
An Integrated Algorithm and Software Debugging Tool

for Signal Processing Applications

Bernd Geiser 1, Stefan Kraemer 2, Jan Weinstock 2, Rainer Leupers 2, Peter Vary 1

1 Institute of Communication Systems 2 Institute for Integrated

and Data Processing () Signal Processing Systems (ISS)

RWTH Aachen University, Germany RWTH Aachen University, Germany

geiser@ind.rwth-aachen.de kraemer@iss.rwth-aachen.de

Abstract

Today’s software debugging tools are generally tailored

to the needs of programmers and software developers.

However, the needs of algorithm developers are only poorly

supported. In this paper, it is proposed to enhance tra-

ditional software debugging tools with powerful algorithm

analysis functionality, as e.g. provided by Matlab. Thereby,

the focus is on applications in digital signal processing

where new algorithmic debugging tools which operate on

the C level can significantly simplify the development pro-

cess. This idea has been implemented for the integrated de-

velopment environment (IDE) Eclipse and the GNU project

debugger GDB. The enhanced debugger provides, among

others, the following features: breakpoints with data trans-

fer to / from Matlab, nonintrusive data sampling, support

for user-defined processing scripts. The efficacy of the pro-

posed tool is demonstrated in an example debugging ses-

sion. As a representative algorithm in digital signal pro-

cessing, the Adaptive Multirate (AMR) speech codec which

is widely used in GSM cellular networks has been selected.

1 Introduction

The typical development process for algorithms in digital

signal processing (DSP) can generally be divided into four

subsequent steps:

(1) Algorithm design with specialized numerical tools,

e.g., Matlab [5] or Octave [3],

(2) Implementation in a high level programming language

(mostly C),

(3) Conversion to fixed point arithmetic and

(4) Optimization for the target DSP platform,

Figure 1. Development steps for applications
in digital signal processing.

as illustrated in Fig. 1. Considering the development tools

utilized for each step, a discontinuity can be observed in

particular between steps (1) and (2), i.e., with the migration

from the numerical tools to a classical high level program-

ming language like C.

In step (1), i.e., from the algorithm designer’s perspec-

tive, the use of tools such as Matlab is very attractive be-

cause of their powerful language features which allow con-

venient and rapid prototyping. Moreover, Matlab is often

highly appreciated for its algorithm analysis capabilities.

Due to its interpretive nature the designer can apply ad-

vanced analysis tools (e.g. statistical and spectral analyses)

at arbitrary positions within the code. However, with the

C implementation, i.e., after the transition from step (1) to

step (2), the advanced analysis and debugging capabilities

of Matlab are lost. Of course, this is also true if the algo-

rithm design is directly conducted in C, i.e., if steps (1) and

(2) are merged. As a matter of fact, the available debug-

ging tools for high level languages like C have an entirely

different focus. Clearly, these tools are geared towards soft-

ware developers and programmers instead of algorithm de-

signers. Prominent examples are Microsoft Visual Studio,

Eclipse, the GNU project debugger (GDB) [2] and memory

inspection tools like Purify and Valgrind.

In this paper, we present a new tool that combines algo-

rithm and software debugging capabilities. It is especially

tailored towards signal processing applications. Our ap-

proach is to reuse the powerful algorithm design and anal-

ysis functionality provided by Matlab within widely used

software debugging tools. This idea has been implemented

for the integrated development environment (IDE) Eclipse

[1] and the GNU project debugger GDB [2].

This paper is organized as follows: Sec. 2 summarizes

state-of-the-art software debugging techniques and analyzes

their usability in the context of DSP algorithm development.

Based on the identified deficiencies, our new debugging

concept is proposed in Sec. 3. Realization and implementa-

tion aspects are presented in Sec. 4. A case study demon-

strates the viability of the proposed concept (Sec. 5) before

the paper is concluded.

2 Software Debugging:

The Algorithm Designer’s View

Traditionally, software debugging tools (SDTs) for high

level programming languages (like C) help the developer to

pinpoint programming mistakes and errors. In that respect,

SDTs are essential for a smooth and efficient development

process. Debuggers typically provide a well-defined set of

capabilities, including:

• Controlled execution (stepwise program execution,

breakpoints, conditional breakpoints, source code in-

spection),

• Memory and variable inspection (context-dependent

value printing, watchpoints),

• Callstack inspection (stack backtrace),

• Program and variable modification.

With this functionality, the software developer is well-

equipped to tackle numerous common problems such as il-

legal memory access. However, in contrast to these classi-

cal programming mistakes, errors on the semantic level are

comparatively hard to pinpoint and require expert knowl-

edge about the expected behavior of the program. Ideally,

the information provided by the debugging tool in conjunc-

tion with the expert knowledge suffices to identify and fix

the respective problem in a reasonable time frame.

However, in the domain of signal processing, the raw

data presented by the debugger is insufficient and even the

DSP expert can not comprehend essential features and char-

acteristics. Therefore, in most cases, it is hard to come to a

final conclusion.

0 : void f f t (i n t n , double ∗A re , double ∗A im ,
1 : double ∗W re , double ∗W im)

2 : {
3 : double w re , w im , u re , u im , t r e , t im ;
4 : i n t m, g , b , i , mt , k ;
5 :

6 : f o r (m=n ; m<=2; m=m>>1) { /∗ Bug 1 ∗ /
7 : mt = m >> 1 ;
8 :

9 : f o r (g =0 , k =0; g<n ; g+=m, k++) {
10 : w re = W re [k] ;
11 : w im = W im[k] ;
12 :

13 : f o r (b=g ; b<(g+mt) ; b++) {
14 : t r e = w re ∗ A re [b+mt] −
15 : w im ∗ A im [b+mt] ;
16 : t im = w re ∗ A im [b+mt] +
17 : w im ∗ A re [b+mt] ;
18 :
19 : u r e = A re [b] ;
20 : u im = A im [b] ;
21 : A re [b] = u r e + t r e ;
22 : A im [b] = u im − t im ; /∗ Bug 2a ∗ /
23 : A re [b+mt] = u r e + t r e ; /∗ Bug 2b ∗ /
24 : A im [b+mt] = u im − t im ;

25 : }
26 : }
27 : }
28 : p e rm u t e b i t r e v (n , A re , A im) ;

29 : }

Figure 2. Erroneous radix-2 FFT implementa-
tion

A very simple example is shown in Fig. 2. This piece

of code is used to illustrate the above mentioned problem.

The first mistake in this radix-2 FFT implementation can be

easily detected: The loop condition in line 6 (m<=2 instead

of m>=2) is wrong since the entire FFT computation is by-

passed. This can be easily detected with a common debug-

ging tool by step by step execution. However, the second

mistake in lines 22 and 23 is much harder to locate, since it

only affects the actual values produced by the function.

A makeshift solution which is frequently applied in such

situations is manual instrumentation of the C application for

data logging purposes. The obtained log files are then post-

processed with suitable tools (Matlab). In the case of the

FFT example, the developer would manually instrument the

FFT in order to locate the problem (see Fig. 3). Fig. 4 shows

real (a) and imaginary (b) part of the erroneous FFT (array

variables A re and A im) as well as the reference FFT (c),

(d) as computed with an external tool based on the captured

input signals. Owing to the improved presentation of the

data, it is immediately obvious that the symmetry conditions

for real-valued FFTs are violated. Based on this knowledge

it is possible for the algorithm designer to locate the prob-

lems in lines 23 and 24 (wrong signs).

There are several drawbacks of these “ad-hoc” ap-

proaches (manual instrumentation). First, they are mainly

developed “in-house” and they tend to be too specialized to

0 : void f f t (i n t n , double ∗A re , double ∗A im ,
1 : double ∗W re , double ∗W im)

2 : {
3 : /∗ INSTRUMENTATION f o r i n p u t ∗ /
4 : w r i t e d o u b l e (” A r e i n p u t . db l ” , A re , n) ;
5 : w r i t e d o u b l e (” A im inpu t . db l ” , A im , n) ;

. . .

9 : f o r (m=n ; m>=2; m=m>>1) {
. . .

12 : f o r (g =0 , k =0; g<n ; g+=m, k++) {
. . .

16 : f o r (b=g ; b<(g+mt) ; b++) {
. . .

28 : }
29 : }
30 : }
31 : p e rm u t e b i t r e v (n , A re , A im) ;
32 :
33 : /∗ INSTRUMENTATION f o r o u t p u t ∗ /
34 : w r i t e d o u b l e (” A r e o u t p u t . db l ” , A re , n) ;
35 : w r i t e d o u b l e (” A im oup tu t . db l ” , A im , n) ;

36 : }

Figure 3. ’Ad-hoc’ code instrumentation

be applied in another application. Then, they are intrusive,

i.e., the application source code is augmented by unneces-

sary overhead. Potentially, new bugs could be introduced.

In the following section we describe the proposed debug-

ging concept to overcome such problems.

3 Proposed Debugging Concept

As described previously there mainly exist two different

views on an application; the algorithm view and the soft-

ware view. Traditional debuggers are developed to satisfy

the needs of software developers but they are neglecting the

algorithm centric view on the application.

Our proposal is a step towards a unified development en-

vironment targeted at the software itself as well as its algo-

rithmic aspects. Therefore, a connection between the exist-

ing software debugger and the existing algorithm analysis

and design tool (e.g. Matlab) is established based on the

available application interfaces. For such a tool, the follow-

ing functionality is desirable from the algorithm developer’s

view :

(1) Non-intrusive algorithm analysis.

(2) Data transfer between both systems with automated

mapping of data structures.

(3) Data sampling (collection for gathering statistics and

evaluation at the end of the debug session).

(4) Easy visualization and presentation of (post-

processed) data.

(5) A rich library of analysis methods.

20 40 60 80 100 120
!10

!5

0

5
x 10

4 (a)

20 40 60 80 100 120
!5

0

5
x 10

4 (b)

20 40 60 80 100 120
!1

0

1

2

3
x 10

5 (c)

20 40 60 80 100 120
!1

!0.5

0

0.5

1
x 10

5 (d)

Figure 4. Real part of the erroneous FFT a)

Imag. part of the erroneous FFT b) Real part
of the reference FFT c) Imag. part of the ref-
erence FFT d)

(6) Conditional breakpoints triggered by the outcome of

the algorithmic analysis.

The non-intrusiveness is already guaranteed by common

software debuggers which allow to inspect the software at

run-time. Thereby, the debugger provides a common inter-

face to various debug targets such as programs on the host

PC or even on external DSP hardware. The latter case opens

up the possibility to inspect an algorithm running on this

DSP within the familiar Matlab environment.

In order to keep the suggested link between debugger and

algorithm design framework as general as possible, changes

to the software debugging tool should be kept at a minimum

level. Therefore, two operation modes for the augmented

debugging environment are suggested:

• A classical breakpoint that automatically transfers se-

lected variables to the connected algorithm design tool.

• A data logging mode based on conditional breakpoints

(inspection points)

When hitting an extended breakpoint, the transferred data

is immediately visible within the connected tool and can

be freely manipulated, post-processed and visualized. Ad-

ditionally, the outcome of the analysis can serve as a con-

dition to trigger the breakpoint. This way, as opposed to

classical conditional breakpoints, it is possible to interrupt

the software execution based on derived characteristics and

parameters (and not only based on memory content).

The data logging functionality is motivated by the fact

that virtually all signal processing algorithms process their

Figure 5. Eclipse / Matlab coupling: Process overview and interaction.

data in a block based manner. In that case, the observation

of the instantaneous variable value for a particular time in-

stance does not reveal the underlying statistics. Therefore,

the proposed non-intrusive data logging approach is an ade-

quate way to collect and evaluate the temporal evolution of

variables and derived parameters (e.g. statistics).

With the above proposed unified development environ-

ment, software and algorithm debugging can be conducted

simultaneously in a convenient way. For instance, the fol-

lowing use cases are targeted:

(1) Development of signal processing algorithms in C.

(2) Classical software debugging of signal processing ap-

plications.

(3) Algorithm verification based on reference data or on

a reference implementation. Algorithmic verification

helps to ensure that no mistakes have been introduced

while implementing the application in C, e.g., based

on a Matlab reference.

(4) Migration to a different type of arithmetic, e.g. fixed

point conversion. For this task, it is essential to observe

the statistics of introduced rounding errors compared

to the floating point reference.

(5) Algorithm evaluation and characterization. This use

case is particularly important if entire algorithm de-

velopment has been performed at the C level and no

reference is available.

4 Realization

A prototype of the above mentioned idea has been real-

ized. The implementation is based on the Eclipse Integrated

Development Environment (IDE) [1] whose debugging fa-

cilities rely on the GNU debugger [2]. The main compo-

nents of the coupling with Matlab are summarized in this

section.

Figure 5 shows three major building blocks that are in-

volved: The target process which is to be debugged, the

Eclipse IDE and the Matlab environment. In addition,

there is an auxiliary component (Matlab control process) to

launch Matlab and to enable direct interaction with the Mat-

lab programming interface. On the Eclipse side, a plugin is

provided to extend the debugging functionality. The first

task of the plugin is to instantiate the Matlab control pro-

cess and to establish the connection to Matlab. Second,the

breakpoints within Eclipse are augmented with additional

information concerning Matlab interaction:

• A list of transferable variables. By default, the com-

plete list is forwarded to Matlab. However, the user

may specify a customized list to reduce the amount of

transferred data.

• An associated Matlab m-script to be triggered upon

break. The default behavior is to pass the control to

an interactive Matlab session. A Matlab console has

been integrated into the Eclipse GUI for this purpose.

• A name for a Matlab structure (“namespace”) to store

the transferred data. This structure is reset for each

breakpoint hit, but the rest of the Matlab workspace is

persistent.

• A condition in Matlab syntax which will be evaluated

at the respective code location based on the Matlab

workspace. This way, conditional program intercep-

tion based on derived parameters can be realized.

• An option is provided to exploit the breakpoint for data

logging purposes. In this case, the target program is

not stopped, but only the associated m-script is exe-

cuted. This script is mainly intended to collect data

over several hits which is particularly important for

block based signal processing.

If an augmented breakpoint is hit, the variable transfer to

Matlab is initiated and a suitable Matlab command is gen-

erated and scheduled for execution by the Matlab control

20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10
Spectral Envelope Quantization in the AMR Codec (2/2)

lo
g
!

s
p

e
c
tr

a
l
d

is
to

rt
io

n
 [

d
B

]

frame number

(b)

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25
Histogram of Log Spectral Distortion

(c)

0 1 2 3 4

Spectral Envelope Quantization in the AMR Codec (1/2)

frequency [kHz]

fr
a

m
e

 n
u

m
b

e
r

original spectral envelope

quantized spectral envelope

30

40

(a)

Figure 6. Analysis plots of the AMR encoder for 12.2 kbits/s— generated by Matlab based on captured
information from the debug target — (a) magnitude of the spectral envelope and its quantized version

for 11 speech frames — (b) logarithmic spectral distortion (LSD, integrated quantization error) per
frame — (c) histogram and cumulative distribution function (CDF) of the LSD

process. Scalar data types and statically defined arrays can

be automatically transferred without any further user inter-

action. However, if pointers shall be dereferenced, neither

the allocated field size nor the underlying Matrix dimen-

sions are known to the debugger. Therefore, these details

have to be provided by the user for each breakpoint.

5 Case Study

To demonstrate the efficacy of the proposed tool, the

Adaptive Multirate (AMR) speech codec [4] has been se-

lected as a representative algorithm of digital signal pro-

cessing. The AMR codec, which is based on the principle of

Code Excited Linear Prediction (CELP), is widely used for

speech transmission in GSM networks. Its bit rate modes,

ranging from 4.75 up to 12.2 kbit/s, are usually set by the

operator according to the current radio link quality.

The C implementation of the encoder component has

been executed on a PC while being inspected by the mod-

ified Eclipse debugger. To visualize and analyze the oper-

ation of the algorithm, data logging has been realized by

an augmented breakpoint. In particular, the quantization of

the spectral envelope of the speech signal to be coded is of

interest. This spectral envelope is computed and quantized

for each speech sub frame of 5ms length. Concretely, the

C arrays describing the computed and the quantized spec-

tral envelope parameters are transferred to Matlab each time

the respective breakpoint is triggered, i.e., for each speech

frame. The breakpoint has been configured for data logging

mode and a specific m-script has been used to collect the

data. At the end of the execution run, the collected data has

been analyzed and visualized as shown in Fig. 6. From this

data presentation, the speech coding expert can easily spot

problematic signal portions where the encoder exhibits sub-

optimal performance. The identified critical signals could

be used within further testing sessions and help to improve

the algorithm.

6 Conclusions & Outlook

The presented debugging tool alleviates the algorithm

developer from certain time-consuming debugging tasks. A

uniform framework based on the Eclipse IDE and on Mat-

lab has been realized for this purpose. Of course, this con-

cept can in principle be transferred to other debugging tools.

Moreover, the integration of algorithm design tools like

Matlab into the software development process allows de-

bugging on a semantic level. Here, this has been shown for

the domain of digital signal processing. Nevertheless, the

general idea to combine software development tools with

information from other sources and the incorporation of se-

mantics is expected to gain interest.

For our concrete realization, a couple of future exten-

sions are imaginable. For instance, support for user defined

data types and the related mapping to the Matlab workspace

would be interesting. Also, the applicability of our tool in

multi-core environments is still an open question.

References

[1] Eclipse Integrated Software Development Environment.

http://www.eclipse.org.

[2] GDB: The GNU Project Debugger.

http://www.gnu.org/software/gdb/.

[3] GNU Octave. http://www.octave.org.

[4] ETSI Recommendation GSM 06.90. Digital cellular telecom-

munications system (phase 2+); adaptive multi-rate (AMR)

speech transcoding. version 7.2.1, release 1998, Apr. 2000.

[5] The MathWorks. Matlab.

http://www.mathworks.com.

