)

channels with same variances(c) σ2
nlb,j

= σ2
nlb

for 0 ≤ j < blb [CT06]:

h(nlb) = h(nlb,0, nlb,1, ... , nlb,blb−1)

(a)
=

blb−1∑
j=0

h(nlb,j)

(b)

≤
blb−1∑
j=0

1

2
log2(2πeσ

2
nlb,j

)

(c)
= blb log2

(√
2πeσ2

nlb

)
, (4.17)

where e states the Euler number. The unit of the (differential) entropies and mutual
information in this thesis is bits/vector. Under the assumption that the observation
vector xlb consists of the first blb cepstral coefficients3 clb,j [MGj76] of the clean low
band signal slb(k), i.e.:

xlb,j =

{
1√
2
clb,0 for j = 0,

clb,j for 1 ≤ j < blb,
(4.18)

the noise vector nlb is related to the Log Spectral Distortion (LSD) between the
spectral envelopes of the clean low band signal slb(k) and the disturbed low band
signal ylb(k), represented by the vectors xlb and xdlb, respectively. The LSD mea-
sure dLSDlb correlates well with the subjective speech quality and is defined as in [JV02]:

dLSDlb =

√
2 · 10

loge(10)

√√√√√E

⎧⎨
⎩1

2
(clb,0 − cdlb,0)

2
+

∞∑
j=1

(clb,j − cdlb,j)
2

⎫⎬
⎭, (4.19)

where cdlb,j represents the j-th cepstral coefficient of ylb included in xdlb. The unit
of dLSDlb is dB. A lower bound for dLSDlb is given by:

dLSDlb ≥
√
2 · 10

loge(10)

√
E {|nlb|2} ≥

√
2 · 10

loge(10)

√
blb · σ2

nlb
, (4.20)

3It is shown in [JV04] that cepstral coefficients also provide high information on the spectral
envelope of the missing frequency band.
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which can be re-arranged to:

√
σ2
nlb

≤ dLSDlb · loge(10)√
2 · 10 · √blb

. (4.21)

Using Ineqs. 4.21 and 4.17 and Eq. 4.16, the mutual information I(xlb;ahb) in Eq. 4.15
is bounded by:

I(xlb;ahb) ≥ h(ahb)− h(ahb|xdlb)︸ ︷︷ ︸
I(xdlb;ahb)

−blb log2

(√
πe loge(10)

10 · √blb
dLSDlb

)
. (4.22)

The mutual information I(xdlb;ahb) incorporates estimation errors of the artificial
bandwidth extension which are represented in Fig. 4.6 by nhb. An expression for
I(xdlb;ahb) is derived in [JV02] using very similar calculus as above. Assuming that
the upper frequency band is represented in ahb by cepstral coefficients of the high
band as well, the conditional entropy h(ahb|xdlb) is also bounded by the LSD dLSDhb

of the high band according to:

h(ahb|xdlb) = h(nhb) ≤ bhb log2

(√
πe loge(10)

10 · √bhb
dLSDhb

)
, (4.23)

finally leading to the following lower bound for the mutual information between xlb

and ahb:

I(xlb;ahb) ≥ h(ahb)−bhb log2

(√
πe loge(10)

10 · √bhb
dLSDhb

)
−blb log2

(√
πe loge(10)

10 · √blb
dLSDlb

)
.

(4.24)

Estimation errors occurring in the ABWE process are considered in the first subtra-
hend and the information loss due to disturbances of the low band signal is expressed
by the second subtrahend. Knowing the distortion caused by a specific ABWE esti-
mator as well as the degradation of the narrowband signal, the mutual information
which is at least included in xlb and ahb is given by Ineq. 4.24.

In the following, two scenarios are considered in which ABWE in noisy environments
is analyzed based on real entropy measurements.

4.3.2 Measurements

In this section, the performance bound is evaluated based on real speech data. In
addition, the influence of low band noise reduction prior to ABWE is investigated.
Therefore, the proposed Kalman filter solution based on the SNR-dependent MMSE
estimator (see Sec. 3.2.3.3) is applied to the noisy input signal ylb(k) yielding the
speech estimate ŝlb(k). In order to compare the cases before and after noise sup-
pression, the observation vector xdlb is extracted from both, the noisy low band
signal ylb(k) and the enhanced signal ŝlb(k).
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Two scenarios are considered in the following characterized by the choice of parameters
used for the observation and feature vectors. In Scenario I, the theoretical bound
of Ineq. 4.24 is analyzed according to the measured differential entropy h(aIhb) and
the LSD measures dLSDlb and dLSDhb . With respect to the derivation of this lower bound,
cepstral coefficients are chosen as parameters for the low band as well as for the high
band according to:

Scenario I Parameter(s) Dimension

Observation vector xI
lb Cepstral coefficients blb = 10

Observation vector xI
dlb Cepstral coefficients blb = 10

Feature vector aIhb Cepstral coefficients bhb = 10

In Scenario II, the effective mutual information I(xII
dlb;a

II
hb) which can be achieved in

the presented wideband noise suppression system of Sec. 4.2 by ABWE is investigated
and its dependency on the input SNR is shown. In order to get results which can
be transferred to the novel system, the same parameters and dimensions as used in
the final implementation of the proposed system are applied for the observation and
feature vectors as follows:

Scenario II Parameter(s) Dimension

Observation vector xII
lb

Mel frequency cepstral coefficients
blb = 14

+ zero crossing rate

Observation vector xII
dlb

Mel frequency cepstral coefficients
blb = 14

+ zero crossing rate

Feature vector aIIhb Logarithmic subband energies bhb = 12

The measurements of h(aIhb), h(aIIhb) and I(xII
dlb;a

II
hb), which are required in

Scenarios I and II are carried out by using the well-known k-nearest neighbor algo-
rithm [KL87] to estimate the necessary PDFs [CT06]. This algorithm is data efficient,
adaptive and achieves minimal bias. The number k here decides how many neighbors
influence the final classification. In the sequel, the results for the two scenarios are
presented using k = 1.

For the evaluation, about 16 minutes of speech taken from the NTT speech
database [NC94] (sampling frequency fs =16 kHz) are disturbed by additive White
Gaussian Noise (WGN)4 at different SNR values. The wideband signals are split into
the respective low band and high band part using the FIR filters of Fig. 4.3 before
the signals are downsampled by a factor of 2. In the simulation setup, the speech
and noise signals are both available and can therefore be filtered and downsampled

4Similar results can be achieved with other noise signals.
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Log spectral distortion d̂LSDlb

Input SNR
-15 dB 0 dB 15 dB

Without noise reduction 4.627 dB 2.529 dB 1.083 dB
With noise reduction 2.047 dB 1.115 dB 0.944 dB

Table 4.2: Averaged log spectral distortion measures d̂LSDlb of disturbed low band signal
before and after noise suppression.

separately. Hence, clean and noisy versions of low band as well as high band signals
are accessible. Based on these signals, the observation vectors xlb and xdlb as well
as the feature vector ahb are extracted based on 20 ms non-overlapping frames con-
tributing to speech activity5. In total, the investigation in this section relies on about
21000 speech frames.

Scenario I (Narrowband Noise Reduction)

In order to apply Ineq. 4.24, this scenario considers the use of cepstral coefficients as
parameters within the observation and feature vectors. The LSD dLSDlb of the low band
as well as the differential entropy h(aIhb) are determined from real data. Therefore,
the low band speech signal slb(k) is disturbed by additive WGN at input SNR values
of -15 dB, 0 dB and 15 dB. It has to be mentioned that the disturbance of slb(k) by
additive WGN does not necessarily mean that the elements of the vector nlb are
Gaussian distributed as well. However, in any case, Ineq. 4.24 is valid as the entropy
of a scalar signal with variance σ2

nlb
is upper bounded by the entropy of a normally

distributed variable with the same variance [CT06]. Table 4.2 shows the averaged

LSD values d̂LSDlb measured before and after noise suppression is applied6. Moreover,
the differential entropy h(aIhb) is measured and yields h(aIhb) ≈ 9.533 bits/vector
in this setup. Based on these measurements, Fig. 4.7 depicts the theoretical lower
bounds for the mutual information I(xI

lb;a
I
hb) according to Ineq. 4.24 while varying

dLSDhb from 1 dB to 6 dB7. The figure clearly shows the dependency of I(xI
lb;a

I
hb) on

the two distortion measures: the lower d̂LSDlb or dLSDhb the higher the theoretical bound
and vice versa. In addition, the advantages of applying noise suppression prior to
ABWE can be seen. According to Tab. 4.2, noise reduction achieves a reduction
of the LSD measure d̂LSDlb leading to a higher bound I(xI

lb;a
I
hb) compared to the

case when no noise reduction is applied. Figure 4.7 illustrates this behavior for the
three investigated SNR values where the discrepancy is especially high for -15 dB
input SNR.

5A simple power constrained threshold is applied to the clean speech signal for Voice Activity

Detection (VAD).
6Please note that d̂LSDlb is only an estimate of dLSDlb as the sum in Eq. 4.19 is truncated after blb

elements.
7According to the literature, speech quality can be classified as ‘transparent’ for LSD values less

than 1 dB [JV02]. Please note that, in general, dLSDhb can not be adjusted for a specific ABWE
realization.
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Figure 4.7: Theoretical lower bound according to Ineq. 4.24 for the mutual informa-
tion I(xI

lb;a
I
hb) between high and low band vectors depending on the log spec-

tral distortions dLSDlb and dLSDhb .

Scenario II (Wideband Noise Reduction Supported by ABWE)

In this scenario, the reader’s attention is drawn back to the proposed wideband speech
enhancement system which is presented in Sec. 4.2. The system exploits mutual in-
formation between the enhanced low band signal ŝlb(k) and the high band speech sig-
nal shb(k) in order to support a conventional high band noise suppression by ABWE
techniques. It seems obvious that the mutual information between the disturbed ob-
servation vector xII

dlb, which is available in the system, and the feature vector aIIhb
is depending on the degree of distortion of ŝlb(k). Although this fact is implicitly
already incorporated in the look-up tables (cf. Fig. 4.5), which are used to determine
the cross-fading factors ᾱhb, it is also confirmed by real mutual information measure-
ments in this scenario. Therefore, the mutual information I(xII

dlb;a
II
hb) is measured

in dependence of the input SNR and whether noise suppression is applied to the low
band signal or not. For the evaluation purpose, the feature vector aIIhb is extracted
directly from the extension band of the original wideband signal and not from the
estimated signal after ABWE. The results are shown in Fig. 4.8 for input SNR values
varying from -20 dB to 35 dB. It can be seen that the mutual information is continu-
ously increasing with the input SNR and finally converges to I(xII

lb;a
II
hb), i.e., the case

where xII
dlb = xII

lb or nlb = 0. In addition, the figure also motivates the application
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Figure 4.8: Measured amount of mutual information I(xII
dlb;a

II
hb) between high and low

band as a function of the input SNR.

of noise suppression before ABWE is performed: the mutual information with prior
noise reduction is significantly higher than without noise reduction.

In total, the investigations in this section quantitatively show the existence of depen-
dencies between low and high band even if the low band signal is severely disturbed
by additive noise. In order to exploit this mutual information, the application of noise
suppression to the low band signal is advantageous by all means before estimating
the high band parameters.

4.4 Performance Results

After demonstrating the theoretical functionality of artificial bandwidth extension
also in highly disturbed noisy environments, the entire wideband noise reduction
system which is presented in Sec. 4.2 is investigated in this section. In principle, any
noise reduction technique can be applied within the proposed system to perform the
suppression in the low band and to estimate the conventional (first) weighting gains
Gconv

hb in the high band, see Figs. 4.2 and 4.4. In the following, the Wiener filter
[LO79] as well as the proposed Kalman filter (KF) approach of Sec. 3.2.3.3 are used
to enhance the low band signal and to compute Gconv

hb in the high band.
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In order to determine the (second) ABWE weighting gains Gbwe
hb (μ′) in the upper

branch of Fig. 4.4, the well-known Wiener filter approach [LO79] is applied according
to:

Gbwe
hb (μ′) =

ξ̂hb(μ
′)

ξ̂hb(μ′) + 1
, (4.25)

using the a priori SNR estimates ξ̂hb(μ
′) obtained by ABWE techniques, cf. Eq. 4.9.

In the investigation, the novel wideband noise suppression technique with the use of
αref
hb and ᾱ is compared with systems, where only the Wiener filter [LO79] or only the

proposed Kalman filter (KF) approach of Sec. 3.2.3.3 are separately applied to the low
band and the entire high band signal. Moreover, an upper bound for the performance
in the high band is given by utilizing only the optimum weighting gains Gopt

hb at high

frequencies. The weighting gains Gopt
hb are therefore also determined by using the

Wiener filter based on ξopthb according to Eq. 4.11.

In order to achieve a fair comparison, the same analysis and synthesis structure is
applied to all techniques including low-pass and high-pass filtering, downsampling
and FFT transformation according to Fig. 4.2. In total, the following six different
setups are investigated where Setups � and � are based on the new wideband speech
enhancement system as presented in Sec. 4.2:

Setup Low Band Noise Reduction High Band Noise Reduction

� Wiener filter Wiener filter
� Proposed Kalman filter Wiener filter
� Proposed Kalman filter Proposed Kalman filter

� Proposed Kalman filter
Gconv

hb =̂ Proposed Kalman filter
Gbwe

hb =̂ Wiener filter
αhb = αref

hb

� Proposed Kalman filter
Gconv

hb =̂ Proposed Kalman filter
Gbwe

hb =̂ Wiener filter
αhb = ᾱhb

� Proposed Kalman filter Optimum weighting gains Gopt
hb

In Setup �, the reference cross-fading factor αref
hb , which is defined in Eq. 4.10, is used

to perform the fading between Gconv
hb and Gbwe

hb . This shows the maximum quality
which can be achieved by Setup �, where αref

hb is estimated using trained look-up
tables.

The parameters used in the simulations are listed in Tab. 4.3. Although the sampling
frequency of the input signal y(k′) is fs = 16 kHz, the noise reduction techniques are
applied to the filtered and downsampled signals ylb(k) and yhb(k). Therefore, frame
and FFT length refer to signals which are sampled at fs = 8 kHz. For the Wiener
filter and the proposed Kalman filter solution the same settings as in Chapter 3 are
applied.
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Parameter Settings

Sampling frequency 16 kHz
Frame length LF 160 (=̂20 ms due to downsampling)
FFT length MF 256 (including zero-padding)
Frame overlap 75% (Hann window)
Input SNR -10 dB ... 35 dB (step size: 5 dB)
QMF filter length 64
Number subbands M ′

F 24
Number MFCCs NC 13
Codebook size Nbwe 128 (training based on 1.5 h speech)
GMM Mixture Components MGM 8

Table 4.3: System settings.

According to Sec. 4.2, the observation vector xdlb for the ABWE consists of
NC = 13 MFCCs and the ZCR of the low band signal ŝlb whereas the feature vec-
tor ahb comprises bhb = M ′

F/2 = 12 logarithmic subband energies of the high band.
For the training of the HMM about 1.5 hours of clean speech are taken randomly
from the NTT speech database [NC94], including different male and female speakers.
In the system, the clean observation vector xlb is not available and the disturbed
vector xdlb extracted from the enhanced low band signal ŝlb(k) is used instead, see
Fig. 4.4. The look-up tables required for the estimation of αref

hb are generated based
on 10 minutes of clean speech from the NTT database disturbed by WGN at different
input SNR values. Here again, white Gaussian noise is used in the training process
in order to become as independent of a specific noise type as possible.

For the investigations, the same instrumental measurements as in Chapter 3 are ap-
plied, namely the segmental noise and speech attenuation as well as the segmental
speech SNR (see Appendix D). For the instrumental evaluation of the different noise
reduction schemes, five speech signals from the NTT speech database are each de-
graded by six different noise types (f16, babble, car, factory1, buccaneer, white),
taken from the NOISEX-92 database [VS93]. Among the five speech signals, there
are three sequences from male and two from female speakers, each with a length of 8
seconds. The speech signals used for the evaluation are not included in the training
data for the HMM and the look-up tables.

Figure 4.9 depicts the averaged results for the difference between noise and speech
attenuation plotted over the input SNR. Figure 4.10 illustrates the segmental speech
SNR dependent on the noise attenuation with the input SNR as control variable. The
points of best performance are placed in the upper right corner of the figure.

At first, the instrumental measurements demonstrate once again the advantage of
the novel Kalman filter system presented in Chapter 3 compared to the Wiener filter
solution. Especially regarding the noise reduction in the low band signal (Setup �

versus Setup �), the results show a considerable improvement due to the model-based
approach in both figures. As the energy of speech and noise signals usually decays
towards higher frequency, the advantage of the Kalman filter system becomes smaller
in the high band (Setup � versus Setup �), but is still noticeable. The instrumental
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measurements show that the performance can further be improved by using the new
wideband speech enhancement system as proposed in this chapter. The additional
use of the artificial bandwidth extension in the high band yields consistently better
results compared to Setups � – �. Especially at low input SNR values, where mainly
the ABWE approach is used (see Fig. 4.5), the new method using αref

hb outperforms
the Kalman filter approach of Setup �. It can be seen in both figures that the perfor-
mance of the proposed method using αref

hb compared to ᾱhb slightly diverges in bad
SNR conditions whereas the results are very similar at higher SNR values. As it is
more difficult to obtain a precise SNR estimate in highly disturbed environments, this
divergence can be explained by SNR estimation errors which lead to a suboptimal
determination of the fading factors at low SNR values. Figures 4.9 and 4.10 also illus-
trate that the choice of the reference cross-fading factor αref

hb seems to be appropriate
especially in low SNR conditions as Setup � performs only slightly worse than the
‘optimal’ estimator given by Setup � and the usage of Gopt

hb . In particular, at very low
SNR values both curves are very close together. Informal listening tests confirmed
the instrumental measurements and showed that the occurrence of musical tones is
slightly reduced by the novel wideband noise suppression technique.

4.5 Conclusions

This chapter presents a new possibility to exploit spectral dependencies of speech
signals for the purpose of wideband speech enhancement. By using techniques known
from artificial bandwidth extension, the information of the enhanced low band signal
is utilized again in order to achieve a better speech quality in the high band. Instru-
mental measurements demonstrate the superiority of the novel approach compared
to ‘conventional’ wideband noise suppression techniques. The results are confirmed
by information theoretic considerations which show the existence of spectral depen-
dencies between the two bands already at very low input SNR values. The additional
complexity which is required by the ABWE varies and is mainly depending on the
number of HMM states and the number of GMM mixture components [Jax02].

It is demonstrated that the mutual information between low and high bands can
be significantly increased if noise suppression is applied prior to ABWE. A slightly
modified version of the proposed system can additionally be used if only the noisy
narrowband signal is available in order to perform a joint noise reduction of the
narrowband signal and artificial bandwidth extension.

Moreover, the approach is not strictly restricted to one low frequency band which
facilitates the noise suppression in one high frequency band. Using a modified training
process, the system can be adapted to support the speech enhancement in an arbitrary
frequency band or even individual frequency bin.



5

Additional Methods for Quality

Improvements

When dealing with noise reduction systems, there is always some kind of ‘trilemma’
between high noise suppression, low speech distortions and low occurrence of musical
noise. The Kalman filter approach which is presented in Chapter 3 provides a good
tradeoff between the first two properties. However, it also produces slightly more
musical tones compared to less aggressive algorithms. Therefore, two different musical
noise countermeasures are presented in the first part of this chapter which can be
applied in a postprocessing stage separately or even combined.

Conventional noise estimation algorithms usually rely on the assumption that noise
is stationary or quasi-stationary, see Sec. 2.3. However, realistic background noise
can be rapidly time-varying and highly non-stationary. In order to cope with such
strong variations when the noise is harmonic, the well-known Minimum Statistics
algorithm [Mar01] is modified in the second part of this chapter yielding a significantly
better performance compared to state-of-the-art noise estimation techniques.

5.1 Musical Noise Countermeasures

Noise suppression algorithms provide an improvement in terms of noise attenuation.
Nevertheless, they often affect the actual speech signal and produce some artificial,
randomly fluctuating type of noise, referred to as musical noise. The phenomenon of
musical tones can be explained by noise or Signal-to-Noise-Ratio (SNR) estimation
errors leading to spurious peaks in the processed spectrum. When the enhanced
signal is reconstructed in the time domain, these peaks result in short sinusoidals
whose frequencies vary from frame to frame. In particular, musical noise is very
annoying during speech pauses and in low SNR conditions when it is not masked by
the speech signal. As mentioned before, it is possible to gain control over the tradeoff
between noise attenuation and speech distortions, e.g., by using the proposed Kalman
filter system described in Chapter 3. However, this algorithm can not prevent the
generation of musical noise.
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In literature, a variety of different methods for reducing musical tones is proposed.
A lower limit to the a priori SNR is applied in [Cap94] resulting in a flooring of the
spectral weighting gains. The well-known decision-directed approach [EM84] prevents
the musical noise phenomenon by recursive smoothing over time the a priori SNR. A
time smoothed gain factor is proposed in [GNC99] in order to reduce the dynamics
of the weights. In [GTT98], a postprocessing method is presented to suppress the
annoying artifacts based on a speech/musical noise classification. Cepstral smoothing
is applied to the spectral weighting gains in [BGM07] and [GM10b] enabling a selective
smoothing of speech and musical tones.

In this chapter, two different approaches are presented that effectively suppress musi-
cal noise. The first technique performs adaptive spectral smoothing of the weighting
gains relying on a low SNR detector. In contrast, the second method is based on noise
suppression with adaptive frequency resolution where the resolution is lower during
speech pauses in order to reduce the tonality of the residual noise. Both musical noise
countermeasures can be applied to the spectral weighting gains in a postprocessing
stage either separately or sequentially combined in order to achieve an even higher
suppression. In the sequel, a sampling frequency of fs = 8 kHz is assumed for the
input signal. However, the techniques have also been implemented for signals sam-
pled at fs = 16 kHz and can simply be adapted to other sampling frequencies without
difficulties.

In the following, at first a brief overview of the proposed system is given. Afterwards,
the two postprocessing concepts are presented in detail. Finally, both techniques are
evaluated by means of instrumental measurements and auditory judgments.

5.1.1 System Overview

A simplified block diagram of the proposed noise reduction system including post-
processing of the spectral weighting gains is depicted in Fig. 5.1. The system can
be used for both proposed musical noise countermeasures in this section and uses
the same analysis/synthesis structures (i.e., segmentation, windowing, Fast Fourier
Transform (FFT), Inverse Fast Fourier Transform (IFFT) and overlap-add) as ap-
plied in Chapters 2–4 in order to transform the noisy input signal y(k) = s(k) + n(k)
into the frequency domain.

Both postprocessing techniques treat the estimation of the initial weighting gains as
black box and can therefore be applied to an arbitrary noise reduction system working
in the frequency domain. Possible estimators are, e.g., purely statistical weighting
rules as outlined in Chapter 2 or the model-based approach presented in Chapter 3.
While for the statistical estimators the weighting gains can often be determined di-
rectly from a specific weighting rule, the weighting gains for the proposed Kalman
filter technique in Chapter 3 are given by (see Fig. 3.5):

G(λ, μ) = GK(λ, μ) =
Ŝup(λ, μ)

Y (λ, μ)
, (5.1)
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Figure 5.1: Block diagram of noise reduction system with postprocessing.

where λ and μ denote frame and frequency indices, respectively. In order to reduce
the occurrence of musical tones, the actual weighting gains additionally run through
a postprocessing stage. Therefore, the spectral smoothing approach as well as the
adaptive bandwidth solution generate modified weighting gains Gp(λ, μ) relying on
the original weighting gains and the noisy input coefficients Y (λ, μ). The actual
spectral weighting is performed by multiplying the noisy spectrum Y (λ, μ) with the
new weighting gains Gp(λ, μ):

Ŝp(λ, μ) = Gp(λ, μ) · Y (λ, μ). (5.2)

Finally, the postfiltered spectrum Ŝp(λ, μ) is transformed back into the time domain
yielding the processed signal ŝp(k).

5.1.2 Spectral Smoothing of Weighting Gains

This section presents a novel Postfilter (PF) for the spectral weighting gains which
is capable of reducing musical noise in a simple but efficient way. It includes a ro-
bust detector for speech pauses and low SNR conditions and adaptively smoothes the
weighting gains over frequency based on soft-decisions. In addition to noise suppres-
sion [EV09], it is shown in [JSEV10] that the proposed postfilter concept can also be
applied for the purpose of speech dereverberation.

5.1.2.1 Concept

As mentioned before, the nature of the musical noise phenomenon can be described
as additional noise which arises in the processed signal due to estimation errors. Ran-
domly spaced spectral peaks occur in the weighting gains and are perceived as time-
varying tones in the output signal. The main idea of this PF concept is to adaptively
eliminate these peaks in low SNR conditions. Therefore, at first a reliable and ro-
bust detector for the respective low SNR regions is required which is presented in
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the following. Based on the results of this detector, spectral smoothing of the initial
magnitudes |G(λ, μ)| is performed.

Low SNR Detection

It turned out that the power ratio ψ(λ) between the processed speech Discrete Fourier
Transform (DFT) coefficients Ŝ(λ, μ) from the initial noise suppression technique
and the noisy DFT coefficients Y (λ, μ) provides a good indicator for speech presence
or absence in the current frame λ and can thus be applied as low SNR detector
according to:

ψ(λ) =

MF−1∑
μ=0

|G(λ, μ) · Y (λ, μ)|2

MF−1∑
μ=0

|Y (λ, μ)|2
=

MF−1∑
μ=0

|Ŝ(λ, μ)|2

MF−1∑
μ=0

|Y (λ, μ)|2
, (5.3)

where MF indicates the FFT length. If the current frame mainly contains speech
(high SNR), the power of the processed frame is equal or only slightly lower to the
power of the noisy input frame, i.e., ψ(λ) ≈ 1. By contrast, the noise reduction
system is supposed to strongly attenuate the input signal in low SNR conditions (or
during a speech pause), resulting in a power ratio ψ(λ) ≈ 0.

An example is depicted in Fig. 5.2 for a sequence of 8 seconds length. The upper
plot shows the spectrogram of the clean speech signal, the lower plots the resulting
values for the power ratio ψ(λ) at the input SNR values -5 dB, 5 dB and 15 dB, re-
spectively. The speech signal is taken from the NTT speech database [NC94] and
is disturbed by ‘factory noise’ from the NOISEX-92 database [VS93]. The weight-
ing gains which are required in Eq. 5.3 are calculated based on the super-Gaussian
Maximum A Posteriori (MAP) estimator [LV05]. As can be seen, the power ra-
tio ψ(λ) correlates well with the speech activity even at very low input SNR values.

In order to detect only low SNR regions, a threshold ψthr is applied to ψ(λ) setting
the power ratio equal to 1 if ψ(λ) ≥ ψthr as follows:

ψT(λ) =

{
1, if ψ(λ) ≥ ψthr

ψ(λ), else.
(5.4)

The threshold ψthr controls the tradeoff between speech distortions and musical noise
reduction as will be seen below.

In principle, the detection of low SNR regions could also be achieved by directly
utilizing the estimated a priori SNR which is already available in most noise sup-
pression techniques, cf. Chapter 2. However, the proposed method described above
works more reliable due to the additional consideration of the weighting gains G(λ, μ)
within the current frame when determining the power ratio ψ. Moreover, the noise
reduction system can be treated as black box by this novel procedure as only the
noisy input signal and the enhanced output signal or the spectral weighting gains are
required for the detection.
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Figure 5.2: Upper plot : Spectrogram of the clean speech signal: "Adding fast leads to
wrong sums. The show was a flop from the very start." (male voice). Lower
plots: Results of the power ratio ψ(λ) for different input SNR values (noise
type: factory).
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Adaptive Spectral Smoothing

The introduced power ratio ψT(λ) yields a reliable detection of low SNR regions. In
order to prevent the annoying musical tones within these regions, the magnitudes of
the initial weighting gains G(λ, μ) are adaptively smoothed over frequency using a
Moving Average (MA) window. Therefore, the odd length LMA of the MA window is
adjusted framewise based on ψT(λ) and ψthr according to:

LMA(λ) =

{
1, if ψT(λ) = 1

2 · round
((

1− ψT(λ)

ψthr

)
· χ
)
+ 1, else.

(5.5)

The term 1 − ψT(λ)

ψthr
provides a soft-decision which states the reliability of the low

SNR detection. The function round(·) rounds the element to the nearest integer and
χ is a scaling factor that determines the maximum degree of smoothing. Equation 5.5
ensures that the more reliable a low-SNR-frame is detected, the longer the window
length and the stronger the corresponding smoothing of the weighting gains.

Applying a moving average window of length LMA(λ) to the initial weighting
gains G(λ, μ) is equivalent to a linear filtering over frequency using the impulse re-
spond HMA(λ, μ) given by:

HMA(λ, μ) =

{
1

LMA(λ) , if μ < LMA(λ)

0, else
, where 0 ≤ μ < MF. (5.6)

Figure 5.3 depicts the Fourier transform of HMA(λ, μ) for different values of LMA.
Please note that the term ‘frequency’ in this context is somewhat misleading as
HMA(λ, μ) is already applied in the frequency domain. However, Fig. 5.3 shows the
low-pass characteristic of the filter HMA(λ, μ) whose cut-off ‘frequency’ is decreas-
ing with an increasing window length LMA leading to a stronger smoothing of the
resulting weighting gains.

In order to obtain the smoothed weighting gains Gp(λ, μ) within the postfilter, the
weighting gain magnitudes of the initial noise reduction system are convolved by
the respective filter HMA(λ, μ) (convolution over frequency index μ) and the phase
information of the original weighting gains is re-used:

Gp(λ, μ) = GPF
p (λ, μ) = |G(λ, μ)| ∗HMA(λ, μ) · exp (j · ∠{G(λ, μ)}) , (5.7)

where ‘∗’ states the convolution operator. According to Fig. 5.1, the weighting
gains GPF

p (λ, μ) are finally applied to the noisy DFT coefficients Y (λ, μ) and the

enhanced speech DFT coefficients Ŝp(λ, μ) are transformed back into the time do-
main.
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Figure 5.3: Fourier transform of HMA(λ, μ) for different values of LMA. In this example,
the FFT size is set to MF = 256.

5.1.3 Adaptive Bandwidth Resolution

The purpose of spectral transformations in speech processing is to exploit special
properties of the input signal which are better accessible in the transform domain.
Most of the noise reduction techniques separate speech and noise in the frequency
domain using the DFT or an analysis/synthesis filter-bank with uniform resolution
in the spectral domain. The resulting frequency bands hold the same bandwidth
and are equidistant distributed on the frequency scale in contrast to the perception
abilities of the human auditory system [ZF90]. So far, there are considerably less ap-
proaches published for noise reduction which use a non-uniform frequency resolution
achieved, e.g., by wavelet-based transforms [GEH98, LGO+96, SB97] or allpass trans-
formed DFT filter-banks [HS06, Chapter 2]. The advantage of these methods is the
possibility to adjust the spectral resolution with respect to psychoacoustical criteria,
e.g, according to the well-known Bark scale [ZF90] showing a high resolution at low
frequencies and a low resolution at high frequencies. Using Bark bands for speech
enhancement reduces the tonality of the residual noise (musical tones) especially at
higher frequencies as the variance of the noise power and SNR estimates is decreased
due to the higher bandwidths. However, it also leads to disturbances during speech
activity preventing the enhancement of voiced speech by making the speech signal
sound muffled to some extent. In order to compensate the tradeoff between musical
tones and muffled speech, a time-varying frequency resolution concept is proposed in
this thesis as second postprocessing procedure and is presented in the following.
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5.1.3.1 Concept

The main idea of this second musical noise countermeasure is to perform a variant
spectral analysis of the weighting gains with framewise adaptive frequency resolution
such that the spectral resolution is high during speech activity (low bandwidths)
and low during speech pauses (high bandwidths). A similar approach is presented
in [GLH03]. In the following, a detailed description of the proposed postprocessing
technique is given outlining all differences compared to [GLH03].

According to Fig. 5.1, at first the weighting gains G(λ, μ) are determined based on
any noise reduction method using the full uniform frequency resolution MF. In the
following postprocessing step, the spectral resolution of the weighting gains is adjusted
recursively. Therefore, the signal-to-noise-ratio SNRb in each Bark band b is initially
estimated according to:

SNRb =

Bu(b)∑
μ̃=Bl(b)

|G(λ, μ̃) · Y (λ, μ̃)|2

Bu(b)∑
μ̃=Bl(b)

max
(
|Y (λ, μ̃)|2 − |G(λ, μ̃) · Y (λ, μ̃)|2 , ε0

) , (5.8)

where 1 ≤ b ≤ MB/2. Thereby, MB/2 represents the total number of Bark bands
and Bl(b) and Bu(b) are the lower and upper frequency bin limits of the respective
b-th Bark band. The constant ε0 states a very small number. The relation between
Bark scale and the lower and upper frequency bounds in Hz is given in Tab. 5.1
up to a frequency of 7.7 kHz. Hence, working with narrowband signals (sampling
frequency fs = 8 kHz) leads to MB/2 = 17 Bark bands whereas MB/2 = 21 Bark
bands are used when sampling at fs=16 kHz. Afterwards the SNR estimates of all
MB/2 Bark bands are compared with a threshold εB in order to check the speech
presence status of each band. If the estimated SNR of Bark band b is lower than
εB, i.e., SNRb < εB, it is assumed that this band contains no speech or only weak
speech components and the respective weighting gains within this band are merged.
Therefore, all weighting gains GaB

p of this band are set to the median value of the
corresponding initial weighting gains G according to:

GaB
p (λ, μ) = median

(
G
(
λ,Bl(b)

)
, ..., G

(
λ,Bu(b)

))
, where Bl(b) ≤ μ ≤ Bu(b).

(5.9)

The respective band remains unconsidered in the following procedure. However, if the
SNR of Bark band b is higher or equal to εB, i.e., SNRb ≥ εB, the spectral resolution in
this band is increased by a factor of 2 assuming speech is active. To achieve this, the
specific b-th band is split into two new subbands of same bandwidth (Bu(b)−Bl(b))/2,
which is half of the bandwidth of the original band. In the next step, the SNR of
the new bands is estimated following Eq. 5.8 by using the new lower and upper
frequency bin limits. Afterwards, the new estimated SNR values are again compared
with the threshold εB leading to the same consequences as above: if the SNR is
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Bark band b 1 2 3 4 5 6 7
Lower bound [Hz] 0 100 200 300 400 510 630
Upper bound [Hz] 100 200 300 400 510 630 770

Bark band b 8 9 10 11 12 13 14
Lower bound [Hz] 770 920 1080 1270 1480 1720 2000
Upper bound [Hz] 920 1080 1270 1480 1720 2000 2380

Bark band b 15 16 17 18 19 20 21
Lower bound [Hz] 2380 2700 3150 3700 4400 5300 6400
Upper bound [Hz] 2700 3150 3700 4400 5300 6400 7700

Table 5.1: Bark scale and corresponding frequency bands [ZF90].

lower than εB, the median value of all spectral weighting gains within the specific
band is calculated, otherwise the frequency band is once again split into two new
subbands. This procedure is repeated in every frame as long as the estimated SNR
in each subband is lower than the threshold εB or as long as the resulting bandwidth
resolution corresponds to the original resolution of the FFT, i.e., MF/2. The final
number of frequency bands used in frame λ is denoted by M ′

F(λ)/2 and varies between
MB/2 and MF/2. The adaptation scheme is exemplary illustrated in Fig. 5.4 by
using a subband-tree structure. The resulting weighting gains Gp(λ, μ) = GaB

p (λ, μ)
are finally used for the spectral weighting as depicted in Fig. 5.1.

An example for the effective number M ′
F(λ)/2 of subbands which are used after apply-

ing the proposed postprocessing method can be seen in Fig. 5.5. The clean speech sig-
nal depicted in the upper figure is taken from the NTT database [NC94] and disturbed
by White Gaussian Noise (WGN) at 10 dB input SNR. After processing the noisy sig-
nal by using the super-Gaussian MAP estimator [LV05], the spectral resolution of the
weighting gains is adjusted adaptively as shown above. The resulting number of sub-
bands M ′

F/2 is depicted in the lower figure over time. It can be seen that during
speech pauses, a low frequency resolution is used leading to a better suppression of
musical tones. In contrast, the spectral resolution is considerably higher when speech
is active. Thus, the speech signal is almost not affected by the postprocessing method.
In the example, a sampling frequency of fs = 8 kHz and an FFT size of MF = 256
are used limiting the minimum number of subbands to M ′

F,min/2 = MB/2 = 17 (see
Tab. 5.1) and the maximum number to M ′

F,max/2 = MF/2 = 128. The threshold εB
is determined empirically and set to εB = 0.5.

In comparison to the proposed postprocessing technique in this work, the approach
in [GLH03] uses a uniform partitioning of the frequency scale in the first step instead
of utilizing Bark bands. In addition, the mean value is taken in [GLH03] to combine
the weighting gains within the subbands and not the median value. The benefit of
initializing the frequency scale by Bark bands can be recognized especially in low SNR
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Lower plot : Resulting time-varying subband number M ′

F/2 after gain calcula-
tion [LV05] and postprocessing of disturbed speech signal (noise type: WGN,
input SNR: 10 dB, εB = 0.5, MF = 256).



5.1 Musical Noise Countermeasures 105

conditions. Here, the non-uniform frequency resolution leads to less fluctuations in
the resulting weighting gains at higher frequencies where musical tones typically arise.
Using the median instead of the mean value avoids that outliers do affect the resulting
weighting gain estimation in each subband.

5.1.4 Performance Results

The two musical noise countermeasures which are presented in the previous subsec-
tions can in principle be applied to the weighting gains of any noise reduction system.
In the following, the postprocessing techniques are used in combination with the
super-Gaussian MAP estimator [LV05] (see Sec. 2.5.5) as well as with the proposed
Kalman filter approach based on the SNR-dependent Minimum Mean Square Er-
ror (MMSE) estimator which is presented in Chapter 3. As seen in Chapter 3, both
noise suppression methods possess the slight tendency to produce musical tones and
are therefore qualified for the evaluation here. The investigation is based on both in-
strumental measurements and auditory judgments. Instrumental measurements are
used to analyze the influence of the postprocessing methods with respect to noise and
speech attenuation as well as speech distortions. However, these entities allow no real
statement about the quality of the processed background noise, i.e., the occurrence
of musical tones in the output signal. Therefore, an informal subjective listening test
is conducted in addition.

For the super-Gaussian MAP estimator and the Kalman filter the same system param-
eters as in Chapter 3 are applied. Further simulation settings are listed in Tab. 5.2.
The values for the thresholds ψthr and εB as well as the scaling factor χ are deter-
mined empirically and provide a good compromise between speech distortions and
musical noise suppression.

Parameter Settings

Sampling frequency 8 kHz
Frame length LF 160 (20 ms)
FFT length MF 256 (including zero-padding)
Frame overlap 75% (Hann window)
Input SNR -10 dB ... 35 dB (step size: 5 dB)

Spectral Smoothing of Weighting Gains
Threshold ψthr 0.4
Scaling factor χ 10

Adaptive Bandwidth Resolution
Threshold εB 0.5
Constant ε0 2−52

Table 5.2: System settings.
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Figure 5.6: Serial connection of the two postprocessing techniques.

5.1.4.1 Instrumental Measurements

In the instrumental evaluation, four different cases are investigated for each of the
two noise suppression techniques (see Fig. 5.1):

1. Noise Reduction without any postprocessing, i.e., Gp(λ, μ) = G(λ, μ).

2. Noise Reduction using the spectral smoothing approach of the weighting
gains (SSWG) as proposed in Sec. 5.1.2, i.e., Gp(λ, μ) = GPF

p (λ, μ).

3. Noise Reduction using the adaptive bandwidth resolution (ABR) method as pro-
posed in Sec. 5.1.3, i.e., Gp(λ, μ) = GaB

p (λ, μ).

4. Noise Reduction using both musical noise countermeasures in combination. In
order to increase the musical noise suppression, at first the adaptive bandwidth
resolution (ABR) method is applied to the weighting gains G(λ, μ). On top of
this first method, the resulting gains Gp,1(λ, μ) are further processed using the
spectral smoothing (SSWG) approach according to Fig. 5.6. It could be shown
that the order ‘ABR + SSWG’ yields a slightly better performance compared to
the other way round, i.e., ‘SSWG + ABR’.

For the evaluation, the same instrumental measurements as already used in Chap-
ters 3 and 4 are applied, i.e., the segmental noise and speech attenuation as well as
the segmental speech SNR (see Appendix D). Furthermore, the same speech and
noise signals as in Chapter 3 are utilized: five speech signals from the NTT speech
database [NC94]) are each degraded by six different noise types (f16, babble, car,
factory1, factory2, white) taken from the NOISEX-92 database [VS93]. Among the
five speech signals, there are three sequences from male and two from female speakers,
each with a length of 8 seconds.

While in Fig. 5.7 the averaged deviation between segmental noise and speech attenua-
tion is depicted, Fig. 5.8 illustrates the results for the segmental speech SNR plotted
over the noise attenuation. Therefore, the input SNR serves as control variable. In
Fig. 5.8, the points of best performance are placed in the upper right corner.
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The instrumental measurements show that the proposed postprocessing schemes are
able to improve the results of both investigated estimators. Applied to the super-
Gaussian MAP estimator, the spectral smoothing of the weighting gains and the
adaptive bandwidth resolution technique achieve a better tradeoff between noise and
speech attenuation, especially at higher input SNR values. They gain in noise at-
tenuation when keeping the segmental speech SNR constant. Comparing the two
musical noise countermeasures among each other, the adaptive decomposition of the
frequency scale performs slightly better as can be seen in both figures. When concate-
nating both postfilter approaches at low input SNR values, the results are worse than
the individual applications but still better than the MAP estimator without post-
processing in Fig. 5.7. In good SNR conditions however, the output of the combined
system ‘ABR+SSWG’ gets better and eventually outperforms the other combinations
beyond 5 dB input SNR as illustrated in Figs. 5.7 and 5.8.

A very similar behavior can be seen for the Kalman filter approach. Here, the use
of the two postprocessing techniques consistently improves the results of the Kalman
filter. The adaptive bandwidth resolution approach achieves again better results than
the adaptive smoothing procedure of the weighting gains. In contrast to the MAP
estimator, the concatenation of both techniques leads to a higher noise attenuation
without affecting the speech quality over the entire SNR range.

Overall, the instrumental measurements show that the proposed musical noise counter-
measures contribute to an additional increase in noise attenuation without producing
more speech distortions except for the combined method ‘ABR+SSWG’ at very low
SNR values when applied subsequent to the MAP estimator.

The improvements in terms of noise attenuation and speech quality are of course
desirable but as mentioned before give no evidence about the suppression of musical
noise in the processed output signals. Therefore, an informal listening test was also
carried out, the results of which are presented in the following.

5.1.4.2 Auditory Judgments

In addition to the instrumental measurements, an informal Comparison Category
Rating (CCR) test was conducted according to [ITU96] which presents two samples
per question to the participants: a processed signal from Method A and a processed
signal from Method B. One of the two noise suppression techniques (super-Gaussian
MAP estimator [LV05] or the proposed Kalman filter approach of Sec. 3.2.3.3) was
randomly assigned to Method A or B without any postprocessing. The respective
other sample was processed by the same noise reduction method with subsequent
musical noise suppression using the concatenation of both proposed techniques, i.e.,
‘ABR+SSWG’. The noisy input signals consisted of a speech signal randomly taken
from the NTT speech database disturbed by a noise signal from the NOISEX-92
database at an input SNR varying between 5 dB and 15 dB. 19 experienced listen-
ers were asked to judge the overall speech quality by choosing between the follow-
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Figure 5.9: Results of the informal listening test comparing (a) the super-Gaussian MAP
estimator [LV05] and (b) the Kalman filter approach with and without the
proposed postprocessing techniques.

ing rating options: Sample A sounds {much better | better | slightly better | about the
same | slightly worse | worse | much worse} than Sample B. Each test person had to
judge 10 signals (5 per noise reduction method), i.e., the total results are based on
10 · 19 = 190 votes. The samples could be played ad libitum before the probands had
to make their judgments.

The averaged results are separately illustrated in Fig. 5.9 for the MAP estimator as
well as for the Kalman filter. It can clearly be seen that most listeners preferred
the processed samples with subsequent postprocessing in both cases. As reason, they
stated the reduction of musical noise while preserving the speech quality and noise
attenuation. In some isolated cases, the participants favored the samples without
postprocessing and explained their choices with a slightly ‘muffled’ sounding of the
postprocessed signal. This indicates that the postprocessing techniques have some-
times been adjusted a little bit too aggressive. However, this problem can be solved
by changing the respective system parameters in Tab. 5.2 at the expense of a lower
musical noise suppression. In total, i.e., when averaging over the results of both
estimators and when combining the options {much better | better | slightly better },
approximately 92% of the test listeners preferred the samples that were generated
with the new postprocessing techniques.



110 5 Additional Methods for Quality Improvements

5.1.5 Conclusions

In this section, two postprocessing methods are presented which effectively suppress
musical noise. They can be applied to the spectral weighting gains of an arbitrary
noise reduction technique. The first technique adaptively smoothes the spectral
weighting gains over frequency based on soft-decisions of a low SNR detector. The
second approach uses a framewise adaptive frequency resolution such that the spectral
resolution is high during speech activity and low during speech pauses. In order to
increase the suppression of musical tones, both techniques can be combined. Instru-
mental measurements in terms of noise and speech attenuation as well as segmental
speech SNR show improvements of the new approaches when applied subsequent to
two noise reduction methods. The instrumental results have been confirmed by an
informal listening test.

5.2 Noise Estimation in Rapidly Varying Harmonic

Noise Environments

A crucial component of any practical speech enhancement system is the estimation
of the noise power spectrum. For this purpose, several approaches can be found in
literature, e.g., the application of a Voice Activity Detection (VAD) [SKS99], the
Minimum Statistics approach [Mar01] or the MMSE based noise Power Spectral Den-
sity (PSD) tracking algorithm [HHJ10] (see Sec. 2.3). All of these techniques assume
stationary or slowly time-varying noise and have severe problems in tracking sudden
noise variations leading to an underestimation of the noise power.

In this section, speech enhancement in noisy environments with rapidly time-varying
harmonic noise and stationary random noise is investigated. Possible application
areas can be found in intercom systems for motorcycles or in the interior of other
motor vehicles, e.g., in order to communicate via a hands-free device inside a car
where engine, wind and tires are the main noise sources. An example is depicted in
Fig. 5.10 showing the noisy spectrogram of a speech signal which is disturbed by a real
noise signal recorded inside a car. The strong spectral components of the harmonic
noise signal are present at multiples of a fundamental frequency f0 and contribute to
the main noise power.

In the following, a novel noise suppression system consisting of two stages is presented
which effectively reduces the considered harmonic and stationary noise [ERHV10b]. In
the first stage, harmonic noise components are suppressed using a modified Minimum
Statistics approach [ERHV10a]. Therefore, it is assumed that the instantaneous
fundamental frequency f0 for each frame is available to the noise reduction system,
e.g., received from the vehicle’s onboard computer which is possible in modern vehicles
or estimated from a second reference microphone placed, e.g., near the engine. In the
second stage, the remaining residual stationary background noise is reduced.

In principle, the proposed method can be applied to an arbitrary noise reduction
system relying on an estimate of the noise PSD. Hence, it could also support the noise
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Figure 5.10: Spectrogram of noisy input signal showing strong spectral components of har-
monic noise at multiples of the fundamental frequency f0.

estimation process within the update step of the modified Kalman filter approach
presented in Chapter 3. However, the use in this section is limited only to purely
statistical estimation rules in order to allow a fair comparison with conventional noise
estimation techniques which have been developed exactly for these methods.

The remainder of this section is organized as follows: at first a brief overview of
the proposed noise reduction system is given. Afterwards, the two stages of the noise
estimation technique are comprised in detail including the estimation of the harmonic
and stationary noise power. Experimental results finally close this section.

5.2.1 System Overview

A simplified block diagram of the proposed system is shown in Fig. 5.11. The speech
signal s(k) is assumed to be degraded by an additive harmonic noise signal nh(k) and
a stationary noise signal ns(k) according to:

y(k) = s(k) + nh(k) + ns(k). (5.10)

Analog to the analysis procedure in the previous chapters, the signal y(k) is trans-
formed into the frequency domain using segmentation, windowing and the application
of the FFT (transform length MF). The spectrum of the noisy input signal is given by:

Y (λ, μ) = S(λ, μ) +Nh(λ, μ) +Ns(λ, μ), (5.11)
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Figure 5.11: Proposed two stage noise reduction system for the elimination of rapidly time-
varying harmonic and stationary noise.

where S(λ, μ), Nh(λ, μ) and Ns(λ, μ) represent the spectral DFT coefficients of the
speech and the noise signals, respectively.

The proposed solution consists of the concatenation of two noise suppression stages
relying on different noise PSD estimators. In the first stage, the harmonic noise
powers σ2

h,N (λ, μ) are estimated using a modified Minimum Statistics approach which
exploits the knowledge of the instantaneous fundamental frequency f0, see Sec. 5.2.2
for more details. Based on the estimates σ̂2

h,N (λ, μ), the a posteriori SNR γh(λ, μ)
and the a priori SNR ξh(λ, μ) of the first stage are calculated according to:

γh(λ, μ) =
|Y (λ, μ)|2
σ2
h,N (λ, μ)

and ξh(λ, μ) =
E{|S(λ, μ)|2}
σ2
h,N (λ, μ)

, (5.12)

where the a priori SNR can again be determined, e.g., by using the decision-directed
approach [EM84]. The actual spectral weighting in this stage is performed by multi-
plying the noisy spectrum Y (λ, μ) by weighting gains Gh(λ, μ) resulting in an estimate
of the harmonic noise-reduced spectrum:

Ŝh(λ, μ) = Gh(λ, μ) · Y (λ, μ). (5.13)

In the second stage, the enhanced spectrum Ŝh(λ, μ) is further improved with regard
to the residual stationary random noise. While for the noise estimation, a conventional
technique is used, e.g., the original Minimum Statistics algorithm [Mar01], the same
methods as in the first stage are applied for the subsequent a posteriori SNR γs(λ, μ)
and a priori SNR ξs(λ, μ) estimation as well as for the gain calculation Gs(λ, μ) in
this second stage.

The overall spectral weighting results in the estimate:

Ŝ(λ, μ) = Gh(λ, μ) ·Gs(λ, μ) · Y (λ, μ), (5.14)

and IFFT with overlap-add is applied in order to obtain the enhanced time domain
signal ŝ(k).
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5.2.2 Harmonic Noise PSD Estimation

According to Eq. 5.10, speech signals are assumed to be disturbed by stationary
and harmonic noise characterized by (strong) spectral components at multiples of
the (time-varying) fundamental frequency f0. As the fundamental frequency might
change over time very fast (e.g., when the engine accelerates or when a gear change
occurs), conventional noise estimation techniques usually fail in tracking the spectral
harmonics as they originally have been developed to estimate short-term stationary
noise.

In the following, a novel modified Minimum Statistics algorithm is presented which
is adapted to the specific noise environment in order to achieve a significantly better
noise estimation performance. Therefore, at first the original Minimum Statistics
procedure is briefly revised followed by a description of the necessary modifications.

Original Minimum Statistics Approach

The original Minimum Statistics approach [Mar01] performs well in stationary and
slowly changing noise conditions as the minimum at each frequency bin within a search
time window provides a good estimate of the actual noise power. However, when it
comes to a sudden rise in the noise power in one specific frequency bin, Minimum
Statistics is not able to track this rise due to the large window length DMS, which
should correspond to a duration of approximately 1.5 seconds [Mar01], see Sec. 2.3.2.

In the original Minimum Statistics approach, the noisy periodogram |Y (λ, μ)|2 is
recursively smoothed over time. The smoothed signal power σ̂2

Y (λ, μ) is given by:

σ̂2
Y (λ, μ) = αMS(λ, μ) · σ̂2

Y (λ− 1, μ) + (1− αMS(λ, μ)) · |Y (λ, μ)|2, (5.15)

where αMS(λ, μ) ∈ [0, 1] is the adaptive smoothing factor. The signal powers σ̂2
Y (λ, μ)

of the previous DMS frames are buffered in the matrix:

Σ̂2
Y (λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̂2
Y (λ−DMS + 1, 0) . . . σ̂2

Y (λ, 0)
σ̂2
Y (λ−DMS + 1, 1) . . . σ̂2

Y (λ, 1)
...

. . .
...

σ̂2
Y (λ−DMS + 1, μ) . . . σ̂2

Y (λ, μ)
...

. . .
...

σ̂2
Y (λ−DMS + 1,MF/2− 1) . . . σ̂2

Y (λ,MF/2− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.16)

Afterwards, the minimum is tracked in Σ̂2
Y (λ) in each row separately for each fre-

quency bin according to:

σ̂2
Y,min(λ, μ) = min

(
σ̂σσ2
Y (λ, μ)

)
, (5.17)

where σ̂σσ2
Y (λ, μ) =

(
σ̂2
Y (λ−DMS + 1, μ) . . . σ̂2

Y (λ, μ)
)

represents the μ-th row

of Σ̂2
Y (λ). The duration of the time window DMS for the minimum search states
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a tradeoff between fast noise tracking and speech distortions after spectral weighting.
The minimum value is multiplied by a bias correction factor B(λ, μ) [Mar01], which is
mainly dependent on the variance of the noisy signal. The final noise PSD estimation
is given by:

σ̂2
N (λ, μ) = B(λ, μ) · σ̂2

Y,min(λ, μ). (5.18)

Modified Minimum Statistics Approach

In Stage I of the proposed system, a novel modified Minimum Statistics procedure is
used to estimate the harmonic noise powers σ2

h,N (λ, μ). The new concept is illustrated
and compared with the original one in Fig. 5.12. The figure shows the temporal
course of four harmonic oscillations over frequency. To determine the noise PSD in
frame λ0 at one particular frequency bin, the original Minimum Statistics algorithm
tracks the minimum within the search window by considering entities only at this
specific frequency bin, see Method (a). In contrast, the modified method adaptively
‘looks back’ inclined according to the evolution of the harmonics in the time-frequency
domain, see Method (b). Following one specific harmonic oscillation over time, the
short-term PSDs of the harmonic components are no longer fluctuating that much but
relatively stationary. Thus, tracking the minimum along the courses of the harmonics
will lead to much better noise estimation results.

In order to achieve this tilted ‘viewing direction’, the entries of the matrix Σ̂2
Y (λ) need

to be modified according to the fundamental frequency f0. The harmonic oscillation of
the current frame λ0 at frequency f0(λ0) can be found in the frame λ0−DMS+1+j at
frequency f0(λ0−DMS+1+j) with 0 ≤ j < DMS. In order to estimate the noise power
at frame λ0, the j-th column of the matrix Σ̂2

Y (λ0) is therefore compressed/expanded
according to the ratio:

rMS(λ0, j) =
f0(λ0)

f0(λ0 −DMS + 1 + j)
. (5.19)

After transformation, the j-th column of the modified matrix Σ̂2
Y,mod(λ0) comprises

the noisy signal power at the new positions μ̌ = μ
rMS(λ0,j)

. For this curve fitting prob-

lem, conventional linear interpolation [Mei02] is used. The proposed frequency warp-
ing technique is schematically illustrated in Fig. 5.13. Visually speaking, the course
of the harmonics is brought into a horizontal position within the time-frequency do-
main. Afterwards, the original minimum tracking concept of the Minimum Statistics
algorithm can be applied to the ‘warped’ spectrogram.

In the case of compression (rMS < 1), the elements of the j-th column are missing for
μ̌ > MF/2− 1 and replaced by σ̂2

Y (λ0 −DMS + 1 + j,MF/2− 1).

Based on the modified matrix Σ̂2
Y,mod(λ), the minimum is again tracked for each row

as in the original approach:

σ̂2
Y,mod,min(λ, μ) = min

(
σ̂σσ2
Y,mod(λ, μ)

)
, (5.20)
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Figure 5.12: ‘Direction of view’ of (a) original Minimum Statistics and (b) modified Mini-
mum Statistics algorithm.
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Figure 5.13: Frequency warping of all frames within search window according to the ra-
tio rMS(λ0, j) using linear interpolation.
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Figure 5.14: Noise PSD estimation results for a noisy speech segment at frequency
bin μ = 25 using an FFT length MF = 256. The speech signal was taken
from the NTT speech database [NC94] and disturbed by a real noise signal
with time-varying harmonic components at 0 dB input SNR.

where σ̂σσ2
Y,mod(λ, μ) represents the μ-th row of Σ̂2

Y,mod(λ). From the Minimum Statis-

tics’ point of view, the harmonics in the time-frequency domain of Σ̂2
Y,mod(λ) appear

more stationary over time. Finally, the bias is calculated according to the original
Minimum Statistics approach and Eq. 5.18 is applied.

For the determination of the adaptive smoothing factors αMS (see Eq. 5.15), estimates
from the previous frame are required as well [Mar01]. Before applying these estimates,
they are ‘warped’ in the same way by using the ratio rMS(λ0, DMS − 2).

Figure 5.14 shows an example of noise PSD estimation comparing the novel approach
with the original Minimum Statistics approach and the MMSE based noise PSD
tracking algorithm proposed in [HHJ10]. The figure shows the estimation results of
the three techniques as well as the true noise PSD for one specific frequency bin over
time. Therefore, a speech signal was disturbed by a time-varying harmonic noise
signal at 0 dB input SNR and the fundamental frequency f0 was available directly
from the engine control. It can clearly be seen that the two conventional estimation
techniques have problems in tracking sudden noise variations occurring in acceleration
or deceleration phases. In contrast, the modified Minimum Statistics algorithm is able
to incorporate adjacent frequency bins from the past leading to a significantly better
noise PSD tracking result in the considered environment.
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5.2.3 Random Noise PSD Estimation

The first stage of the proposed noise suppression system effectively reduces (rapidly)
time-varying harmonic noise, originating, e.g., from a vehicle’s engine. However, as
the modified noise estimation technique is adapted to the fundamental frequency, the
random stationary noise components (e.g., wind or tire noise) would be suppressed
by this first stage only satisfactorily in the case of white noise. Therefore, a second
stage is applied that reduces the random parts of the noise. As depicted in Fig. 5.11,
conventional noise estimation techniques can be used for this purpose, e.g., the orig-
inal Minimum Statistics approach [Mar01] or the MMSE based noise PSD tracking
algorithm [HHJ10] as investigated in the following evaluation.

5.2.4 Performance Results

The performance of the proposed noise estimation technique for the application in
harmonic and random noise environments is compared with the results of the original
Minimum Statistics approach [Mar01] and the MMSE based noise PSD tracking al-
gorithm [HHJ10]. Therefore, the speech enhancement system depicted in Fig. 5.11 is
used incorporating f0 which is directly provided by the engine control unit of a vehicle.
The a priori SNR is estimated according to the decision-directed approach [EM84] and
the well-known Wiener filter rule [LO79] is used to calculate the spectral weighting
gains. Referring to Fig. 5.11, the following noise estimation techniques are applied
in Stages I and II:

Method Stage I Stage II

A disabled (Gh=1) Minimum Statistics [Mar01]

B disabled (Gh=1)
MMSE based noise

PSD tracking [HHJ10]

C
modified Minimum

disabled (Gs=1)
Statistics (see Sec. 5.2.2)

D
modified Minimum

Minimum Statistics [Mar01]
Statistics (see Sec. 5.2.2)

E
modified Minimum MMSE based noise

Statistics (see Sec. 5.2.2) PSD tracking [HHJ10]

For the evaluation, four different (real) noise signals are used which were recorded
inside a car during acceleration and deceleration phases, i.e., the signals contain a
relatively large portion of rapidly time-varying harmonic engine noise. The recordings
are each added to three male and two female speech sequences (each with a length
of 8 seconds taken randomly from the NTT speech database [NC94]) at input SNR
values varying between -10 dB and 35 dB with an increment of 5 dB. The parameters
which are used in the simulations are listed in Tab. 5.3.

For the instrumental evaluation, on the one hand the same instrumental measure-
ments as in Chapters 3 and 4 are applied using the segmental noise and speech
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Parameter Settings

Sampling frequency 8 kHz
Frame length LF 160 (20 ms)
FFT length MF 256 (including zero-padding)
Frame overlap 50% (Hann window)

Table 5.3: System settings.

attenuation as well as the segmental speech SNR (see Appendix D). On the other
hand, the noise tracking performances of the different techniques are explicitly ana-
lyzed. Therefore, the log-error distortion measure LogERR is used which is defined
as follows [HJH08]:

LogERR =
1

MFNF

MF−1∑
μ=0

NF−1∑
λ=0

∣∣∣∣10 log10 σ̃2
N (λ, μ)

σ̂2
N (λ, μ)

∣∣∣∣ , (5.21)

where NF represents the total number of evaluated frames and σ̂2
N (λ, μ) states the

noise power estimate of the respective investigated technique, i.e., the results of the
original or the modified Minimum Statistics or the MMSE based noise PSD tracking
algorithm. As it is almost impossible to obtain one overall noise estimate for the
proposed 2-stage system, i.e., Methods D and E, only the noise tracking capabilities
of the modified Minimum Statistics algorithm (Method C) are investigated. The
reference value σ̃2

N (λ, μ) in Eq. 5.21 is given as a smoothed version of the original
noise periodogram according to:

σ̃2
N (λ, μ) = 0.9 · σ̃2

N (λ− 1, μ) + 0.1 · |N(λ, μ)|2 . (5.22)

The smoothing factor 0.9 provides good noise tracking capabilities of σ̃2
N (λ, μ) while

obtaining a reduced temporal variance compared to the true noise PSD, see [HHJ10]
and [TTM+11]. The lower the value of LogERR, the better the performance of the
noise estimation technique. The measure LogERR is given in dB.

The averaged results for the segmental noise and speech attenuation as well as the
speech SNR are depicted in Figs. 5.15 and 5.16. Figure 5.15 shows the difference
between noise and speech attenuation where higher scores indicate a better perfor-
mance of the respective approach. It can be seen that all methods using the modified
Minimum Statistics approach, i.e., Methods C, D and E consistently improve the re-
sults of the conventional noise estimation techniques (Methods A and B). Moreover,
the proposed 2-stage system (Methods D and E) achieves a better tradeoff between
noise and speech attenuation when compared to the modified Minimum Statistics
algorithm in Method C. Overall, the combined system consisting of the modified Min-
imum Statistics and the MMSE based noise PSD tracking algorithm yields the best
performance in this measurement and outperforms the other approaches.

In Fig. 5.16, the segmental speech SNR is plotted over the noise attenuation. The aim
in this graph is to achieve a high segmental speech SNR and a high noise attenuation.
Hence, the more the respective curve is placed in the upper right corner, the better
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the performance. The results show again the improvements of the new Methods C,
D and E compared to the original Minimum Statistics approach (Method A) and
the MMSE based noise PSD tracking algorithm (Method B). Method B is able to
achieve a higher noise attenuation than Method A. However, this benefit comes at
the expense of a lower segmental speech SNR comparing the particular input SNR
markers. Regarding the proposed techniques, the 2-stage system again provides the
best compromise in terms of noise attenuation and segmental speech SNR. In contrast
to the measurements in Fig. 5.15, the choice for the conventional noise estimation
technique in the second stage of Fig. 5.11 can not be conclusively attributed to the
MMSE based noise PSD tracking algorithm and depends on the application. Whereas
Method E outperforms all other approaches in terms of noise attenuation, it affects
the speech quality slightly more than Method D especially at low input SNR values.
Interestingly, when using Methods A, C, D and E, the amount of noise attenuation
is not decreasing monotonically in this environment for higher input SNR values.
Instead, there is a gain in noise suppression beyond 25 dB input SNR as can be
seen in Fig. 5.16. A possible explanation for this behavior can be the fact that the
original and modified Minimum Statistics approaches are able to track the power of
the stationary noise components proportionally better in good SNR conditions where
the influence of the time-varying harmonics decreases.

Figure 5.17 depicts the averaged results for the LogERR measure plotted over the
input SNR for Methods A, B and C. It can clearly be seen that the modified Minimum
Statistics approach (Method C) achieves the lowest distortion measures for almost
the entire SNR range and thus provides the best noise estimation performance in this
specific noise environment. Especially at low input SNR values, a clear preference for
the modified Minimum Statistics algorithm can be observed. In good SNR conditions
however, the distortion measure of Method C increases stronger than that of the
other two noise estimation techniques. As mentioned before, the influence of the
time-varying harmonic noise components decreases at high input SNR values. Hence,
the advantage of the proposed frequency warping in order to reduce the harmonics
diminishes beyond 30 dB input SNR and the modified Minimum Statistics approach
achieves a less precise noise estimation performance compared to Methods A and B.
To counteract this problem, a subsequent (conventional) noise reduction system is
added in the proposed system as depicted in Fig. 5.11.

Spectrograms of the processed signals are shown in Fig. 5.18. In the upper row, the
spectrogram of the clean and the noisy input signals are depicted. The speech sen-
tences "A wisp of cloud hung in the blue air. A pound of sugar costs more than eggs."
are taken from the NTT database [NC94] and disturbed at 5 dB input SNR by a real
noise signal recorded inside a car. In addition to stationary background noise, it can
be seen that the engine mainly contributes to the noise signal. The speech signal
is highly disturbed by the spectral harmonics. The spectrograms of the processed
signals are shown in the middle and lower rows for the different approaches A, B, D
and E. While the conventional noise estimation (Methods A and B) fails in this noise
environment (stationary background noise slightly reduced but spectral harmonics
remain almost unchanged), the new approaches (Methods D and E) perform signifi-
cantly better and are able to suppress a larger amount of the engine and stationary
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Figure 5.17: Log-error distortion LogERR plotted over input SNR. An explanation of the
different methods can be found on page 117.

background noise. As can be seen, the harmonics and the stationary background
noise are effectively reduced leading to a more comfortable listening condition.

In principle, the application of the proposed ‘warping’ technique is not restricted to
the Minimum Statistics algorithm and can be applied to any noise estimation method
which takes into account noisy or enhanced DFT coefficients from previous frames.

5.2.5 Conclusions

In this section, a novel noise PSD estimation algorithm is proposed for the applica-
tion in noisy environments consisting of time-varying harmonic and stationary random
noise. Conventional noise estimation techniques usually fail in this specific environ-
ment as the tracking of rapidly time-varying noise often leads to an underestimation
of the noise power. Thus, the harmonic noise components are reduced in a first stage
by using a modified Minimum Statistics approach which performs frequency warping
according to the harmonic’s fundamental frequency in order to track and suppress
the harmonic noise quite effectively. The remaining random noise components in
the signal are estimated and reduced in a second stage using conventional noise es-
timation techniques. Instrumental measurements show a consistent improvement in
terms of noise/speech attenuation and segmental speech SNR compared to the origi-
nal Minimum Statistics approach [Mar01] and the MMSE based noise PSD tracking
algorithm [HHJ10].
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Figure 5.18: Spectrograms of clean speech signal, noisy signal (speech+car noise,
SNR: 5 dB), and processed signals with Method A: enhanced signal using
original Minimum Statistics approach [Mar01], Method B: enhanced signal us-
ing original MMSE based noise PSD tracking algorithm [HHJ10], Method D:
enhanced signal using new approach by combining modified and original Mini-
mum Statistics approach and Method E: enhanced signal using new approach
by combining modified Minimum Statistics and MMSE based noise PSD track-
ing algorithm. The sentences "A wisp of cloud hung in the blue air. A pound
of sugar costs more than eggs." are spoken by a male voice. An explanation
of the different methods can be found on page 117.
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Summary

This thesis addresses the problem of single-channel speech enhancement for the ap-
plication in mobile phones, conferencing systems, digital hearing aids or hands-free
devices. The developed algorithms focus on exploiting temporal and spectral depen-
dencies of speech as well as noise signals. In addition, they provide novel solutions for
suppressing musical noise and rapidly time-varying harmonic noise. All speech en-
hancement techniques within this work have been thoroughly evaluated by means of
instrumental measurements and auditory judgments. It turned out that the proposed
noise reduction techniques achieve distinctly better results compared to state-of-the-
art approaches with respect to noise attenuation and speech distortions.

In the first part of this thesis, a novel Kalman filter approach for noise suppression in
the frequency domain has been presented. The solution is based on a modified propa-
gation and update step which are both applied directly to the complex-valued DFT
coefficients of the noisy input signal. In the propagation step, temporal correlation of
successive frames is exploited using low-order models to approximate the trajectories
of the speech and the noise DFT coefficients. It has been shown that complex-valued
linear prediction yields higher prediction gains than estimating real and imaginary
parts or magnitudes and phases separately. The proposed system is able to exploit
temporal correlation of speech already at very low input SNR values and nearly
reaches the level of ‘ideal’ prediction at 20 dB input SNR. In the second (update) step,
the first predictions are updated utilizing an appropriate statistical weighting rule in
order to estimate the prediction errors caused in the propagation step. As novelty,
not only the conventional Kalman filter gain (assuming Gaussian distributions for
speech and noise) has been taken into account for this purpose but also different SNR-
dependent MMSE estimators which have been explicitly adapted to the measured
histograms of the speech prediction error signal. Moreover, a new possibility to
estimate the prediction error powers of speech and noise has been presented. In the
evaluation, the proposed system has clearly outperformed several purely statistical
estimators as well as the Kalman filter approach presented in [ZVY06b]. Especially
the incorporation of the SNR-dependency on the statistics of the speech prediction
error has led to significant improvements. The instrumental measurements have been
confirmed by an informal listening test in which about 75% of the test listeners
preferred the signals processed by the novel Kalman filter solution. Compared to



124 6 Summary

state-of-the-art noise suppression techniques, the overall computational load of the
proposed system has been increased by a factor of 5 – 7. However, possible methods
for an effective reduction of the complexity have been presented.

In literature, only very few publications can be found so far which explicitly cover wide-
band (50 Hz – 7 kHz) noise reduction. Almost all known approaches process the low
band (50 Hz – 4 kHz) and the high band (4 kHz – 7 kHz) components in the same way.
In the second part of this work, a new possibility to exploit spectral dependencies of
speech signals by means of wideband speech enhancement has been presented. The de-
veloped method uses techniques known from Artificial Bandwidth Extension (ABWE)
to improve the results of a conventional noise suppression technique in the high band.
Therefore, ABWE is applied to the processed (enhanced) low band signal and utilized
in order to estimate subband energies of the high band. The resulting weighting gains
determined from these energy estimates are combined with gains that are additionally
obtained by a conventional noise reduction technique in the high band. For this pur-
pose, cross-fading with an adaptive factor is used which is depending on input SNR
estimates. The performance of this novel wideband speech enhancement system has
been shown to be consistently better than state-of-the-art noise reduction approaches
with respect to noise attenuation and speech distortions. Moreover, informal listening
tests have revealed that the occurrence of musical tones can be slightly reduced by
the proposed method. The results have been verified by information theoretic consid-
erations which quantify the existence of spectral dependencies between low and high
frequencies already at very low input SNR values. In addition, the mutual information
between the low and high band could be significantly increased if noise suppression
was applied prior to ABWE. Overall, the proposed technique is not strictly restricted
to two broad bands. Using a modified training process, the system can be adapted to
support the speech enhancement in an arbitrary frequency band or even individual
frequency bin.

The third part of this thesis has covered postprocessing methods to improve the overall
speech quality of a communication system. Noise suppression techniques often suffer
from generating annoying musical tones, especially when they yield a good compro-
mise between noise attenuation and speech distortions in other respects. Moreover,
most speech enhancement algorithms fail as soon as the environmental noise becomes
non-stationary. Both problems have been successfully tackled in this third part.
In order to suppress musical tones, two effective postprocessing methods have been
presented which can be applied to the spectral weighting gains of an arbitrary noise
reduction technique. The first technique utilizes soft-decisions of a low input SNR
detector in order to adaptively smooth the spectral gains over frequency. The second
approach uses a framewise adaptive frequency resolution such that the spectral resolu-
tion is higher during speech activity and lower during speech pauses. Both techniques
can be beneficially concatenated. Instrumental measurements have shown that both
musical noise countermeasures yield improvements when they are applied subsequent
to a noise reduction system. Furthermore, the results of an informal listening tests
clearly demonstrated the advantages of the developed approaches with respect to mu-
sical noise suppression. In total, approximately 92% of the test listeners preferred the
samples generated by the proposed postprocessing techniques.
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In order to cope with rapidly time-varying harmonic noise and stationary random
noise, a novel noise PSD estimation algorithm has been presented. The harmonic
noise components are effectively reduced in a first stage by using a modified Minimum
Statistics approach which performs frequency warping according to the harmonic’s
fundamental frequency. The remaining random noise components in the signal are
estimated and suppressed in a second stage using conventional noise estimation tech-
niques. While the investigated state-of-the-art noise estimation techniques have failed
in the considered noise environment, instrumental measurements have shown that the
new approach performs significantly better and is able to suppress a larger amount
of the harmonic and stationary background noises leading to a more comfortable
listening condition.
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A

Derivations

A.1 Kalman Filter Equations

In the following, the Kalman filter equations used in the update step are determined
based on the derivations which can be found in [Mey00] and [SC08]. In order to
derive the conditional expectation E{s(k)|y(k)}, the conditional Probability Density
Function (PDF) p(s(k)|y(k)) is required. Using Bayes’ theorem [Bay63], p(s(k)|y(k))
is given by:

p(s(k)|y(k)) = p(y(k), s(k))

p(y(k))
. (A.1)

At first, the joint PDF p(y(k), s(k)) is determined based on a new vector w which
combines y(k) and s(k) according to:

w =
(
yH(k), sH(k)

)H
= ( y(0), ... , y(k), s(k −NK + 1), ... , s(k) )

H
. (A.2)

Assuming that y(k), s(k) as well as the additive noise signal n(k) are Gaussian dis-
tributed, the PDF p(w) = p(y(k), s(k)) follows a Gaussian distribution as well. Its
mean w̄ and covariance M are given by:

w̄ = E{w} =

(
E{y(k)}
E{s(k)}

)
, (A.3)

and

M = E{(w − E{w}) (w − E{w})H}

=

(
Myy Mys

Msy Mss

)
, (A.4)

where Myy = E{(y(k)− E{y(k)})·(y(k)− E{y(k)})H}, Mys = E{(y(k)− E{y(k)})·
(s(k)− E{s(k)})H}, Msy = E{(s(k)− E{s(k)}) · (y(k)− E{y(k)})H} and Mss =
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E{(s(k)− E{s(k)}) · (s(k)− E{s(k)})H}. The PDF p(w) = p(y(k), s(k)) results in
[SC08]:

p(w) = p(y(k), s(k)) =
1

(2π)(k+NK)/2|M|1/2 exp

(
−1

2
(w − w̄)HM−1(w − w̄)

)
.

(A.5)

Since the PDF p(y(k)) is a Gaussian distribution as well with mean E{y(k)} and
covariance Myy, the conditional PDF p(s(k)|y(k)) can be determined using Eq. A.1.
Finally, the required conditional expectation E{s(k)|y(k)} is derived according to:

E{s(k)|y(k)} =

∞∫
−∞

· · ·
∞∫

−∞
s(k) · p(s(k)|y(k)) ds(k). (A.6)

In the update step, the conditional mean ŝprop(k) = E{s(k)|y(k− 1)} and covariance
matrix Ps

prop(k) from the propagation step are already available and only the current
measurement y(k) needs to be incorporated to obtain E{s(k)|y(k)}. Using Eqs. 3.14
and 3.15, Eq. A.6 is therefore given by [Mey00, SC08]:

E{s(k)|y(k)} = E{s(k)|y(k − 1)}+MsyM
−1
yy (y(k)− E{y(k)|y(k − 1)}), (A.7)

which can further be derived to:

E{s(k)|y(k)} = ŝprop(k) +MsyM
−1
yy (y(k)− E{hT

s s(k) + n(k)|y(k − 1)})
= ŝprop(k) +MsyM

−1
yy (y(k)− E{hT

s s(k)|y(k − 1)})
= ŝprop(k) +MsyM

−1
yy (y(k)− hT

s ŝprop(k)), (A.8)

with [Mey00]:

Msy = E{(s(k)− E{s(k)|y(k − 1)}) · (y(k)− E{y(k)|y(k − 1)})H}
= E{(s(k)− ŝprop(k)) ·

(
hT
s s(k) + n(k)− hT

s ŝprop(k)
)H}

= E{(s(k)− ŝprop(k)) ·
(
hT
s (s(k)− ŝprop(k)) + n(k)

)H}
= Ps

prop(k) · hs, (A.9)

and

Myy = E{(y(k)− E{y(k)|y(k − 1)}) · (y(k)− E{y(k)|y(k − 1)})H}
= E{(hT

s (s(k)− ŝprop(k)) + n(k)
) · (hT

s (s(k)− ŝprop(k)) + n(k)
)H}

= hT
s ·Ps

prop(k) · hs + σ2
n(k). (A.10)

Combining Eqs. A.8, A.9 and A.10 results in:

E{s(k)|y(k)} = ŝup(k) = ŝprop(k) + ks(k)
(
y(k)− hT

s ŝprop(k)
)
, (A.11)

with

ks(k) = Ps
prop(k) · hs

(
hT
s P

s
prop(k)hs + σ2

n(k)
)−1

. (A.12)
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A.2 MMSE Estimation in Update Step under

Gaussian Assumption

In the update step of the Kalman filter, the objective is to estimate the speech pre-
diction error vector esprop(k) having access only to the differential signal ds(k) given
by:

ds(k) = esprop(k) + n(k), (A.13)

where esprop(k) and n(k) are statistically independent. Performing a Min-
imum Mean Square Error (MMSE) estimation of esprop(k), i.e., minimiz-
ing E{(esprop(k)− êsprop(k))

2}, the solution equals the conditional expectation
E{esprop(k)|ds(k)} assuming Gaussian models for esprop(k) and n(k) as shown in the
following.

The derivation of E{esprop(k)|ds(k)} is decomposed into two parts. In the first part,
the conditional expectation E{esprop(k)|ds(k)} is determined based on the following
Gaussian Probability Density Functions (PDFs):

p(ds(k)) =
1√

2πσ2
ds

(k)
· exp

(
− d2s(k)

2σ2
ds
(k)

)
, (A.14)

p(esprop(k)) =
1√

2πσ2
esprop

(
k
k

) · exp
⎛
⎝−

(
esprop(k)

)2
2σ2

esprop

(
k
k

)
⎞
⎠ and (A.15)

p(ds(k)|esprop(k)) =
1√

2πσ2
n (k)

· exp
(
−
(
ds(k)− esprop(k)

)2
2σ2

n (k)

)
, (A.16)

where σ2
ds

(k) = E{d2s(k)}. In the second part, an expression for the remaining com-

ponents E
{(

esprop(k −NK + 1), ..., esprop(k − 1)
) |ds(k)} is derived.

Using the assumed PDFs given in Eqs. A.14-A.16, the expectation E{esprop(k)|ds(k)}
results in the well-known Wiener filter solution (see, e.g, [LO79], [VM06, Chapter 11])
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given by:

E{esprop(k)|ds(k)} = ...

=

∞∫
−∞

esprop(k) · p(esprop(k)|ds(k)) desprop(k)

=

∞∫
−∞

esprop(k) ·
p(ds(k)|esprop(k))

p(ds(k))
· p(esprop(k)) desprop(k)

=
1

p(ds(k))

∞∫
−∞

esprop(k)

2π

√
σ2
esprop

(
k
k

)
· σ2

n(k)

exp

⎛
⎝−

(
ds(k)− esprop(k)

)2
2σ2

n(k)

−
(
esprop(k)

)2
2σ2

esprop

(
k
k

)
⎞
⎠ desprop(k)

=

exp

(
− d2s(k)

2σ2n(k)

)

p(ds(k))2π

√
σ2
esprop

(
k
k

)
· σ2

n(k)

∞∫
−∞

esprop(k) exp

⎛
⎝ds(k)e

s
prop(k)

σ2
n(k)

−

(
σ2
esprop

(
k
k

)
+ σ2

n(k)
)
(esprop(k))

2

2σ2
esprop

(
k
k

)
· σ2

n(k)

⎞
⎠ desprop(k)

=
σ2
esprop

(
k
k

)
σ2
esprop

(
k
k

)
+ σ2

n (k)
· ds(k). (A.17)

If esprop(k) follows a multivariate Gaussian distribution, the following condition holds
for adjacent samples of the prediction error [KBJ00]:

E{esprop(k − κ+ 1)|esprop(k)} =
σ2
esprop

(
k−κ+1

k

)
σ2
esprop

(
k
k

) · esprop(k), (A.18)

with 1 ≤ κ ≤ NK.

The remaining estimates
(
êsprop(k −NK + 1), ..., êsprop(k − 1)

)
can be derived using

Eqs. A.17 and A.18 as well as general properties of conditional expectation values
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[Dur95] according to:

E{esprop(k − κ+ 1)|ds(k)} = E
{
E
{
esprop(k − κ+ 1)|esprop(k), ds(k)

} |ds(k)}
= E

⎧⎨
⎩

σ2
esprop

(
k−κ+1

k

)
σ2
esprop

(
k
k

) esprop(k)

∣∣∣∣∣∣ ds(k)
⎫⎬
⎭

=
σ2
esprop

(
k−κ+1

k

)
σ2
esprop

(
k
k

) E{esprop(k)|ds(k)}

=
σ2
esprop

(
k−κ+1

k

)
σ2
esprop

(
k
k

)
+ σ2

n (k)
· ds(k). (A.19)

In vector notation, Eq. A.19 can be written as:

E{esprop(k)|ds(k)} =
ds(k)

σ2
esprop

(
k
k

)
+ σ2

n(k)

⎛
⎜⎜⎜⎝
σ2
esprop

(
k−NK+1

k

)
...

σ2
esprop

(
k
k

)
⎞
⎟⎟⎟⎠ , (A.20)

and matches Eq. 3.25 in the update step of the Kalman filter.

A.3 Complex-Valued Autoregressive Coefficients

In this section, the optimal Autoregressive (AR) coefficients are derived for the pur-
pose of Linear Prediction (LP). In contrast to conventional LP applications, e.g.,
speech coding, the input sequence x is assumed to be complex-valued in the following.
Based on previous samples x(k − i) ∈ C with 1 ≤ i ≤ NAR, the current sample x(k)
is predicted according to:

x̂(k) =

NAR∑
i=1

ai · x(k − i), (A.21)

by using complex-valued AR coefficients ai and a model order NAR. The optimal AR
coefficients are derived by minimizing the mean square prediction error ex(k) defined
as:

ex(k) = x(k)− x̂(k). (A.22)
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Therefore, the partial derivation of E{|ex(k)|2} with respect to the real part of aj
(1 ≤ j ≤ NAR) yields:

∂E{|ex(k)|2}
∂Re{aj} =

∂E{(x(k)− x̂(k)) (x(k)− x̂(k))
∗}

∂Re{aj}

=

∂E

{(
x(k)−

NAR∑
i=1

ai · x(k − i)

)(
x(k)−

NAR∑
i=1

ai · x(k − i)

)∗}
∂Re{aj}

=E

{
−x(k − j)

(
x(k)−

NAR∑
i=1

ai · x(k − i)

)∗

− x∗(k − j)

(
x(k)−

NAR∑
i=1

ai · x(k − i)

)}

=− ϕ∗
xx(j) +

NAR∑
i=1

a∗i · ϕ∗
xx(j − i)− ϕxx(j) +

NAR∑
i=1

ai · ϕxx(j − i)

=− 2 · Re

⎧⎨
⎩ϕxx(j)−

NAR∑
i=1

ai · ϕxx(j − i)

⎫⎬
⎭ !

= 0, (A.23)

with complex-valued autocorrelation function ϕxx(j) = E{x(k) · x∗(k − j)} having
the property that ϕxx(−j) = ϕ∗

xx(j). The expression for the imaginary part can
be derived in a similar way and results in:

∂E{|ex(k)|2}
∂Im{aj} =− 2j · Im

⎧⎨
⎩ϕxx(j)−

NAR∑
i=1

ai · ϕxx(j − i)

⎫⎬
⎭ !

= 0, (A.24)

Combining both derivations, the optimal AR coefficients have to fulfill the following
condition:

ϕxx(j)−
NAR∑
i=1

ai · ϕxx(j − i) = 0. (A.25)

For j = 1, ..., NAR, the Yule-Walker equations [PM96] for complex-valued signals
arise, given by:⎛
⎜⎜⎜⎝

ϕxx(1)
ϕxx(2)

...
ϕxx(NAR)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ϕxx(0) ϕ∗
xx(1) . . . ϕ∗

xx(1−NAR)
ϕxx(1) ϕxx(0) . . . ϕ∗

xx(2−NAR)
...

...
. . .

...
ϕxx(NAR − 1) ϕxx(NAR − 2) . . . ϕxx(0)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Rxx

·

⎛
⎜⎜⎜⎝

a1
a2
...

aNAR

⎞
⎟⎟⎟⎠ ,

(A.26)
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which have to be solved with respect to the AR coefficients aj . Since Rxx is her-
mitian, Eq.A.26 can be solved efficiently, e.g., by using the Levinson-Durbin algo-
rithm [Hay96].
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B

Independence Assumption of

Prediction Errors

In the derivation of the spectral Kalman filter approach in Sec. 3.2, the task in the up-
date step becomes a ‘classical’ noise reduction problem: the ‘noisy’ (disturbed) DFT
coefficients D(λ, μ) shall be decomposed into ‘target’ DFT coefficients ES

prop(λ, μ) and

‘noise’ DFT coefficients EN
prop(λ, μ). As the differential signal D(λ, μ) consists of the

sum of ES
prop(λ, μ) and EN

prop(λ, μ), i.e., D(λ, μ) = ES
prop(λ, μ)+EN

prop(λ, μ), a conven-
tional statistical estimator can be applied in the update step which is adapted to the
statistics of the two prediction errors ES

prop(λ, μ) and EN
prop(λ, μ). For this purpose,

MMSE estimators based on Gaussian or generalized Gamma priors are proposed in
Sec. 3.2. In analogy to the original noise reduction approaches which are directly ap-
plied to Y (λ, μ) = S(λ, μ) +N(λ, μ), it is assumed here that target and noise signal,
i.e., the two prediction errors of speech and noise, are statistically independent. How-
ever, only in the case of perfect prediction, the prediction errors equal the ‘excitation’
DFT coefficients ES(λ, μ) and EN (λ, μ) as defined in Eqs. 3.51 and 3.52, and the
assumption is fulfilled. Otherwise the independence assumption introduces a small
error which is analyzed in the following.

Considering the two prediction errors as complex-valued random variables,
ES

prop(λ, μ) and EN
prop(λ, μ) are statistical independent only if the joint PDF

p(ES
prop(λ, μ), E

N
prop(λ, μ)) equals the product of the marginal PDFs p(ES

prop(λ, μ))

and p(EN
prop(λ, μ)) [Rou97], i.e.:

p(ES
prop(λ, μ), E

N
prop(λ, μ)) = p(ES

prop(λ, μ)) · p(EN
prop(λ, μ)). (B.1)

As the PDF of a complex-valued random variable is fully characterized by the
joint PDF of its real and imaginary parts [Say03], statistical independence between
ES

prop(λ, μ) and EN
prop(λ, μ) can also be expressed by relating the statistics of the re-

spective real and imaginary parts to each other. Therefore, the following conditions
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have to be fulfilled all together for statistical independence:

p(Re{ES
prop(λ, μ)},Re{EN

prop(λ, μ)}) = p(Re{ES
prop(λ, μ)}) · p(Re{EN

prop(λ, μ)})
(B.2)

p(Im{ES
prop(λ, μ)}, Im{EN

prop(λ, μ)}) = p(Im{ES
prop(λ, μ)}) · p(Im{EN

prop(λ, μ)})
(B.3)

p(Re{ES
prop(λ, μ)}, Im{EN

prop(λ, μ)}) = p(Re{ES
prop(λ, μ)}) · p(Im{EN

prop(λ, μ)})
(B.4)

p(Im{ES
prop(λ, μ)},Re{EN

prop(λ, μ)}) = p(Im{ES
prop(λ, μ)}) · p(Re{EN

prop(λ, μ)}).
(B.5)

In order to prove the statistical independence of ES
prop(λ, μ) and EN

prop(λ, μ) based
on Eqs. B.2 – B.5, the required joint PDFs as well as the marginal distributions are
measured within the proposed Kalman filter system. Therefore, about 1.5 hours of
speech is randomly selected from the NTT database [NC94] and disturbed by White
Gaussian Noise (WGN) at different input Signal-to-Noise-Ratio (SNR) values vary-
ing between -10 dB and 35 dB with 5 dB step size. As proposed in Sec. 3.2.3.1, the
Gaussian model is applied within the update step of the Kalman filter for this inves-
tigation.

Figure B.1 shows the measured histograms for the different constellations averaged
over all input SNR values. In each row, the plot on the left side depicts the contours
of the joint distribution and the plot on the right side the contours for the product
of the respective marginal distributions. Overall, it can be seen that the particular
histograms look very similar. The differences at the corners of the figures (the sur-
faces on the left side look a little bit more grainy than the plots on the right side) are
due to the fact that the same amount of data is used to determine both distributions
resulting in a lower graphical resolution for the joint distributions. However, marginal
deviations can be observed comparing Figs. B.1(a) and B.1(b) as well as Figs. B.1(c)
and B.1(d). Here, the declines of the PDFs slightly vary in the first and third quad-
rants leading to slight unbalances for the joint distributions which indicate possible
statistical dependencies between the respective real and imaginary parts. In order to
quantify these dependencies, further investigations are applied in the following.

In the derivation process of Sec. 3.2, not the full statistical independence between
the two prediction errors is required. It is only assumed that E{|D(λ, μ)|2} =
E{|ES

prop(λ, μ)|2}+E{|EN
prop(λ, μ)|2}. Therefore, only this assumption is evaluated in

the sequel. An exact calculation of E{|D(λ, μ)|2} for the proposed system results in:

E{|D(λ, μ)|2} =E{(ES
prop(λ, μ) + EN

prop(λ, μ))(E
S
prop(λ, μ) + EN

prop(λ, μ))
∗}

=E{|ES
prop(λ, μ)|2}+ E{|EN

prop(λ, μ)|2}
+ E{ES

prop(λ, μ) · (EN
prop(λ, μ))

∗ + E{(ES
prop(λ, μ))

∗ · EN
prop(λ, μ)},

(B.6)

where in general E{ES
prop(λ, μ) · (EN

prop(λ, μ))
∗}+ E{(ES

prop(λ, μ))
∗ ·EN

prop(λ, μ)} �= 0.
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Figure B.1: Contour lines of measured distributions for real and imaginary parts of ES
prop

and EN
prop: joint distributions in (a), (c), (e) and (g), products of marginal

distributions in (b), (d), (f) and (h).
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The expression E{ES
prop(λ, μ) · (EN

prop(λ, μ))
∗} in Equation B.6 can be simplified to:

E{ES
prop(λ, μ)·(EN

prop(λ, μ))
∗} = ...

E
{
(S(λ, μ)− Sprop(λ, μ)) · (N(λ, μ)−Nprop(λ, μ))

∗}
=E {S(λ, μ) · (N(λ, μ))∗}︸ ︷︷ ︸

=0

−E {S(λ, μ) · (Nprop(λ, μ))
∗}︸ ︷︷ ︸

=0

− E {Sprop(λ, μ) · (N(λ, μ))∗}︸ ︷︷ ︸
=0

+E {Sprop(λ, μ) · (Nprop(λ, μ))
∗}

=E {Sprop(λ, μ) · (Nprop(λ, μ))
∗} . (B.7)

In a similar way, the term E{(ES
prop(λ, μ))

∗ · EN
prop(λ, μ)} results in

E {(Sprop(λ, μ))
∗ ·Nprop(λ, μ)}. Hence, E{|D(λ, μ)|2} is given by:

E{|D(λ, μ)|2}=E{|ES
prop(λ, μ)|2}+ E{|EN

prop(λ, μ)|2}
+ E {Sprop(λ, μ) · (Nprop(λ, μ))

∗}+E {(Sprop(λ, μ))
∗ ·Nprop(λ, μ)}

=E{|ES
prop(λ, μ)|2}+ E{|EN

prop(λ, μ)|2}
+ 2 · E{Re{Sprop(λ, μ) ·Nprop(λ, μ)}}. (B.8)

As mentioned before, the expression E{Re{Sprop(λ, μ) ·Nprop(λ, μ)}} generally is non-
zero as Sprop as well as Nprop are both estimates from the same noisy observation Y
of previous frames. In order to analyze the introduced error when neglecting the last
summand in Eq. B.8, the logarithmic error LogERR is investigated according to:

LogERR = 10 · log10
(

E{|D(λ, μ)|2}
E{|ES

prop(λ, μ)|2}+ E{|EN
prop(λ, μ)|2}

)

= 10 · log10
(
1 +

2 · E{Re{Sprop(λ, μ) ·Nprop(λ, μ)}}
E{|ES

prop(λ, μ)|2}+ E{|EN
prop(λ, μ)|2}

)
, (B.9)

which can be approximated by:

̂LogERR ≈ 1

MF

MF−1∑
μ=0

∣∣∣∣∣∣∣∣∣
10 · log10

⎛
⎜⎜⎜⎝1 +

2 ·
NF−1∑
λ=0

Re{Sprop(λ, μ) ·Nprop(λ, μ)}
NF−1∑
λ=0

|ES
prop(λ, μ)|2 +

NF−1∑
λ=0

|EN
prop(λ, μ)|2

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
,

(B.10)

where NF and MF represent the total number of evaluated frames and frequency
bins, respectively. The unit of the logarithmic error is dB and an error near 0 dB is
desirable. For the investigation, the Kalman filter system presented in Sec. 3.2.3.1
is again used relying on Gaussian models for both prediction errors. Moreover, five
different speech signals from the NTT speech database [NC94] are each degraded by
six different noise signals (f16, babble, car, factory1, factory2, white) taken from the
NOISEX-92 database [VS93]. In total, NF = 40000 frames and MF = 256 frequency
bins are used.
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For this scenario, the averaged, SNR-dependent results of ̂LogERR are as follows:

SNR -10 dB -5 dB 0 dB 5 dB 10 dB
̂LogERR 0.0097 dB 0.0112 dB 0.0120 dB 0.0108 dB 0.0097 dB

SNR 15 dB 20 dB 25 dB 30 dB 35 dB
̂LogERR 0.0072 dB 0.0052 dB 0.0034 dB 0.0027 dB 0.0022 dB

It can be seen that the deviation is extremely small showing that the influence of the
expression 2 ·E{Re{Sprop(λ, μ) ·Nprop(λ, μ)}} within the derivation of the estimators
in Sec. 3.2 is irrelevant and can be neglected.
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C

Computational Complexity and

Memory Requirements

In this section, the theoretical complexity as well as the memory requirements for the
proposed Kalman filter approach of Sec. 3.2 are analyzed.

Theoretical Complexity

In the following, the additional number of operations which are necessary for the
complex-valued Kalman filter approach on top of a conventional, statistical estimator
is evaluated. Therefore, the computational complexity of the analysis-synthesis struc-
ture and the statistical weighting rule including noise Power Spectral Density (PSD)
estimation and Signal-to-Noise-Ratio (SNR) estimation is not considered. Moreover,
possible methods for reducing the computational complexity are proposed at the end.

Using a speech model of order NK and a noise model of order MK, the number of
operations in terms of additions, multiplications and divisions solely for the Kalman
filter (propagation and update step) yields:

# Additions # Multiplications # Divisions

2(M2
K +N2

K) +MK +NK + 3 2(M2
K +N2

K) + 9(MK +NK)− 2 1

The operations are a mixture of complex-valued and real-valued instructions. In or-
der to apply the Kalman filter equations, the prediction coefficients of speech and
noise have to be estimated in advance. Therefore, the Levinson-Durbin algorithm
as well as the complex-valued autocorrelation function of length LAC are necessary
for the speech and the noise signal. Using a very efficient implementation of the
Levinson-Durbin algorithm based on Toeplitz matrices [Mus84], the number of oper-
ations required for this purpose is given as follows:
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# Additions # Multiplications # Divisions

1.5 · (N2
K +M2

K)+ 3.5 · (N2
K +M2

K)+

(LAC + 0.5)(NK +MK)+ (LAC − 2.5)(NK +MK)+ NK +MK + 4

2 · LAC − 4 2 · LAC

In order to get a rough estimate of the additional complexity for the Kalman filter
structure, the following weights are applied for the different instructions:

Addition Multiplication Division
real-valued 1 1 16

complex-valued 2 4 not required

If possible, multiplication and addition are combined and counted as one operation
assuming that a digital signal processor with a corresponding multiply-accumulate
instruction is used for the implementation. Using the parameter settings as proposed
in Sec. 3.3, i.e., sampling frequency fs = 8 kHz, Fast Fourier Transform (FFT) size
MF = 256, frame length LF = 160, frame shift size LFS = 40, model orders NK = 3
and MK = 2 and autocorrelation function length LAC = 6, the proposed Kalman filter
approach requires about 18.74 Weighted Million Operations per Second (WMOPS)
in addition to a conventional, statistical estimator. The computational complex-
ity of a state-of-the-art noise reduction technique working in the frequency domain
lies in the order of 3 – 5 WMOPS. In [JMV+00], a noise suppression system for the
Adaptive Multi-Rate (AMR) codec is proposed which is based on the same system
parameters as above. The approach uses a simplified Minimum Statistics algorithm
[Mar94] and applies the MMSE Log Spectral Amplitude (LSA) weighting rule [EM85].
In total, this algorithm requires 3.39 WMOPS. Hence, the overall complexity of the
complex-valued Kalman filter approach exceeds that of a conventional system by a
factor of 5 – 7. However, there are different possibilities to reduce the computational
costs as stated below.

Complexity Reduction

In order to reduce the complexity, the following methods are proposed but not further
covered in this thesis:

• Frequency-dependent model orders for speech and noise
As proposed in [Pud02], the model orders for the speech and the noise signal
can be chosen frequency-dependent. At least for speech signals, it is known that
lower frequencies exhibit a higher temporal correlation compared to higher frequen-
cies [Coh05b]. Thus, even lower model orders can be used for higher frequencies
in order to save complexity.
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• Update rate of prediction coefficients
In the current realization of the algorithm, the prediction coefficients are calculated
in each frame, i.e., every 5 ms. At the expense of a small performance loss, the
prediction coefficients can be kept fixed for more than one frame, e.g., two or three
frames to reduce the computational load.

• Calculation of prediction coefficients
Instead of using the Levinson-Durbin algorithm in order to determine the pre-
diction coefficients, less complex methods can be applied as, e.g., an adaptive
prediction error filter based on a normalized Least Mean Square (LMS) algo-
rithm [WC98].

Memory Requirements

This section addresses the evaluation of the memory requirements for the proposed
Kalman filter system including the use of the different SNR-dependent MMSE estima-
tors within the update step as proposed in Sec. 3.2.3.3. Similar to the previous section,
only the extra memory which is required in addition to a conventional, statistical esti-
mator is analyzed. A distinction is drawn between static and dynamic memory which
is stored in the Read-Only-Memory (ROM) and Random-Access-Memory (RAM), re-
spectively. It is assumed that each real-valued variable requires one ROM or RAM
word and accordingly each complex-valued variable two ROM or RAM words. The
requirements are listed in the following, separately for the propagation step and the
update step.

Propagation Step

Within the propagation step, the previous LAC enhanced speech and noise DFT
coefficients have to be stored in order to determine the autocorrelation functions
which are required for the estimation of the prediction coefficients. Moreover, the
transition matrices A and B as well as the error covariance matrices PS

prop and PN
prop

take up memory as follows:

Algorithm Components Memory Requirements in
RAM Words ROM Words

Enhanced speech and noise DFT coefficients MF · LAC

Transition matrices A and B MF · (NK +MK)

Matrices PS
prop and PN

prop
MF · (N2

K +M2
K)

−MF
2 · (NK +MK)
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Update Step

One look-up table has to be stored for each of the NMMSE MMSE estimators which
are used for the SNR-dependent estimation in the update step. Each look-up table
consists of a two-dimensional matrix containing the weighting gains for all quantized
a priori SNR and a posteriori SNR values. The total number of rows and columns
of each matrix depends on the minimum and maximum SNR values SNRmin and
SNRmax as well as the step size ΔSNR. In addition to the look-up tables, the error
covariance matrices PS

up and PN
up have to be stored. All memory requirements within

the update step are listed in the following:

Algorithm Components Memory Requirements in
RAM Words ROM Words

Look-up tables NMMSE ·
(

SNRmax−SNRmin
ΔSNR

)2
Matrices PS

up and PN
up

MF · (N2
K +M2

K)

−MF
2 · (NK +MK)

Using the same parameter settings as in the proposed system of Sec. 3.3, i.e.,
FFT size MF = 256, model orders NK = 3 and MK = 2, autocorrelation func-
tion length LAC = 6, NMMSE = 11 different MMSE estimators, SNRmin = −40 dB,
SNRmax = 50 dB as well as a step size ΔSNR = 1 dB, the proposed Kalman filter
approach requires about 8192 RAM words and 89100 ROM words more than a con-
ventional, statistical estimator.



D

Instrumental Measurements

In order to evaluate the performance of different algorithms in the field of speech
processing, the best way is to conduct a listening test. However, such tests are
cumbersome and costly as a large number of probands is required. Moreover, each
test person has to judge several audio samples which additionally takes a lot of time.

For the purpose of noise reduction, researchers have been busy to find instrumental
measurements that predict the subjectively perceived speech quality of the processed
signals in terms of speech distortions and noise attenuation. Although a listening
test will probably never be replaced completely by instrumental measures, several
instrumental quantities can be found in literature correlating well with the listener’s
impressions.

For the evaluation of the different algorithms in this thesis, the system and mea-
sures proposed in [Gus99, GMV96, Lot04] are applied. A brief overview about the
framework as well as the instrumental measurements is given in the following.

Framework

A prerequisite for the measurements stated below is that not only the enhanced
signal ŝ(k) is available in the system but also purely the filtered speech signal s̃(k)
and the filtered noise signal ñ(k). This allows to investigate the influences of the noise
reduction algorithm on the speech and noise signals separately.

The framework used for this purpose is depicted in Fig. D.1. The weighting
gains G(λ, μ) are determined in the frequency domain based on the noisy input
signal y(k) which is the sum of the clean speech signal s(k) and noise signal n(k).
Afterwards, not only the noisy signal is filtered by G(λ, μ) but also the clean speech
and noise Discrete Fourier Transform (DFT) coefficients S(λ, μ) and N(λ, μ) result-
ing in the filtered DFT coefficients S̃(λ, μ) and Ñ(λ, μ). Finally, all three signals are
transformed back into the time domain.
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Figure D.1: System setup for the instrumental measurements.

Segmental Speech and Noise Attenuation

Segmental speech attenuation SegSA and segmental noise attenuation SegNA are
defined as the segmental power ratios between original speech/noise signal and filtered
speech/noise signal defined as follows:

SegSA =
1

C(Ks)

∑
l∈Ks

⎛
⎜⎜⎜⎝10 · log10

⎛
⎜⎜⎜⎝

LF−1∑
k=0

s2(k + l · LF)

LF−1∑
k=0

s̃2(k + l · LF)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ (D.1)

SegNA =
1

C(Kn)

∑
l∈Kn

⎛
⎜⎜⎜⎝10 · log10

⎛
⎜⎜⎜⎝

LF−1∑
k=0

n2(k + l · LF)

LF−1∑
k=0

ñ2(k + l · LF)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ (D.2)

where Ks represents the set of frames corresponding to speech activity, Kn the set of
frames to be evaluated in total and C(·) the number of elements in a set. Moreover,
LF denotes the length of one segment. The unit of SegNA and SegSA is dB.

Although the segmental speech attenuation does not state anything about how the
speech is distorted, the difference between noise and speech attenuation SegNA-SegSA
indicates the effective noise reduction and justifies the application of noise suppression
for values greater than 0 dB.
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Segmental Speech Signal-to-Noise Ratio

The segmental speech signal-to-noise ratio SegSSNR is defined as the geometric mean
of the signal-to-noise ratios of short segments, while the squared difference between
the clean speech signal s(k) and the filtered speech signal s̃ is interpreted as noise. It
is defined according to:

SegSSNR
s,(l)
s−s̃ = 10 · log10

( ∑LF−1

k=0 s2(k + l · LF)∑LF−1

k=0 (s(k + l · LF)− s̃(k + l · LF))
2

)

SegSSNR =
1

C(Ks)

∑
l∈Ks

SegSSNR
s,(l)
s−s̃ . (D.3)

The SegSSNR measure is given in dB as well. It provides an indicator for the dis-
tortion of the speech signal and does not give any information about possible noise
attenuation. The higher the result for SegSSNR the better the performance.
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E

Deutschsprachige Kurzfassung

Die Benutzung des Mobiltelefons ist heutzutage aus dem alltäglichen Gebrauch
der meisten Menschen nicht mehr wegzudenken. Mittlerweile ist der Informations-
austausch via Sprache zu jedem Zeitpunkt von fast jedem Ort der Welt aus
möglich. Obwohl die Vision nach einer permanenten Erreichbarkeit und Konnek-
tivität inzwischen fast weltweit realisiert worden ist, besteht weiterhin der Bedarf,
die existierenden Kommunikationssysteme hinsichtlich Sprachqualität und Sprachver-
ständlichkeit zu verbessern. Der Hörkomfort kann insbesondere bei der Sprachüber-
tragung aus gestörten Umgebungen durch akustische Hintergrundstörungen, wie
beispielsweise Verkehrslärm oder Bürogeräuschen erheblich beeinträchtigt werden.

In dieser Arbeit wird ein neuartiges, modellbasiertes Sprachverbesserungssystem zur
einkanaligen Störgeräuschreduktion vorgestellt. Im Gegensatz zu konventionellen
Verfahren steht bei den entwickelten Algorithmen die Ausnutzung zeitlicher und
spektraler Abhängigkeiten von Sprach- und Störsignalen explizit im Fokus. Zur
Berücksichtigung der zeitlichen Korrelation wird ein modifiziertes Kalman-Filter im
Frequenzbereich abgeleitet. Wichtigste Neuerungen bilden hierbei die Verwendung
einer komplexwertigen Prädiktion zur Schätzung der aktuellen DFT-Koeffizienten von
Sprache und Störung sowie der Einsatz von SNR-abhängigen MMSE-Schätzregeln,
welche an die gemessenen Statistiken des Eingangssignals angepasst sind. Um
zusätzlich spektrale Abhängigkeiten von Sprachsignalen auszunutzen, zeigt diese
Arbeit als neue Möglichkeit auf, Techniken der künstlichen Bandbreitenerweiterung
für ein breitbandiges Störgeräuschreduktionssystem zu nutzen. Das vorgestellte
Konzept verwendet dabei das bereits prozessierte und verbesserte Signal von tiefen
Frequenzen erneut, um die Ergebnisse einer konventionellen Störreduktion bei
höheren Frequenzen zu verbessern. Darüber hinaus beschäftigt sich diese Arbeit
mit wirksamen Gegenmaßnahmen zur Reduzierung von sogenannten Musical Tones
und bietet eine neuartige Lösung zur Unterdrückung von zeitlich stark veränderlichen,
harmonischen Störungen.

Alle entwickelten Verfahren zur Sprachverbesserung wurden in der vorliegenden
Arbeit anhand von instrumentellen Messungen und subjektiven Höreindrücken aus-
giebig bewertet und evaluiert. Im Vergleich zu konventionellen Verfahren der Stör-
geräuschreduktion stellte sich dabei heraus, dass die vorgestellten Algorithmen
in Bezug auf Stördämpfung und Sprachverzerrungen deutlich bessere Ergebnisse
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erzielten. Das neue modellbasierte System ist dabei nicht auf die Anwendung in
Mobiltelefonen beschränkt. Es kann zusätzlich verwendet werden, um die Sprach-
qualität von Freisprecheinrichtungen, Konferenzsystemen oder digitalen Hörgeräten
zu verbessern.
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