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Softbit Speech Decoding: A New Approach
to Error Concealment

Tim Fingscheidt and Peter Vary

Abstract—In digital speech communication over noisy channels
there is the need for reducing the subjective effects of residual bit
errors which have not been eliminated by channel decoding. This
task is usually callederror concealment.

We describe a new and generalizing approach to error conceal-
ment as part of a modified robust speech decoder. It can be applied
to any speech codec standard and preserves bit exactness in case of
an error free channel. The proposed method requiresbit reliability
information provided by the demodulator or by the equalizer or
specifically by the channel decoder and can exploit additionallya
priori knowledge about codec parameters. We apply our algorithms
to PCM, ADPCM, and GSM full-rate speech coding using AWGN,
fading, and GSM channel models, respectively. It turns out that
the speech quality is significantly enhanced, showing the desired
inherent muting mechanism or graceful degradation behavior in
case of extreme adverse transmission conditions.

Index Terms—Error concealment, frame repetition, muting,
speech decoding.

I. INTRODUCTION

I N digital mobile communication systems the issue of speech
quality is important. The best achievable speech quality is

first of all determined by the speech coding algorithm. In mobile
radio systems channel coding is applied to preserve the quality
level over a wide range of channel characteristics.

Nevertheless, even with channel coding residual bit errors
occur that may lead to severe degradation of speech quality.
These annoying effects can be reduced or even be eliminated
by error concealment. In cellular system standards such as
GSM [1]–[3] error concealment algorithms are proposed as
nonmandatory recommendations. This allows manufacturers to
implement proprietary solutions to improve existing systems.

To reduce the impact of known errors (such as frame losses)
on the reconstructed waveform, it is possible to apply wave-
form substitution techniques directly on the waveform [4]–[9],
[65]. However, if a more sophisticated speech coder is used, it is
usually advantageous to use the implied parametrization of the
speech signal and conceal the errors at the level of thebits or
codecparameters. Accordingly, the GSM standards on substi-
tution and muting of lost frames [1]–[3] propose simple mech-
anisms such as parameter repetition or parameter extrapolation.
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They are mainly driven by a binarybad frame indicator(BFI)
that marks the current received frame as good or bad. This BFI
can be seen as a very coarse reliability information that may
initiate the substitution of a complete frame even if only a few
bits have been disturbed, or, on the other hand, that may declare
a frame as reliable although some bits are incorrect. There are
some proposals to enhance the reliability information [10]–[13].
Alternatively, BFI may not be generated explicitly. Mindeet al.
[14] compute weighting factors to perform parameter extrapo-
lation by weighted summation over previous frames.

There are several approaches to joint source/channel coding
employingchannel optimized vector quantization(COVQ) and
soft decision decoding based on theminimum mean squared
error criterion (MS). The aim is the quantizer/encoder design for
a specific channel condition [15]–[19]. However, this approach
is in general not compatible with existing standards.

In this paper, a new concept of error concealment is proposed
that can be applied to any speech coding algorithm. It consists
of a modification of the speechdecodersuch that (real-valued)
softbitsinstead of (binary) hardbits are used. A softbit can be
interpreted as joint knowledge of a hardbit and its reliability,
i.e., the estimated bit error probability. In contrast to BFI-driven
error concealment techniques, the softbit speech decoding con-
cept is able to processbit-individual nonbinaryreliability in-
formation, which can be provided e.g., by a soft-output channel
decoder [20], [21].

Due to practical reasons in most cases residual redundancy
can be observed within the speech codec parameters. As already
mentioned by Shannon this source coding sub-optimality should
be exploited at the receiver “ to combat noise” [22]. We ex-
ploit the residual redundancy in terms of parametera priori
knowledgethat is subject to algorithms based on the Bayesian
framework computinga posteriori probabilitiesfor individual
codec parameters. Thea priori knowledge as we use it refers
to a Markov model of the speech codec parameter. It should be
noted that in the literature, hidden Markov models (HMMs) are
also proposed to describe the statistical behavior of the source
(e.g., [23], [24]).

Finally, the speech codec parameters are estimated according
to appropriate error criteria that reflect the perceived quality.
Gerlach [25], [26] and Feldes [27], [28] proposed MS estima-
tion, however still based on simplifying assumptions about the
a posterioriprobabilities. MS estimation of codec parameters
gives a significant quality advantage in comparison to the al-
ternative approaches of joint source and channel decoding ex-
ploiting sourcea priori knowledge (see e.g., [29]–[33]) as these
techniques minimize bit, symbol, or path error probability.
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Fig. 1. Conventional hardbit speech decoding.

In the case of an error free channel situation the new softbit
decoding approach preserves bit exactness as required for type
approval.

II. CONCEPT OFSOFTBIT SPEECHDECODING

In general, a speech encoder producescodec parameters, that
are quantized and mapped to bit combinations. These parame-
ters are e.g., spectral coefficients, pitch periods, gain factors,
codebook entries, etc., or even quantized PCM or ADPCM sam-
ples [34], [35].

Let us consider the transmission of a specific codec parameter
over a noisy channel as described by Fig. 1. The time

index denotes the relative discrete time instant; this can be
e.g., a frame or a subframe instant. The time index shall
specify the present time index, accordingly are
time indices of previous frames or subframes. For simplicity, we
restrict ourselves here to scalar quantization. In Section III-E the
concept is extended to vector quantization.

The codec parameter at the present time instant is
quantized according to with QT (QT: quanti-
zation table). It can be represented by a quantization table index

with . Via bit mapping (BM) a bit com-
bination

(1)

consisting of bits is assigned to each quantized parameter
(or quantization table index). The bits are assumed to

be bipolar, i.e., . For simplicity we write
as well as . The transmission of this bit

combination is described by the so-calledequivalent channel
which might consist of any combination of the noisy analog
channel with channel (de)coding, (de)modulation, and equal-
ization. Due to the channel noise the received bit combination

is possibly not identical to the transmitted one. In a con-
ventional decoding scheme as depicted in Fig. 1 the received
bit combination is applied to table decoding (inverse bit
mappingscheme (BM )). Thereafter, the decoded parameter

is used within the specific speech decoder algorithm to
reconstruct speech samples. We call this conventional solution
hardbit (speech) decoding (HD).

The proposed new approach to error concealment by softbit
speech decoding (SD) is depicted in Fig. 2. It requires addition-
ally reliability information (e.g., [31]) in terms of estimated bit
error probabilities

(2)

of the received bit combination . There are several possibil-
ities to obtain such estimates. Some of them are discussed in
Section III-A. The joint information of a received bit and its es-
timated instantaneous error probability is what we call asoftbit

In the literature there are several explicit definitions of the softbit
using the same information [17], [31], [36], [37].

The first algorithmic step of softbit speech decoding consists
in the computation of parameter transition probabilities,
i.e., P , . They denote the prob-
ability of theknownreceived bit combination under the as-
sumption of anyunknownbit combination that might have
been transmitted. As shown in Section III-B we explain how to
compute these probabilities using and .

In the second step the parameter transition probabilities
P have to be combined witha priori knowledgeabout
the codec parameter which can be measured once in advance by
processing a representative speech database by the speech en-
coder. Thea priori knowledge is stored in the decoder in a ROM
table. Different kinds ofa priori knowledge are discussed in
Section III-C. As a result of the second step we obtaina pos-
teriori probabilitiesP with
being the probabilities of each of the possibly transmitted bit
combinations given the received one and given possibly
additional receiver information marked by “.” Several ways of
computinga posterioriprobabilities are shown in Section III-D.
Sections IV-A and IV-B give solutions to thea posteriori
probabilities if additional information is obtainable by a block
code, or by diversity reception.

The third and last block of the softbit speech decoding process
according to Fig. 2 is theparameter estimator. The a poste-
riori probabilities are used to find optimum parameter values

taking an appropriate error criterion into consideration.
Two widely used estimators are discussed in Section III-E.

Sections IV and Section V give applications to prove the ca-
pabilities of the proposed softbit speech decoding technique.

III. SOFTBIT SPEECHDECODING ALGORITHM

A. Bit Error Probabilities

In the following it is described by two examples how to pro-
vide reliability information in terms of error probability esti-
mates of the received bits (see also (2)).

1) Fading Channel with Coherent BPSK:We assume a
fading channel with additive white Gaussian noise (constant
power spectral density ) and coherent binary phase
shift keying (BPSK) demodulation. This binary symmetric
channel can be described by Fig. 3(a) with the time varying
instantaneous bit error probability or by Fig. 3(b) with the
time varying fading factor and the effective noise samples

at the receiver output.
The bit error probability of the hard decided bit can

be formulated as [31], [38]

with

(3)
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Fig. 2. New softbit speech decoding technique.

Fig. 3. (a) BSC channel and (b) fading channel with fading factora and
additive Gaussian noise~z (m) at the receiver output.

and being thereal-valuedreceived value. Thechannel
state information(CSI) comprises the fading factor as
well as the normalized noise variance of the additive
Gaussian noise. Both values have to be estimated at the receiver.
From (3) it is obvious that an individual instantaneous bit error
probability can be assigned to each received value , even
if the CSI is constant.

2) Transmission Scheme with Channel Coding:If the equiv-
alent channel includes channel coding the required reliability in-
formation can be provided by a soft-output channel decoder. The
best choice is the channel decoder of Bahlet al. [21] because it
is able to yield the so-called log-likelihood values (L-values)

P

P
(4)

with being the input sequence to the channel decoder. The
hardbit is simply

sign (5)

whereas the corresponding bit error probability can be derived
from (4) as

(6)

Note that the less complex soft-output Viterbi algorithm (SOVA)
[20] yields approximations to the L-values in (4)–(6).

B. Parameter Transition Probabilities

Knowing the (instantaneous) bit error probability according
to (3) or (6) we get the conditional bit probability for the transi-
tion of a transmitted bit to the known received bit
as

P
if

if

(7)

If we consider the equivalent channel to be memoryless, the
parametertransition probability reads

P P (8)

This term includes the channel characteristics and provides
the probability of a transition from any possibly transmitted
bit combination , , to the known
received bit combination .

In real-world applications the assumption of a memoryless
equivalent channel can be a coarse approximation, even if an
interleaving scheme is employed. However, the achievable error
concealment based on (8) is still very effective (see Section V).

C. A Priori Knowledge

In specifying the requireda priori knowledge there are some
degrees of freedom. In the general case we model the quantized
parameter as a Markov process ofth order according to

P

P

To find out an appropriate Markov order it is convenient to
measure terms such as P , P , and P
or even higher order conditional and joint probabilities. This
can be achieved by applying a large speech database to the
speech encoder and by counting how often the different quan-
tizer output symbols, or different pairs of output symbols, occur.
We call P 0th order a priori knowledge(AK0) because it
gives a statistical description of a 0th order Markov process,
i.e., a memoryless process. Accordingly, we call P
or P first-order a priori knowledge(AK1) because
it refers to a first-order Markov process. The decision which
model should be taken is a matter of the

• observed redundancy;
• allowed complexity of the softbit speech decoder;
• tradeoff between performance and complexity.

If we model a parameter as 0th order Markov process,
probabilities P with have to be
stored in the decoder. With the entropy defined as

P P (9)
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the redundancy of bits can be used for error
concealment.

If a parameter is modeled as first order Markov process,
probabilities P with have to
be stored in the decoder. Then a redundancy of

bits can be used for error concealment, with the
conditional entropy

P

P (10)

This can be extended to even higher Markov orders, while the
storage requirements are words. In Section V exam-
ples of the appropriate Markov order are given.

D. A Posteriori Probabilities

For the estimation of a speech codec parameter at the receiver,
a posterioriprobabilities providing information about any pos-
sibly transmitted bit combination are required.

1) Approach with no A Priori Knowledge:If there is noa
priori knowledge available about the regarded speech codec pa-
rameter, it has to be assumed that the quantizer output symbols
are uncorrelated and equally likely. In this case only the channel
dependent information can be exploited in terms of softbits. The
required probabilities are

P P (11)

with the normalization constant

P

Here and in the following the constant is always used to
normalize the left hand sidea posterioriprobabilities such that

P . It should be noted that in practical
coding schemes the assumption of equally likely quantizer out-
puts is usually not met. The widely used Lloyd-Max quantizers
[39] yield e.g., identical quantization error variance contribu-
tions of each quantization intervalbut not identical probabili-
ties P .

2) Approach with 0th Order A Priori Knowledge (AK0):If
there is 0th ordera priori knowledge available the Bayes rule
yieldsa posterioriprobabilities

P P P with

P P

(12)

If all quantized parameter values are equally likely, i.e., if
or equivalently P holds then (11) and (12)

are identical.
3) Approach with First-Order A Priori Knowledge

(AK1): The a posteriori term in (12) assumes successive
bit combinations to be independent. If there is residual cor-
relation of first order, i.e., if , the a
posteriori probabilities can be extended to regard this correla-
tion as well.

The maximum information that is available at the decoder
consists of the complete sequence of the already received bit
combinations , where in-
cludes the complete history of the received bit combinations
until the previous time instant . Given the first order
a priori knowledge P the a posterioriprobabilities

P exploiting this complete history can be com-
puted by the recursion as shown in (13) at the bottom of the page.
If there are no residual correlations in the quantized parameter,
then P P and (13) simplifies to (12). It should
be emphasized that (13) denotes an extrapolation which does not
require any algorithmic delay (see also [21], [29]).

If a delay of a single frame or subframe is allowed, interpo-
lation instead of extrapolation can be done by using

P

P P

P (14)

with P taken from recursion (13). Here a future
bit combination has to be received before thea posteriori
probabilities for the present parameter can be computed. Due to
the independence from the time indexthea priori knowledge
P equals the already known term P .

P P P P with

P P P

(13)
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If a delay of two frames or subframes is allowed we get

P

P

P P

P P (15)

Two future bit combinations and must be known.
Theoretically,a posterioriprobabilities exploiting an arbitrary
number of future received bit combinations can be specified
[40], but there is a complexity problem. In Section IV it will be
shown for the first order Markov case that with a delay of only
one parameter instant most of the quality gain which is possible
according to the more general case of (15) can be achieved.

Even for higher ordera priori knowledge extrapolative and
interpolativea posterioriprobabilities can be computed [40].
Because of the immense computational complexity and storage
capacity this is not really of practical interest for .

E. Parameter Estimation

If any of the previously specifieda posteriori terms
P is computed, the parameter value itself can be
estimated. The arbitrary estimation error criterion should reflect
the impact of parameter errors on the subjective speech quality.

For a wide area of speech codec parameters theminimum
mean square(MS) error criterion is appropriate. These param-
eters may be PCM speech samples, spectral coefficients, gain
factors, etc. In contrast to that the estimation of a pitch period
should be performed according to themaximum a posteriori
(MAP) estimator. In the following we discuss these two well
known estimators in the context of speech codec parameter es-
timation.

1) MAP Estimation: The MAP estimator follows the crite-
rion

with P (16)

Independent of the type of the speech codec parameter, a MAP
estimation always minimizes the probability of an erroneous
decoded parameter [41]. The optimum decoded parameter in
a MAP sense equals one of the codebook/quantization
table entries. This is of great advantage for some applications.

2) MS Estimation:The optimum decoded parameter in a
mean square sense equals

P (17)

According to the orthogonality principle of the linear mean
square estimation (see, e.g., [41]) the variance of the estimation
error is with

being the variance of the undisturbed parameterand
denoting the variance of the estimated parameter .

Because of we can state that the variance of the
estimated parameter is smaller than or equals the variance of
the error free parameter.

For the worst-case channel with the a posteriori
probabilities simplify to P P . If in this
case the unquantized parameteras well as the quantization
table entries are distributed symmetrically around zero the
MS estimated parameter according to (17) is attenuated to zero
(by weighted averaging). These symmetries are often found for
gain factors in CELP coders or they can be created by involving
the sign of the excitation signal into the estimation of the gain
factor. Thus the MS estimation of gain factors results in an in-
herent muting mechanism providing agraceful degradationof
the speech quality. This is one of the main advantages of softbit
speech decoding.

On the other hand, if the channel is free of errors ( ) and
has been transmitted, then the parameter transition prob-

abilities are zero except P . This directly yields
P while all othera posterioriprobabilities
become zero. As a consequence, the MAP estimator as well as
the MS estimator yield the correct parameter value

. This is equivalent to bit exactness in clear channel
situations.

Finally it should be mentioned that all of the above discussed
algorithms can be used in the case of vector quantization. The
only difference to scalar quantization consists in the estimation
step. Let us consider a-tuple of codec parameters
which is coded by bits. The quantized parameter vector is
then with CB (CB: codebook). MAP estima-
tion simply yields a parameter vector instead of a scalar
whereas MS estimation can be formulated as

P (18)

IV. A PPLICATION TO MODEL PARAMETERS

In this section, we want to demonstrate the capabilities of
softbit speech decoding by applying it to an artificial Gaussian
parameter. We focus on a single parameter rather than on speech
reconstruction, thus we use here the termsoftbit decodingin-
stead of softbitspeechdecoding. The parameter which is
taken from a first order autoregressive process with correlation
factor is quantized by a scalar Lloyd-Max quantizer
(LMQ) [39] using bits. As we are not primarily interested
in the optimization of the bit mapping scheme we choose the
natural binary code (NBC) [42]. We employ BPSK modula-
tion over an AWGN channel and coherent demodulation, i.e.,
Fig. 3(b) with . The CSI in terms of in (3) is assumed
to be ideally known and thus the results presented in Figs. 4–6
as well as Fig. 7 can be interpreted as upper bounds for a prac-
tical implementation with estimation of the CSI.

As measure of quality we choose the global signal-to-noise
ratio on parameter level

SNR [dB] (19)

which is henceforth calledparameter SNR. In the following
may denote either if the SNR of hardbit decoding is
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Fig. 4. SNR performance of softbit decoding without channel coding (LMQ,
M = 4, � = 0:9, MS estimation). See Table I for explanation of the legend.

Fig. 5. SNR performance of softbit decoding in connection with channel
coding using the soft-output Viterbi algorithm (SOVA) [20] for channel
decoding (LMQ,M = 2, � = 0:9, MS estimation),E = rE = E .
See Table I for explanation of the legend.

Fig. 6. SNR performance of softbit decoding in connection with channel
coding using a sequential decoder similar to the algorithm of Bahlet al.
[21] for channel decoding (LMQ,M = 2, � = 0:9, MS estimation),
E = rE = E because ofr = 1=2. See Table I for explanation of the
legend.

computed or in the case of softbit decoding using a MS
estimator.

For the typical predictive speech coding schemes we are in-
terested in we found by informal listening tests that the param-
eter SNR—especially the SNR of the most sensitive parame-
ters—seems to be a reasonable measure ofparameterquality
even for sporadic but extreme parameter errors.

Fig. 7. SNR performance of A-law PCM softbit speech decoding: See Table I
for explanation of the legend.

A. Softbit Decoding without Channel Coding

In a first simulation we do not use any channel coding. Thus
the input bit and the output bit of the channel in
Fig. 3(b) belong to the bit combinations of the quantized codec
parameters and , respectively. The softbit decoding (SD)
techniques use softbits (or bit error probabilities) as given in
Section III-A1. In the example of Fig. 4 we choose .
Under clear channel conditions the SNR is 20.22 dB.

While the SNR of hardbit decoding (HD) decreases rapidly
with decreasing channel quality ( ratio) softbit decoding
(SD) allows gains depending on the amount of parametera
priori knowledge which is used. By exploiting only the soft in-
formation at the channel output (i.e., noa priori knowledge,
NAK) the SNR performance is slightly improved in compar-
ison to hardbit decoding (HD). A further improvement can be
gained by using the 0th ordera priori knowledge (SD,AK0)
which is corresponding to the best case if the correlation is
not taken into consideration or if the parameter is uncorrelated
(AK0, i.e., ). However, if we exploit the high corre-
lation of the model parameter according to then
the first-ordera priori knowledge allows significant additional
gains (SD,AK1). At the expense of additional delay the param-
eter SNR can be improved even more if interpolation schemes
are used (SD,AK1,INT1 or SD,AK1,INT2).

The conclusion from that experiment is that in case of a highly
correlated parameter, softbit decoding by MS allows an im-
provement of the parameter SNR of about 6..10 dB or a cor-
responding gain of about 3.6 dB.

B. Softbit Decoding with Channel Coding

Now softbit decoding in connection with channel coding
shall be investigated. For this purpose we realize the equivalent
channel of Fig. 2 as a combination of a convolutional channel
encoder, an AWGN channel, and a channel decoder with soft
decisions. We choose and a convolutional encoder with
a coding rate of and constraint length . In Fig. 5
a soft-output Viterbi algorithm (SOVA) [20] is employed, in
Fig. 6 a sequential realization of the channel decoder according
to Bahl et al. [21] is used. In the clear channel condition the
parameter SNR provided by a 2 bit Lloyd-Max quantization is
9.3 dB.
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Figs. 5 and 6 show that softbit decoding is able to reduce the
gradient of quality loss beyond the typical threshold of channel
decoding. The algorithm of Bahlet al. performs much better
than the soft-output of the SOVA algorithm which approximates
the optimum log-likelihood values of (4). According to Fig. 6
the softbit decoding scheme based on the first order model
(SD,AK1) allows or gains of 1 dB and more.

Nevertheless, it is interesting to compare also Figs. 4 and
6 as they both are showing simulation results with the same
gross bit rate of 4 bit/parameter. If we assume the same trans-
mitter power in both cases we have to compare in Fig. 4
with in Fig. 6. It turns out that softbit decoding without
channel coding is able to provide a comparable or even much
better SNR atall channel conditions than the system comprising
a channel coding scheme. This is valid under the assumption of
a certain residual parameter correlation that is used by softbit
decoding but not used within channel decoding.

It can be concluded that softbit decoding seems to be a
promising alternative to channel coding if the parameter corre-
lation is high. In this case the available bit rate might be used
completely for (redundant) source encoding such that in good
channel conditions the quality becomes significantly higher as
with channel coding and in bad channel conditions the quality
will be as good or even better as with channel coding [43]–[46].

V. APPLICATION TO SPEECHCODECS

A. PCM

The PCM standard G.711 [34] provides a single param-
eter—the speech sample itself—quantized by bit.
Sundberget al. [47], [48] investigated already a soft decision
demodulation for PCM coded speech, where the probability
density function of speech samples is exploited asa priori
knowledge. When a likely transmission error is identified,
the corresponding PCM word is rejected by the receiver and
replaced by a predictor estimate.

We simulated an A-law PCM transmission over an AWGN
channel as in Section IV-A. The CSI is again assumed to be
ideally known. We measured entropy values of
bit and bit if pause segments were removed
from the speech data base. Including speech pauses both values
are much lower depending on the percentage of speaker activity.
This indicates that the usage of at least 0th ordera priori knowl-
edge is recommendable. The difference between entropy and
conditional entropy reflects the amount of redundancy due to
correlation that can be used by first-ordera priori knowledge.

Fig. 7 shows four different cases in terms of speech SNR
(here: equal to parameter SNR) as a function of the
ratio. In any case, the quality of the MS estimated speech de-
grades asymptotically to 0 dB with decreasing , i.e., the
inherent muting mechanism of MS estimation. As in Fig. 4 the
shape of the curves strongly depends on the order of exploited
a priori knowledge. In comparison to hardbit decoding (HD)
softbit decoding by MS estimation withouta priori knowledge
(SD,NAK) leads to a small SNR gain of about 1 2 dB, while
the exploitation ofa priori knowledge allows gains of up to
10 dB (0th order), and up to 15 dB (first-order), respectively.
This corresponds to a significant enhancement of the perceived

speech quality although the model of the speech as Markov
process of first-order is actually too simple. Further improve-
ments can be gained by increasing the model order [49].

B. ADPCM

To enhance digital enhanced cordless telecommunication
(DECT [50]), personal handy phone system (PHS [51]), or
personal access communications system (PACS [52]) systems
by error concealment we designed a softbit decoder for the
G.726 ADPCM standard [35]. There is a single bit pa-
rameter representing a residual signal sample in the logarithmic
domain. We measured entropy values of bit and

bit. Thus 0th ordera priori knowledge
can exploit (4 3.62) bit 0.38 bit of redundancy while first
order a priori knowledge may exploit (4 3.57) bit 0.43
bit of redundancy. This indicates that the SD,AK1 scheme will
only be slightly better than the SD,AK0 scheme.

The softbit decoder performs the parameter estimation of the
residual signal sample in the linear domain instead of the loga-
rithmic domain. This allows to employ a MS estimator because
the squared residual signal error shows strong correlation to the
speech quality. Furthermore, the reconstruction of the recur-
sively computed ADPCM scale factor[35] is very sensitive
to bit errors. Thus, we provide an additional MS estimation of
the term .

To simulate fading situations comparable to DECT channel
characteristics we assume an FSK modulation over a nonfre-
quency selective fading channel with 2-path selection diversity
and perfect frame synchronization. The reliability information
is available only once per frame of 320 bits, i.e., a single esti-
mate of a bit error probability per frame is available to the softbit
speech decoder.

Fig. 8 shows the simulation results indicating the superiority
of softbit speech decoding (SD,AK0) over hardbit speech de-
coding (HD). As reference a simple frame repetition mecha-
nism with muting (FR) was simulated. In comparison to that
the speech quality degrades much smoother by softbit speech
decoding.

C. GSM Full-Rate Codec

We applied the concept of softbit speech decoding to the GSM
full-rate speech decoder [53]–[55]. There are several codec pa-
rameters of which entropy values are listed in Table II. It is ob-
vious that for most of the parameters a 1st ordera priori knowl-
edge will be helpful. Exceptions are the RPE grid and the RPE
pulses. Nevertheless, for simplicity we assume each codec pa-
rameter being modeled as a first-order Markov process.

As an example, the LAR no. 1 as one of the subjectively most
important parameters provides a redundancy of 1.54 bit. This is
more than 25%. Even speech codecs with lower bit rates than
GSM full-rate provide a very high amount of residual redun-
dancy within the spectral parameters: Alajajiet al. [32] found,
e.g., about 29% of redundancy for the LSP’s of the FS 1016
CELP [56] due to nonuniform distribution (0th ordera priori
knowledge concerning time) and due to intraframe correlation
(first-ordera priori knowledge concerning correlation to LSPs
of the same frame).
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Fig. 8. SNR performance of ADPCM softbit speech decoding, only a single
reliability information to any DECT frame of 10 ms (320 bits) is available. See
Table I for explanation of the legend.

TABLE I
ABBREVIATIONS

It turns out that the noninteger GSM codec parameters can
be well estimated using a MS estimator. In contrast to that, the
estimation of a pitch period (LTP lag) or the RPE grid position
should be performed by a MAP estimator.

In Fig. 9, the results of a complete GSM simulation using
the COSSAP GSM library [57] with speech and channel
(de)coding, (de)interleaving, (de)modulation, a channel model,
and equalization are depicted. The channel model represents
a typical case of an urban area (TU) with six characteristic
propagation paths [58] and a user speed of 50 km/h (TU50).
Soft-output channel decoding is carried out by the algorithm of
Bahl et al. [21]. The reference conventional GSM decoder per-
forms error concealment by a frame repetition (FR) algorithm
as proposed in [1]. The bad frame indicator (BFI) is simply set
by the evaluation of thecyclic redundancy check(CRC).

The SNR surely is not the optimum measure for speech
quality. However, informal listening tests show the superiority
of the softbit speech decoder in comparison to the conventional
decoding scheme in all situations of vehicle speeds and C/I
ratios. The new error concealment by softbit speech decoding
provides quite a good subjective speech quality down to C/I

6 dB, whereas the conventional frame repetition produces
severe distortions already at C/I7 dB. Even long error bursts
caused by a low vehicle speed can be decoded sufficiently by
the new technique. In the softbit decoding simulation, the hard
annoying clicks in the case of CRC failures and the synthetic
sounds of the frame repetition disappeared completely and
turned into a slightly noisy or modulated speech. This gives a
significant enhancement of the speech quality.

VI. EXTENDED CAPABILITIES OF SOFTBIT SPEECHDECODING

A. Decoding of a Block Code

The concept of softbit speech decoding can be extended to
exploit other types of information than the received bit com-
bination and the appropriate bit error probabilities . We
consider the application of block codes to individual codec pa-
rameters. Usually, this can be described as mapping of the pa-
rameter bit combination ( bits) to the valid codewords

( bits) with .
Based on the concept of softbit speech decoding [49] algo-

rithmic proposals and applications for softbit decoding of block
codes have been published by Görtz [59], Heinenet al.[60], and
more generally in [61]. Thea posterioriprobabilities exploiting
1st ordera priori knowledge for softbit decoding of block coded
parameters are given by the recursion [61]

P P P

P (20)

Thesea posterioriprobabilities are subject to the parameter es-
timation as described in Section III-E.

If a systematicblock code is used with the bit codewords
including explicit parity bits
, recursion (20) becomes [59]

P

P P P (21)
with

P P P

Equation (21) can be generalized to [61]

P

P P

P P (22)

with a summation over the explicit parity bits
. Thecode a priori knowledgeP

describes this block code in a statistical manner. Comparing re-
cursions (13) with (21), (22) the block code’s influence can be
interpreted as an enhancement of the parameter transition prob-
abilities P .
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TABLE II
NUMBER OFBITSM , ENTROPYH(x ), CONDITIONAL ENTROPYH(x jx ) OF THEPARAMETERS OF THEGSM FULL-RATE CODEC [53], [54]

Fig. 9. SNR performance of GSM full-rate softbit speech decoding, TU50
channel. See Table I for explanation of the legend.

A first example of a block code is the simple even parity code
of rate with . Here, recursion (21) can
be used.

However, the “parity bit” can alternatively be chosen depen-
dent on the unquantized parameter vectorrather than on the
bit combination of the quantized parameter vector. An ex-
ample code for is, e.g.,

if
if

(23)

with being the Euclidean distance of to its
mean . The threshold of this source optimizedblock code
should be adjusted optimally via simulation over a noisy
channel model. For a unit variance Gaussian parameter that is
scalar quantized by an bit Lloyd-Max quantizer and
transmitted over an AWGN channel, we found an optimum
threshold value of . This yields the measured codea
priori knowledge

P

with for decoding by (22).
Fig. 10 shows simulation results to this source-optimized

block code. The parameter and the channel are chosen as in
Fig. 4, except the quantization is done with bit. The
block code thus has a code rate of . The
dashed curves obtained by block coding show coding gains of
up to 0.75 dB as compared to the uncoded transmission. This
is especially true if no parameter correlations are exploited by
softbit decoding (SD,AK0,BC).

Fig. 10. SNR performance of softbit decoding with and without block code
BC (LMQ, M = 3, K = 4, � = 0:9, MS estimation). See Table I for
explanation of the legend.

B. Systems with Diversity Reception

In transmission systems with diversity reception softbit
speech decoding is able to combine a number of bitstreams
with their appropriate bit error probabilities in the sense
of maximum ratio combining(see, e.g., [62]–[64]). This is
possible under the assumption of statistically independent
transmission paths.

Let us regard a combination of two received bit combinations
and whose transmitted bit combinations are the same:

. This may be a diversity reception problem, but it
may also be a problem of how to combine the information of a
repeatedtransmission of the same bit combination via asingle
memoryless channel. Thus we discuss the combination problem
like a repeated parameter transmission.

If 0th ordera priori knowledge is available, thea posteriori
probabilities read (SD,AK0,RPT)

P P P P

(24)

If first-order a priori knowledge is available thea posteriori
probabilities are given recursively by (SD,AK1,RPT)

P

P P P

P (25)
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Fig. 11. SNR performance of softbit decoding using parameter repetition or
2-path diversity reception (LMQ,M = 2,� = 0, MS estimation). See Table I
for explanation of the legend.

Fig. 11 shows simulation results of a repeated parameter
transmission, or, equivalently, to a two-path diversity recep-
tion and subsequent softbit decoding. The parameter and the
channel are chosen as in Fig. 4, except the quantization is done
with bit and the parameter is uncorrelated ( ).
As expected, the quality gain of softbit decoding in the case of
a repeated parameter transmission (SD,AK0,RPT) compared to
softbit decoding of a single received bit combination (SD,AK0)
is tremendous and amounts to 3 dB in terms of or up
to about 3 dB in terms of SNR.

VII. CONCLUSIONS

We proposed the new concept of softbit speech decoding
which comprises previous empirically motivated approaches to
error concealment as special cases. This new concept allows
the consequent usage of soft information at all stages of a
receiver—not only within equalization and channel decoding,
but also within speech decoding.

The softbit speech decoding is driven by

• bit reliability information from the channel (decoder);
• residual redundancy of the codec parameters.

For different coding schemes and different channel models
with and without channel coding we discussed how to obtain
and how to use these informations. Based on this information,
the softbit speech decoding process consists of the four steps

• calculation of parameter transition probabilities;
• computation ofa posterioriprobabilities;
• estimation of codec parameters;
• conventional speech decoding.

We derived algorithms for computinga posterioriprobabili-
ties taking different degrees ofa priori knowledge into consid-
eration. Two common estimators were discussed showing that
the mean square estimator is able to yield the desired graceful
degradation of speech in case of a decreasing quality of the
transmission link because of its inherent muting mechanism.

In addition, we showed how block coding of single codec pa-
rameters, repeated parameter transmission, or diversity recep-
tion can be taken into consideration for quality improvement by
softbit speech decoding.

Softbit decoding can be applied to any speech coding algo-
rithm without modifications at the transmitter side. For noisy

channels and various speech codecs we demonstrated the signif-
icant improvement of the speech quality. In clear channel con-
ditions, bit exactness is preserved.

Finally it should be mentioned that softbit source decoding
can also be applied to audio and video coding schemes and that
under certain conditions channel coding might be replaced by
redundant source encoding in combination with softbit source
decoding.
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