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Introduction:

Speech segmentation is a basic task to train continuous speech recognizers or speech synthesizers. As
manual segmentation is extremely time consuming and depending on subjective criteria of phoneticians
there is a great interest in the development of automatic speech segmentation algorithms [1].

Known segmentation algorithms are based on the stationarity of phoneme segments [1], make pre-as-
sumptions about phoneme-durations [5] or make use of sophisticated phonetical rules [3].

In this contribution a new algorithm for automatic segmentation of speech based on its phonetic tran-
scription is proposed.

The specific features are:

- new iterative self-learning procedure to find the temporal alignment between feature vectors and
phonetic transcription

- no preassumptions about statistical speech properties or phonetical rules
- no pretraining required !
System-description :

The general structure of the segmentation system is shown in Fig. 1.
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Fig. 1. General structure of the segmentation system

In the first step a sequence of feature vectors X is generated e.g. by a 19 channel mel scale filter bank [7]
with one vector X, each 50 ms

X =(Xg Xy, oo Xy o XN) (n = time index )
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representing the speech signal.
The core of the segmentation procedure is an iterative loop consisting of a neural phoneme classifier, a
time-alignment algorithm and the retraining of the neural classifier.

The neural net, a three-layer perceptron [4], calculates the probabilities qy; of the different phonemes S;
for each incoming feature vector X;,. The probability, that the feature vector X, represents the phoneme
S; is denoted by

Q5 = Prob( §; 1 X;,) with §e{‘’, ‘@, ‘e, ..2 }
If L is the number of different phonemes the phoneme probability vector is given by
Q, = (Gn1> 902>+ dnip-- 9nL) (n = time index, i = symbol index )

The analysis of the entire speech sequence results in the sequence of phoneme probability vectors:

Q=(Q;, Q- Qp - Q)
In the second step of the iteration, assignment probabilities between the sequence of phoneme-probabili-
ties Q and the known phonetical transcription

S =(Sy, Sp, - S, - Sk ) with S e{‘’ ‘@, ‘¢, .2}
are calculated by a modified forward-backward algorithm [6].
Yok = Prob( X, S¢| X, S)

Yni is the probability, that the feature vector X, represents the k-th symbol Sy of the phonetic transcrip-
tion S in time n, given the sequence of feature vectors X and the phonetic transcription S.

Finally the network is re-trained by error back-propagation [4] according to the assignment probabilities
Yo For each time n=1 ... N a feature vector X, is fed into the net as input. The network is trained with
each of the phonemes Sy (k =1 ... K) as the desired output with learning rate yy.

In this way assignments between features and phonemes, which are securely right, will be learned rela-
tively faster than those, which are assigned with lower probability.

After a sufficient number of iterations the matrix of the assignment probabilities Y, gives the optimal as-
signment path between the feature vectors and the phonetical transcription.
Results:

Fig. 2 shows the the segmentation of the sentence ‘nine two seven eight nine ten’.
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Fig. 2. Segmentation of the sentence ‘nine iwo seven eight nine ten’

It can be seen, that all boundaries were found correctly. The algorithm produces neither deletions nor in-
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sertions of phonemes.

Fig.3 shows the initial (3a) and the final (3b) assignment probabilities found by the alignment procedure.
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(a) untrained (b) trained

Fig. 3. Example: assignment probabilities between feature vectors and phonemes
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