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Softbit Speech Decoding: A New Approach
to Error Concealment

Tim Fingscheidt and Peter Vary

Abstract—In digital speech communication over noisy channels They are mainly driven by a binatyad frame indicato(BFI)
there is the need for reducing the subjective effects of residual bit that marks the current received frame as good or bad. This BFI
errors which have not been eliminated by channel decoding. This can be seen as a very coarse reliability information that may
task is usually callederror concealment o - .

We describe a new and generalizing approach to error conceal- mmate the SubSt.ItutIOI‘] of a complete frame even if only a few
ment as part of a modified robust speech decoder. It can be applied Dits have been disturbed, or, on the other hand, that may declare
to any speech codec standard and preserves bit exactness in case @ frame as reliable although some bits are incorrect. There are
an error free channel. The proposed method requiredit reliability  some proposals to enhance the reliability information [10]-[13].
information provided by the demodulator or by the equalizer or Alternatively, BFI may not be generated explicitly. Mineal.

specifically by the channel decoder and can exploit additionallya 14 ¢ ighting factors t f t t
priori knowledge about codec parametei/e apply our algorithms [14] compute weighting factors to perform parameter extrapo-

to PCM, ADPCM, and GSM full-rate speech coding using AVGN, lation by weighted summation over previous frames.
fading, and GSM channel models, respectively. It turns out that ~ There are several approaches to joint source/channel coding
Fhﬁ speech quality iShSig_“iﬁcam'y e“*;alngedv s(?oyvingbtr;e desired employingchannel optimized vector quantizati6®BOVQ) and
nheret ing mechanin o racety degataton ERavor <ot cecision decoding based on tmimum mean squared
error criterion (MS). The aim is the quantizer/encoder design for
Index Terms—Error concealment, frame repetition, muting, 5 specific channel condition [15]-[19]. However, this approach
speech decoding. is in general not compatible with existing standards.
In this paper, a new concept of error concealment is proposed
|. INTRODUCTION that can be applied to any speech coding algorithm. It consists

N digital mobile communication systems the issue of spee@h @ modification of the speeatecodersuch that (real-valued)

I quality is important. The best achievable speech qua”ty?gftbnsmstead .O.f (binary) hardbits are use_zd. A s_oftblt .car.llbe
first of all determined by the speech coding algorithm. In mobil8terpPreted as joint knowledge of a hardbit and its reliability,
radio systems channel coding is applied to preserve the qua|iF§/’ the estimated bit error probability. In'contrast to BFI-anen
level over a wide range of channel characteristics. error_concealment tech_nl_que_s_, the SOﬁb'F speech d_e_coo_llng con-

Nevertheless, even with channel coding residual bit errdfEPt IS able to processit-individual nonbinaryreliability in-
occur that may lead to severe degradation of speech quaﬁ&r_matlon, which can be provided e.g., by a soft-output channel
These annoying effects can be reduced or even be eliminat&feder [20], [21]- _ _
by error concealment. In cellular system standards such afue to practical reasons in most cases residual redundancy
GSM [1]-[3] error concealment algorithms are proposed &80 b_e observed within tht_a speech codgc paramet.ers..As already
nonmandatory recommendations. This allows manufacturerd¥§ntioned by Shannon this source coding sub-optimality should
implement proprietary solutions to improve existing systemsPe exploited at the receiver . to combat noise” [22]. We ex-

To reduce the impact of known errors (such as frame loss@4Jit the residual redundancy in terms of parametepriori
on the reconstructed waveform, it is possible to apply wavkbowledgehat is subject to algorithms based on the Bayesian
form substitution techniques directly on the waveform [4]-[9framework computing posteriori probabilitiesfor individual
[65]. However, if a more sophisticated speech coder is used, ifRdec parameters. Theepriori knowledge as we use it refers
usually advantageous to use the implied parametrization of fife2 Markov model of the speech codec parameter. It should be
speech signal and conceal the errors at the level obitiser noted that in the literature, hidden Markov models (HMMSs) are
codecparametersAccordingly, the GSM standards on substi@lso proposed to describe the statistical behavior of the source
tution and muting of lost frames [1]-[3] propose simple meche-9-, [23], [24]).
anisms such as parameter repetition or parameter extrapolatiorizinally, the speech codec parameters are estimated according

to appropriate error criteria that reflect the perceived quality.

Gerlach [25], [26] and Feldes [27], [28] proposed MS estima-
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___________________________

of the received bit combinatiofy,. There are several possibil-
ities to obtain such estimates. Some of them are discussed in
Section IlI-A. The joint information of a received bit and its es-

| i
: |
--------------- , Equivalent | timated instantaneous error probability is what we caibfibit
Soeoch Dovoden ! Channel |
peec ecoder : ' ' N
B :.’i‘ : : {.’L’O(m),peo(m)}.
2R : | R |
[6) oo N Inthe literature there are several explicit definitions of the softbit
using the same information [17], [31], [36], [37].
Fig. 1. Conventional hardbit speech decoding. The first algorithmic step of softbit speech decoding consists
in the com(p)utation oM parameter transition probabilities
In the case of an error free channel situation the new softbR- Rolz ", i € {0,1,---,2% — 1}. They denote the prob-
decoding approach preserves bit exactness as required for §p#ty of theknownreceived bit combinatioti, under the as-
approval. sumption of anyunknownbit combinatiorm((f) that might have
been transmitted. As shown in Section IlI-B we explain how to
Il. CONCEPT OFSOFTBIT SPEECHDECODING compute these probabilities usittg andpe .

In the second step the parameter transition probabilities
In general, a speech encoder produmetec parametershat  p io|£((f)) have to be combined wita priori knowledgeabout

are quantized and mapped to bit combinations. These paragfrcodec parameter which can be measured once in advance by
ters are e.g., spectral coefficients, pitch periods, gain factofs,cessing a representative speech database by the speech en-
codebook entries, etc., or even quantized PCM or ADPCM salyser. Thea priori knowledge is stored in the decoder in a ROM

ples [34], [35]. table. Different kinds of priori knowledge are discussed in

Letus consider the transmission of a specific codec paramedgl o 111-C. As a result of the second step we obgdfha pos-
7, € R over a noisy channel as described by Fig. 1. The tirqgriori probabilitiesP(a:éi)ﬁ:O Ywithi € {0,1,---,2M — 1}

index n denotes the relative discrete time instant; this can %%ing the probabilities of each of the possibly transmitted bit

e.g., a frame or a subframe instant. The time index 0 shall combinations_c((f) given the received ong, and given possibly

zfnecil%tihe pr(:s?n\tlitlmeflrm:nex, a(icorg;rn@g]yt _é’ r_2|7m ~"airte Wadditional receiver information marked by:*.” Several ways of
€ Indices of previous frames or subirames. For Simplictty, %mputinga posterioriprobabilities are shown in Section I11-D.
restrict ourselves here to scalar quantization. In Section llI-E t

concent is extended to veotor quantization 2ctions IV-A and IV-B give solutions to tha posteriori
P - q S . probabilities if additional information is obtainable by a block
The codec parametéy at the present time instant= 0 is

. . — ; ) . code, or by diversity reception.
qugnuzed according Qo] = vo with o & QT. (QT' quantl-' The third and last block of the softbit speech decoding process
zation table). It can be represented by a quantization table inde

PRI ToM o ; . i ac)éording to Fig. 2 is th@arameter estimatorThe a poste-
: W'th. t€40,1,--,2 1}. Via bit mapping (BM) a bit com riori probabilities are used to find optimum parameter values
bination (est) +- : oL . .
v taking an appropriate error criterion into consideration.
2o = (20(0), 2o (1), - - wo(m), - - - xo(M — 1)) ) Two widely used estimators are discussed in Section IlI-E.
=0 ONn R O 0 Sections IV and Section V give applications to prove the ca-

consisting of M bits is assigned to each quantized paramet@?b”ities of the proposed softhit speech decoding technique.

vo (or quantization table index). The bits are assumed to
be bipolar, i.e.x)(m) € {—1,+1}. For simplicity we write Ill. SOFTBIT SPEECHDECODING ALGORITHM
vg = v((f) as well asz, = g((f). The transmission of this bit A. Bit Error Probabilities

combination is described by the so-callequivalent channel In the following it is described by two examples how to pro-

which might consist of any combination of the noisy analogiqe rejiapility information in terms of error probability esti-

channel with channel (de)coding, (de)modulation, and eq“ﬂ#’ateSp of the received bitg, (see also (2)).

izat_ion. Du_e to the_chan_nel noise the rece_ived bit combinationl) Fading Channel with Coherent BPSKNe assume a
Zy IS possibly not identical to the transm_nte(_j one. In a CORading channel with additive white Gaussian noise (constant
ventional decoding scheme as depicted in Fig. 1 the recew&g{Ner spectral densityNo/2) and coherent binary phase
bit combination,, is applied to table decodingnerse bit qpig yeving (BPSK) demodulation. This binary symmetric
mappingscheme (BM1)). Thereafter, the decoded parametelannef can be described by Fig. 3(a) with the time varying
to is used within the specific speech decoder algorithm (¢ aneous bit error probabilipy or by Fig. 3(b) with the

reconstruct speech samples. We call this conventional solutign varying fading factor and the effective noise samples
hardbit (speech) decoding (HD). Zo(m) at the receiver output.

The proposed new approach to error concealment by softb(ftl-he bit error probability of the hard decided () can
speech dggoding (SD) is depicted in .Fig. 2.1t requir'es additipgé formulated as [31], [38]
ally reliability information (e.g., [31]) in terms of estimated bit
error probabilities — 1 i — 4q - £33
Peo(m) T+ exp Lo~ Zo0m)| with L. =4a No
&0 = (p€0(0)7p60(1)7"'7p60(m)7"'p60(M_ 1)) (2) (3)
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Fig. 2. New softbit speech decoding technique.
a) Llpe b) N R If we consider the equivalent channel to be memoryless, the
* 1wl o m"(m) Zo(m) parametertransition probability reads
zo(m) p><p. &o(m) e L
-1 — -1 Zy(m) M—1
) . ) . )
Péolzs”) = T[ Pao(mleg” (m). ®
Fig. 3. (a) BSC channel and (b) fading channel with fading faetaand m=0

additive Gaussian noisg (m) at the receiver output. . . . .
(m) P This term includes the channel characteristics and provides

the probability of a transition from any possibly transmitted

andz being thereal-valuedreceived value. Thehannel . o i
Zo(m) g bit comb|nat|ongé), i € {0,1,---,2M — 1}, to the known

state information(CSI) L. comprises the fading factar as . . o
(CS) P g received bit combinatiot,.

well as the normalized noise variandg /2 E;, of the additive | Id licati th i f |
Gaussian noise. Both values have to be estimated at the receivelﬂ real-world applications the assumption ot a memoryless

From (3) it is obvious that an individual instantaneous bit err&‘iu'}’alem char:mel can bela C(()jarl_s'e appro>t<r|]mat|(r)]n, e\ﬁn if an
probability can be assigned to each received vali{e:), even Interieaving scheme 1S employed. However, the achievavle error
if the CSI is constant. concealment based on (8) is still very effective (see Section V).

2) Transmi_ssion Scheme with Channel Codirht;he e_quiy_— C. A Priori Knowledge
alent channelincludes channel coding the required reliability in- o ) o
formation can be provided by a soft-output channel decoder. Thd" SPecifying the required priori knowledge there are some
best choice is the channel decoder of Beirdl. [21] because it degrees of freedom. In the general case we mode_l the quantized
is able to yield the so-called log-likelihood values (L-values) Parameter as a Markov process/éfh order according to

P(zo(m) = +1|¥) (4) Pz, |2 1o L Ny L N1y )
P(l’o(m) = _1|X) = P(£n|£n—l’ U ’in—N)'

Lo(m)=1n

with Y being the input sequence to the channel decoder. The find out an appropriate Markov order it is convenient to
hardbit is simply measure terms such a$2P), Pz, |z,,_,), and Rz,,,z,,_)
_ or even higher order conditional and joint probabilities. This
Lo(m) = signLo(m)] (5) can be achieved by applying a large speech database to the
geeech encoder and by counting how often the different quan-

whereas the corresponding bit error probability can be deriv ) )
tizer output symbols, or different pairs of output symbols, occur.

f 4
fom (4) as We call Rz,,) Oth order a priori knowledg€AKO) because it
peo(m) = 1 ) (6) gives a statistical description of a Oth order Markov process,
© 1+ exp|Lo(m)| i.e., a memoryless process. Accordingly, we cdlt Bz, )

Note that the less complex soft-output Viterbi algorithm (SOVA r P(gn,gn,l).first-order a priori knowledge/AK1) l.)efcause.
[20] yields approximations to the L-values in (4)(6). it refers to a first-order Markov process. The decision which

model should be taken is a matter of the
B. Parameter Transition Probabilities  observed redundancy;
Knowing the (instantaneous) bit error probability according * allowed complexity of the softbit speech decoder;

to (3) or (6) we get the conditional bit probability for the transi- ~ * tradeoff between performance and complexity.
tion of a transmitted b'tté”)(m) to the known received bity (m) If we model a parameter as Oth order Markov process,

@)

as probabilities I-'@ﬁf’)) with i € {0,1,---,2M — 1} have to be
0 stored in the decoder. With the entropy defined as
Plao(m)lo}(m) = { e
peolm) [ Golm) # 75" (m) Hz,)=- Y Palos, P) O
:=0
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the redundancy ch R = M — H(z,,) bits can be used for error  2) Approach with Oth Order A Priori Knowledge (AKO)f

concealment. there is Oth ordea priori knowledge available the Bayes rule
If a parameter is modeled as first order Markov procg%¥, yieldsa posterioriprobabilities

probabilities Pz |z ) with i, j € {0,---,2M — 1} have to

be stored in the decoder. Then a redundancA&f = A — P(zg|20) = C - P(io|zs) - P(z§”)  with
H(z,|z,_,) bits can be used for error concealment, with the o 1 (12)
conditional entropy 2M 1
Plolzg) - Play)
2M_1 2™ _ -0
S If all quantized parameter values are equally likely, i.eMif=

H(z,) or equivalently l@gf)) = 2-M holds then (11) and (12)
are identical.
3) Approach with First-Order A Priori Knowledge
K1): The a posteriori term in (12) assumes successive
bit combinations to be independent. If there is residual cor-
relation of first order, i.e., ifH(z,,) > H(z,|z, 1) thea
. o posteriori probabilities can be extended to regard this correla-
D. A Posteriori Probabilities tion as well.

For the estimation of a speech codec parameter at the receivefhe maximum information that is available at the decoder
a posterioriprobabilities providing information about any posconsists of the complete sequence of the already received bit

logy Ple@[a ). (10)

This can be extended to even higher Markov orders, while t|(1E
storage requirements a2d’(V+1) words. In Section V exam-
ples of the appropriate Markov order are given.

sibly transmitted bit combinatiogg’) are required. combinationszy,Z_1,Z_o, - = Zg,X_1, whereX_1 in-

1) Approach with no A Priori Knowledgelf there is noa cludes the complete history of the received bit combinations
priori knowledge available about the regarded speech codec patil the previous tlme instant = —1. Given the first order
rameter, it has to be assumed that the quantizer output symlaisriori knowledge l?a: )|a:(’)) the a posteriori probabilities
are uncorrelated and equally likely. In this case only the chanrpg!r(z)uo ,) exploiting this complete history can be com-
dependent information can be exploited in terms of softbits. Tb@gted by the recursion as shownin (13) at the bottom of the page.
required probabilities are If there are no residual correlations in the quantized parameter,

4 4 then Rz{"|z%)) = P(z{”) and (13) simplifies to (12). It should
P(zy|20) = C - P(o|2{”) (11) be emphasized that (13) denotes an extrapolation which does not
require any algorithmic delay (see also [21], [29]).
with the normalization constant If a delay of a single frame or subframe is allowed, interpo-
1 lation instead of extrapolation can be done by using

M . ~
~ RO P@g) 211,20, X 1)

Z P(£O|£O ) oM _q

. = C P iy £ ) Y Pl lzl)

Here and in the following the constaft is always used to ‘ =0
normalize the left hand side posterioriprobabilities such that P(xﬁf)lpzé”)) (14)

5271 p(z{7)2,, -+ ) = 1. It should be noted that in practical ‘

coding schemes the assumption of equally likely quantizer owtith P(g(()z)@(),iil) taken from recursion (13). Here a future
puts is usually not met. The widely used Lloyd-Max quantizetsit combination ., has to be received before theposteriori

[39] yield e.g., identical quantization error variance contribysrobabilities for the present parameter can be computed. Due to
tions of each quantization intervabut not identical probabili- the independence from the time indexhea priori knowledge

ties F{a:o ). P(z,,|z,) equals the already known terna |z_, ).

2M_1
Py 20, & 1) =C - Pliolzd” - > P z¥) - Pz, £, with
=0
C= ! (13)

T oM _q oM _1

o l 1 ; Yy on o
ST Pllzd - >0 P - PaYE X )
=0

=0
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If a delay of two frames or subframes is allowed we get For the worst-case channel with = 0.5 the a posteriori
o ) probabilities simplify to Pz’ |z,,---) = P(z{"). If in this
Pz |20, 21, 20, X 1) i : i~ ati
L0 142> L41- Lor 21 case the unquantized parametgras well as the quantization
=C- p(gg) |20, X 1) table entries,/(V) are distributed symmetrically around zero the

oM _q oM _q MS estimated parameter according to (17) is attenuated to zero

. Z P(& 2|$(n)) . Z P(a:(”) x(h)) (by weighted averaging). These symmetries are often found for

=0 e Pt e gain factors in CELP coders or they can be created by involving

. ) (W), () the sign of the excitation signal into the estimation of the gain
P gy fays) - Playylzo)- (15)  factor. Thus the MS estimation of gain factors results in an in-
Two future bit combinationsi,, and &, must be known. herent muting mechani;m providinggaac.eful degradatiorof .
Theoretically,a posterioriprobabilities exploiting an arbitrary the speech quality. This is one of the main advantages of softbit
number of future received bit combinations can be specifi§@#€ech decoding. _
[40], but there is a complexity problem. In Section IV it will be 8” the other hand, if the channel is free of erres£: 0) and
shown for the first order Markov case that with a delay of onl§io = has been transmitted, then the parameter transition prob-
one parameter instant most of the quality gain which is possit#bilities are zero except(B,|x”) = 1. This directly yields
according to the more general case of (15) can be achieved.P(gé”)lio, ---) = 1 while all othera posteriori probabilities
Even for higher ordea priori knowledge extrapolative and become zero. As a consequence, the MAP estimator as well as
interpolativea posteriori probabilities can be computed [40].the MS estimator yield the correct parameter valigsl) =
Because of the immense computational complexity and storad&'® = v. This is equivalent to bit exactness in clear channel

capacity this is not really of practical interest fisr > 2. situations.
o Finally it should be mentioned that all of the above discussed
E. Parameter Estimation algorithms can be used in the case of vector quantization. The

If any of the previously specifieda posteriori terms only difference to scalar quantization consists in the estimation

Pz, -) is computed, the parameter value itself can b#ep- Let us consider B-tuple of codec parametefs € R”
estimated. The arbitrary estimation error criterion should refle¢fich is coded by bits. The quantized parameter vector is
the impact of parameter errors on the subjective speech qualgnQl[2o] = v, With v, € CB (CB: codebook). MAP estima-
For a wide area of speech codec parametergﬂh{ﬁnum tion SImpIy y|6|dS a parameter VECYQQ\’IAP) instead of a scalar
mean squaréMS) error criterion is appropriate. These paramhereas MS estimation can be formulated as
eters may be PCM speech samples, spectral coefficients, gain My
factors, etc. In contrast to that the estimation of a pitch period LOMS) _ Z NON P(x(i)|£ ) (18)
should be performed according to theaximum a posteriori =0 = =0 =07
(MAP) estimator. In the following we discuss these two well =0
known estimators in the context of speech codec parameter es-
timation.

1) MAP Estimation: The MAP estimator follows the crite-
rion In this section, we want to demonstrate the capabilities of
‘ softbit speech decoding by applying it to an artificial Gaussian

I = arg max P(ig’)lio, --+). (16) parameter. We focus on a single parameter rather than on speech

’ reconstruction, thus we use here the tesoftbit decodingn-
Independent of the type of the speech codec parameter, a M&Bad of softbitspeechdecoding. The parametéy, which is
estimation always minimizes the probability of an erroneoygken from a first order autoregressive process with correlation
decoded pararﬂitgr [41]. The optimum decoded parametekdBtor p;; = 0.9 is quantized by a scalar Lloyd-Max quantizer
a MAP sensey;" " equals one of the codebook/quantizatiof. MQ) [39] using M bits. As we are not primarily interested
table entries. This is of great advantage for some applicationg the optimization of the bit mapping scheme we choose the

2) MS Estimation: The optimum decoded parameter in @atural binary code (NBC) [42]. We employ BPSK modula-

IV. APPLICATION TO MODEL PARAMETERS

v((JMAP) = v(()") with

mean square sense equals tion over an AWGN channel and coherent demodulation, i.e.,
oMy Fig. 3(b) witha = 1. The CSl in terms of... in (3) is assumed
(MS) _ @ pre®1s ). 17y to beideally known and thus the results presented in Figs. 4-6
Yo ; v+ Pleo o, ) () as well as Fig. 7 can be interpreted as upper bounds for a prac-

) ) o ) tical implementation with estimation of the CSI.
According to the orthogonality principle of the linear mean ag measure of quality we choose the global signal-to-noise
square estimation (see, e.g., [41]) the variance of the estimatjgf on parameter level

error ¢(MS) = véMs) — v IS 03(1\15) = 02 — 03@15) with

o2 being the variance of the undisturbed parameterand E{v?}
o2 s, denoting the variance of the estimated paramefer’. SNR=10logy, E{(v) —4)2}

Because obf(MS> > 0 we can state that the variance of the

estimated parameter is smaller than or equals the variancembich is henceforth callegparameter SNRIn the following
the error free parameter. v(**) may denote eithef if the SNR of hardbit decoding is

[dB] (19)
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Fig. 4. SNR performance of softbit decoding without channel coding (LM

- = . ig. 7. SNR performance of A-law PCM softbit speech decoding: See Table |
M =4, p;5; = 0.9, MS estimation). See Table | for explanation of the legen '9 P W tsp g

or explanation of the legend.

10
A. Softbit Decoding without Channel Coding

8 In a first simulation we do not use any channel coding. Thus
=) the input bitzo(m) and the output bify(m) of the channel in
EZE 6 Fig. 3(b) belong to the bit combinations of the quantized codec
o parameters, anddg, respectively. The softbit decoding (SD)
g 4 techniques use softbits (or bit error probabilities) as given in
z — SD.AKL Section 1lI-Al. In the example of Fig. 4 we choogé = 4.

2 - SD. AKO |1 Under clear channel conditions the SNR is 20.22 dB.

3 —— HD While the SNR of hardbit decoding (HD) decreases rapidly

I ; i - ‘ . with decreasing channel qualitf{ /N, ratio) softbit decoding

-+ 3 =2 Es/1\701 (dB] 0 1 2 (SD) allows gains depending on the amount of paramater

priori knowledge which is used. By exploiting only the soft in-
Fig. 5. SNR performance of softbit decoding in connection with channédrmation at the channel output (i.e., mopriori knowledge,
coding using the’ soft-output Viterbi algorittm (SOVA) [20] for 1channel[\]AK) the SNR performance is slightly improved in compar-
geego%j;%gl]e(ll_'f\g?é}é;nj{igg %f?hgllibl\eﬁr?d.esnmanonws =B = 3E ison to hardbit decoding (HD). A further improvement can be

gained by using the Oth order priori knowledge (SD,AKO)

which is corresponding to the best case if the correlation is
not taken into consideration or if the parameter is uncorrelated
(AKO, i.e., pzz = 0). However, if we exploit the high corre-
lation of the model parameter accordinggg; = 0.9 then
the first-ordera priori knowledge allows significant additional
gains (SD,AK1). At the expense of additional delay the param-
eter SNR can be improved even more if interpolation schemes
are used (SD,AKL,INT1 or SD,AK1,INT2).

The conclusion from that experimentis that in case of a highly
correlated parameter, softbit decoding by MS allows an im-
provement of the parameter SNR of about 6..10 dB or a cor-
responding®;, /Ny gain of about 3.6 dB.

10 T T T

Parameter SNR [dB]

Fig. 6. SNR performance of softbit decoding in connection with channg' Softbit Decodlng with Channel Codlng

fzoﬂ"}gr“csﬁgﬂniSdeé‘c%%"iﬂgl (ﬂfﬂc(gi? i‘mQ"arpto tze (f"glomgr';s‘z{mﬁﬂ) Now softbit decoding in connection with channel coding
E, = rE, = 1E, because of = 1/2. See Table | for explanation of the shall be investigated. For this purpose we realize the equivalent
legend. channel of Fig. 2 as a combination of a convolutional channel
encoder, an AWGN channel, and a channel decoder with soft

computed or™S) in the case of softbit decoding using a MSlecisions. We chooskf = 2 and a convolutional encoder with
estimator. a coding rate of = 1/2 and constraint length = 5. In Fig. 5

For the typical predictive speech coding schemes we are @msoft-output Viterbi algorithm (SOVA) [20] is employed, in
terested in we found by informal listening tests that the paraifig. 6 a sequential realization of the channel decoder according
eter SNR—especially the SNR of the most sensitive parante-Bahl et al. [21] is used. In the clear channel condition the
ters—seems to be a reasonable measumacdmeterquality parameter SNR provided by a 2 bit Lloyd-Max quantization is
even for sporadic but extreme parameter errors. 9.3 dB.
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Figs. 5 and 6 show that softbit decoding is able to reduce thpeech quality although the model of the speech as Markov
gradient of quality loss beyond the typical threshold of channgtocess of first-order is actually too simple. Further improve-
decoding. The algorithm of Baldt al. performs much better ments can be gained by increasing the model order [49].
than the soft-output of the SOVA algorithm which approximates
the optimum log-likelihood values of (4). According to Fig. 68. ADPCM
the softbit decoding scheme based on the first order mode
(SD,AK1) allowsE; /Ny or £, /Ny gains of 1 dB and more.

Nevertheless, it is interesting to compare also Figs. 4 a
6 as they both are showing simulation results with the sa

gross bit rate of 4 bit/parameter. If we assume the same tra . . R
mitter power in both cases we have to comp&s¢N, in Fig. 4 726 ADPCM ste_mdard [3.’5]' Th_ere ISa smg\h‘;_ 4 bt pa-
rameter representing a residual signal sample in the logarithmic

ith £, /Ng in Fig. 6. | h ftbi i ith ) )
with E; /Ny in Fig. 6. It turns out that softbit decoding wit outgﬁmam. We measured entropy valuesibfiz, ) — 3.62 bit and

|'I'o enhance digital enhanced cordless telecommunication
EIaECT [50]), personal handy phone system (PHS [51]), or

grsonal access communications system (PACS [52]) systems
Y_error concealment we designed a softbit decoder for the

channel coding is able to provide a comparable or even mu z |z ) 3.57 bit. Thus Oth orde priori knowledge
I, - TplZpo1) = 3.0 .
better SNR aall channel conditions than the system comprisin an exploit (4— 3.62) bit= 0.38 bit of redundancy while first

a channel coding scheme. This is valid under the assumption rfiera priori knowledge may exploit (4- 3.57) bit = 0.43

a certain residual parameter correlation that is used by softpi N .
decoding but not used within channel decoding. tg)lt of redundancy. This indicates that the SD,AK1 scheme will

only be slightly better than the SD,AKO scheme.

It can be concluded that softbit decoding seems to be . L
promising alternative to channel coding if the parameter Corre?‘ljhe SOf.tb't decoder p.erform.s the pararr)et.er estimation of the
idual signal sample in the linear domain instead of the loga-

lation is high. In this case the available bit rate might be usé‘czi; ic d i This all i | MS estimator b
completely for (redundant) source encoding such that in go mic domain. 1his allows to employ a estimator because
e squared residual signal error shows strong correlation to the

channel conditions the quality becomes significantly higher . :
9 y 9 y i eech quality. Furthermore, the reconstruction of the recur-

with channel coding and in bad channel conditions the quali . "
will be as good or even better as with channel coding [43]_[4%/er computed ADPCM scale factor[35] is very sensitive

) bit errors. Thus, we provide an additional MS estimation of
the term2¥.
V. APPLICATION TO SPEECHCODECS To simulate fading situations comparable to DECT channel
A. PCM characteristics we assume an FSK modulation over a nonfre-

. . uency selective fading channel with 2-path selection diversity
The PCM standard G'7.11 [34] prov.|des a single p.arara'nd perfect frame synchronization. The reliability information
eter—the speech sample itself—quantized iy = 8 bit.

: : .. _is available only once per frame of 320 bits, i.e., a single esti-
Sundberget al. [47], [48] investigated already a soft decisio . Iy : : .
demodulation for PCM coded speech, where the probabilri]gate of a bit error probability per frame is available to the softbit

density functi ¢ h los i loited o %eech decoder.
ensity function of speech samples 1S explortedaaprion Fig. 8 shows the simulation results indicating the superiority
knowledge. When a likely transmission error is identifie

. : . . f softhbit speech decoding (SD,AKO0) over hardbit speech de-
the corresponding .PCM W.Ord Is rejected by the receiver aggding (HD). As reference a simple frame repetition mecha-
replaced by a predictor estimate.

nism with muting (FR) was simulated. In comparison to that

We simulated an A-law PCM transmission over an AWG - .
. . . . e speech gquality degrades much smoother by softbit speech
channel as in Section IV-A. The CSI is again assumed to%.| coging quailly aeg ) y " sp

ideally known. We measured entropy valuestbfz,,) = 7.83
bitandH(z,,|x,,_,) = 6.5 bit if pause segments were remove
from the speech data base. Including speech pauses both vagﬁegs'v' Full-Rate Codec
are much lower depending on the percentage of speaker activityWe applied the concept of softbit speech decoding to the GSM
This indicates that the usage of at least Oth oedeniori knowl-  full-rate speech decoder [53]-[55]. There are several codec pa-
edge is recommendable. The difference between entropy aatheters of which entropy values are listed in Table Il. It is ob-
conditional entropy reflects the amount of redundancy due ¥@us that for most of the parameters a 1st oapriori knowl-
correlation that can be used by first-ordepriori knowledge. edge will be helpful. Exceptions are the RPE grid and the RPE
Fig. 7 shows four different cases in terms of speech SNRilses. Nevertheless, for simplicity we assume each codec pa-
(here: equal to parameter SNR) as a function of B3¢~N, rameter being modeled as a first-order Markov process.
ratio. In any case, the quality of the MS estimated speech deAs an example, the LAR no. 1 as one of the subjectively most
grades asymptotically to O dB with decreasifig/ Ny, i.e., the important parameters provides a redundancy of 1.54 bit. This is
inherent muting mechanism of MS estimation. As in Fig. 4 thmore than 25%. Even speech codecs with lower bit rates than
shape of the curves strongly depends on the order of exploi8&M full-rate provide a very high amount of residual redun-
a priori knowledge. In comparison to hardbit decoding (HD3dlancy within the spectral parameters: Alagiial. [32] found,
softbit decoding by MS estimation withoatpriori knowledge e.g., about 29% of redundancy for the LSP’s of the FS 1016
(SD,NAK) leads to a small SNR gain of about1 2 dB, while CELP [56] due to nonuniform distribution (Oth orderpriori
the exploitation ofa priori knowledge allows gains of up to knowledge concerning time) and due to intraframe correlation
10 dB (Oth order), and up to 15 dB (first-order), respectivelyfirst-ordera priori knowledge concerning correlation to LSPs
This corresponds to a significant enhancement of the perceiaddhe same frame).
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20 7 = 6 dB, whereas the conventional frame repetition produces

severe distortions already at G417 dB. Even long error bursts
caused by a low vehicle speed can be decoded sufficiently by
the new technique. In the softbit decoding simulation, the hard
annoying clicks in the case of CRC failures and the synthetic
sounds of the frame repetition disappeared completely and
turned into a slightly noisy or modulated speech. This gives a
significant enhancement of the speech quality.

-5k Yo - FR

—— HD VI. EXTENDED CAPABILITIES OF SOFTBIT SPEECHDECODING
—100 s 10 T 20 A. Decoding of a Block Code
Ey/No [dB] The concept of softbit speech decoding can be extended to

i ) ) _exploit other types of information than the received bit com-
Fig. 8. SNR performance of ADPCM softbit speech decoding, only a sing,

reliability information to any DECT frame of 10 ms (320 bits) is available. Seﬁnatlonxo and the appropriate bit error probablhtlpg We

Table | for explanation of the legend. consider the application of block codes to individual codec pa-
rameters. Usually, this can be described as mapping of the pa-
Asgﬁg\'/-lfmlms rameter bit combinatiorzé”) (M bits) to the valid codewords
yS) (K > M bits) withi € {0,1,---,2M — 1},
SD : Softbit source decoding using ... Based on the concept of softbit speech decoding [49] algo-
AK1 : 1st order a priori knowledge in eq. (13) rithmic proposals and applications for softbit decoding of block

codes have been published by Gortz [59], Heietal. [60], and

AKO : Oth order a priori knowledge in eq. (12) more generally in [61]. Tha posterioriprobabilities exploiting

NAK : no a priori knowledge, eq. (11) 1st order priori knowledge for softbit decoding of block coded
INT2 : interpolation by exploiting two future parameters are given by the recursion [61]
bit combinations, eq. (15) oM _q
INT1 : interpolation by exploiting one future P(g((f)@o, y 1) =C-F y0|y Z P( (Z)|$(J)
bit combination, eq. (14) o
; .
BC : block coded parameter, egs. (20) to (22) Pz 19 172—2) (20)
RPT : repeated parameter transmission, eq. (24) Thesea posterioriprobabilities are subject to the parameter es-
timation as described in Section IlI-E.
FR : Frame repetition mechanism If a systematidlock code is used with th& bit codewords
y((f) = (g((f) (Z)) including K — M explicit parity b|t$7é), i€
HD : Hardbit source decoding by table lookup {0,1,---,2™ — 1}, recursion (20) becomes [59]

Dy 5 v 5

It turns out that the noninteger GSM codec parameters can Plzy |20 20, Xy, Z1) ‘
be well estimated using a MS estimator. In contrast to that, the = O Pliglzy) - P, - Pl2olzy) (21)
estimation of a pitch period (LTP lag) or the RPE grid positiowith
should be performed by a MAP estimator. oM _q

In Fig. 9, the results of a complete GSM simulation using pli) Z P(z )|$(J)) (x(j:“jj—l JO .
the COSSAP GSM library [57] with speech and channel °*™ T A
(de)coding, (de)interleaving, (de)modulation, a channel model,
and equalization are depicted. The channel model represdriation (21) can be generalized to [61]
a typical case of an urban area (TU) with six characteristic

=0

propagation paths [58] and a user speed of 50 km/h (TU50). Pa |20, 20, X 1, Z2_,)

Soft-output channel decoding is carried out by the algorithm of —-C. p@om(f ). P&

Bahlet al.[21]. The reference conventional GSM decoder per- GK—M ]

forms error concealment by a frame repetition (FR) algorithm . Z p(§0|§él)) . P(gél) @éi)) (22)

as proposed in [1]. The bad frame indicator (BFI) is simply set
by the evaluation of theyclic redundancy che¢@€RC).

The SNR surely is not the optimum measure for speedfith a summation over th& — M explicit parity bitsz, 2", lE
quality. However, informal listening tests show the superiorit§0, 1, - - -, 25~* —1}. Thecode a priori knowledg®(z ()|x )
of the softbit speech decoder in comparison to the convention@lscribes this block code in a statistical manner. Comparing re-
decoding scheme in all situations of vehicle speeds and Cirsions (13) with (21), (22) the block code’s influence can be
ratios. The new error concealment by softbit speech decodingerpreted as an enhancement of the parameter transition prob-
provides quite a good subjective speech quality down to Gibilities F(x0|x0 ).

=0
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TABLE I
NUMBER OF BITS M, ENTROPY H(z,,), CONDITIONAL ENTROPY H(x,,|,, _,) OF THE PARAMETERS OF THEGSM FULL-RATE COoDEC[53], [54]

n

‘ LAR No. LTP RPE

Genel | 1| 2 | 3| a| 5] 6] 7] 8 | res|cam|cra|me|pus
M 6 |6 |5 |5 |a|a]|s|3]|7|2]2]|6]3
H(z,) 5.43 | 4.88 | 4.75 | 4.53 | 3.73 | 3.76 | 2.84 | 2.88 | 6.31 | 1.8 | 1.96 | 5.30 | 2.86
H(g,|z, )| 446|4.29| 418 | 4.09| 3.37| 3.30 | 2.49 | 2.46 | 5.75 | 1.74 | 1.96 | 4.20 | 2.86

10 15 3
8_
6 =
o 4f 310»
” Z
Z 2 £
50;” g s 4*--% SD, AK1, BC
& 5 *—* SD, AK1
ol o ] e--0 SD, AKO, BC
—— SD, AK1 o—o SD, AKO
4 1--— FR +— HD
; ; R ; H ; o= - . y
0 2 4 6 8 10 12 14 -2 0 2 4 6 8
¢/I [dB] Ey /N, [dB]

Fig. 9. SNR performance of GSM full-rate softbit speech decoding, TUH09- 10. SNR performance of softhit decoding with and without block code

channel. See Table | for explanation of the legend. BC (LMQ, M = 3, K = 4, p3; = 0.9, MS estimation). See Table | for
explanation of the legend.

A first example of a block code is the simple even parity code _ _ _ _
of rater = M/K with K — M = 1. Here, recursion (21) can B. Systems with Diversity Reception
be used.

In transmission systems with diversity reception softbit

However, the “parity bit” can alternatively be chosen depeRpeech decoding is able to combine a number of bitstreams

dent on the unquantized parameter ve¢tprather than on the with their appropriate bit error probabilities in the sense

bit combinationz, of the quantized parameter vectgr Anex-  of maximum ratio combinindsee, e.g., [62]-[64]). This is
ample code foil — M = 11s, e.g.,

possible under the assumption of statistically independent
transmission paths.
(23) Let us regard a combination of two received bit combinations

P { 1, it [|5g = To|* < d?
20 =
£, and g, whose transmitted bit combinations are the same:

1, it g - Bl? = @2

with [|3, — || being the Euclidean distance &f, to its o = Yo This may be a diversity reception problem, but it

meant,. The threshold! of this source optimizedlock code May also be a problem of how to combine the information of a

should be adjusted optimally via simulation over a r]oissgpeatedransmission of the same bit combination visilagle

channel model. For a unit variance Gaussian parameter thafy@moryless channel. Thus we discuss the combination problem

scalar quantized by ai/ = 3 bit Lloyd-Max quantizer and 'ike & repeated parameter transmission. o
transmitted over an AWGN channel, we found an optimum !f Oth ordera priori knowledge is available, the posteriori
threshold value ofl = 1.1. This yields the measured code Probabilities read (SD,AKO,RPT)

priori knowledge

P (OIFN — -P(# (2) -P(% (%) -P (@) .
P00y = [1 08953 0 0 0 0 08953 1 (20" 20, G (Zolzo™) - Plg,lvo ™) - Plzy )
00180 = 10 01047 1 1 1 1 01047 0 (24)

with I € {0,1} for decoding by (22). If first-order a priori knowledge is available tha posteriori

Fig. 10 shows simulation results to this source-optimizgstobabilities are given recursively by (SD,AK1,RPT)
block code. The parameter and the channel are chosen as in

Fig. 4, except the quantization is done with = 3 bit. The P( (i)|§70 X L Vv )

Z, Yy
block code thus has a code ratesof= M/K = 3/4. The ¢ =0 My
dashed curves obtained by block coding show coding gains of 1 C L@ L@ ~ ).
up to 0.75 dB as compared to the uncoded transmission. This =& Pliolzo”) - PlGylvo ) - Z Plao”lz=1)
is especially true if no parameter correlations are exploited by ) . ! =0
softbit decoding (SD,AK0,BC). Pla|Eo1, X 50 Y ). (25)
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channels and various speech codecs we demonstrated the signif-
icant improvement of the speech quality. In clear channel con-

Finally it should be mentioned that softhit source decoding
can also be applied to audio and video coding schemes and that
under certain conditions channel coding might be replaced by
redundant source encoding in combination with softbit source
decoding.
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Fig. 11. SNR performance of softbit decoding using parameter repetition
2-path diversity reception (LMQY/ = 2,p;; = 0, MS estimation). See Table |
for explanation of the legend.

or

Fig. 11 shows simulation results of a repeated parametet,
transmission, or, equivalently, to a two-path diversity recep-
tion and subsequent softbit decoding. The parameter and th&!
channel are chosen as in Fig. 4, except the quantization is done
with M = 2 bit and the parameter is uncorrelated = 0). 3]
As expected, the quality gain of softbit decoding in the case of
a repeated parameter transmission (SD,AKO,RPT) compared [N
softbit decoding of a single received bit combination (SD,AKO)
is tremendous and amounts to 3 dB in termsQf No or up
to about 3 dB in terms of SNR. [5]
VII. CONCLUSIONS

We proposed the new concept of softbit speech decodind®l
which comprises previous empirically motivated approaches to
error concealment as special cases. This new concept allowg)
the consequent usage of soft information at all stages of a
receiver—not only within equalization and channel decoding,

but also within speech decoding. 8]
The softbit speech decoding is driven by
* bit reliability information from the channel (decoder);
* residual redundancy of the codec parameters. (9]

For different coding schemes and different channel models
with and without channel coding we discussed how to obtairg
and how to use these informations. Based on this information,
the softbit speech decoding process consists of the four steps

« calculation of parameter transition probabilities; .
» computation ofa posterioriprobabilities;

* estimation of codec parameters;

» conventional speech decoding.

We derived algorithms for computiragposterioriprobabili-
ties taking different degrees afpriori knowledge into consid-
eration. Two common estimators were discussed showing that
the mean square estimator is able to yield the desired gracefi}!
degradation of speech in case of a decreasing quality of the
transmission link because of its inherent muting mechanism. [15]

In addition, we showed how block coding of single codec pa-
rameters, repeated parameter transmission, or diversity receRy;
tion can be taken into consideration for quality improvement by
softbit speech decoding. [17]

Softbit decoding can be applied to any speech coding algo-
rithm without modifications at the transmitter side. For noisy

[12]

[13]

The authors would like to thank D. Herzberg, O. Scheufen, J.
A. Andonegui, B. Dortschy, and S. Heinen for a lot of program-
ming and inspiring discussions as well as the reviewers and the
editor for several valuable suggestions.
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