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ABSTRACT

In analysis-by-synthesis coders the problem of approximating
the original signal by the synthesized signal is solved over a
limited time interval only. In this contribution a systematic
investigation of possible improvements by using extended or
even unlimited intervals is presented.
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1. INTRODUCTION

In linear predictive coding using analysis-by-synthesis tech-
niques [1, 2] the quantization error at the output of a synthesis
filter ;—%—5 A—l('5 shall be minimized as depicted in Figure 1.
The signal is sequentially processed in block mode. As usu-

s(k)

ek

'5

Figure 1: Basic structure of analysis-by-synthesis coders

ally done in linear predictive coding schemes the original
51gna1 s(k) is modelled as the output of a long term filter
m and a short term synthesis filter m excited with the
corresponding prediction error or residual sequence r(k). The
process r(k) is then approximately white noise. To achieve
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noise shaping we choose e. g. A, (2) =
representing the normal analysis filter.
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For each whole block or interval I, consisting of L samples
the quantized excitation sequence c, (k) is determined, so as
to minimize the perceptual quantization error P,. In the state-
of-the-art schemes the error is computed just over the same
time interval I, (analysis interval), ignoring the influence of
the quantization on future intervals I, 4y, I, 49 etc. In [3] this
influence is taken into consideration to a certain extent only,
as the effect of excitation c, (k) on one future frame I, 4, is
considered, but by using an error P, independent of ¢, 41 (k).
In this paper a joint optimization technique is proposed, tak-
ing into account the contribution of the excitation sequences
¢y (k),cv41(k),... tothe expected distortion computed over
all future frames. A theoretical solution for the described
problem is derived and applied to a fixed grid Regular Pulse
Excitation codec (RPE, e. g. [2]). With this new system-
atic analysis, the influence of analysis time limitation in the
traditional schemes can be evaluated.

2. SEQUENTIAL QUANTIZATION

The synthesis filter cascade in interval I, is described by its
impulse responses h, (k) which can be truncated to R < L
samples. At first we consider the case that an FIR synthesis
filter is used or that the coefficients of an IIR filter have not
changed from I,_; to I, i.e. h,_1 = h,. The synthesized
signal in frame I, is denoted by §, (k) and the input by ¢, (k).
Then the vector §, = (8,(1),...,35,(L))7 €RL is given by

1
= H,c,_; +H3c,,
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In the general case the matrices need not consist of time
invariant shifted versions of the same impulse response, but
all effects of time variation of the synthesis filter can be
covered by proper specification of H! and HS . The target
vector s, is equivalently substituted by s, = H} r,_;+H’r,
with r, (k) denoting the residual sequence.

The speech signal begins in frame I;, thus rg = ¢y = 0.
While M may be arbitrarily large, we obtain P, summed
over M frames as

M M
Pe=) Di=D) lsi~&
i=1 =1
" 2 0
=) |Hi(m —c)+Hi@i—e)|” .

=1
Thus P, depends on the signal which is only described sta-
tistically. The task of an optimum sequential quantization
algorithm is now to minimize the expected value of P, by
choosing the optimal excitation signal c, in each frame.

M
E{P.} = E{Z flsi - §.~n’} ~ Min 3)

=1

3. MATHEMATICAL SOLUTION
3.1 Problem Description

Since the coder works causaily in frame I, all previously
determined excitation vectors ¢; (i < v — 1) and the target
signals represented by r; (7 < v — 1) are given. Normally r,
is known, and due to the often existing delay of LPC-coders
we postulate the interesting case that r, ;4 is given as well.
The quantization in frame I, can then be expressed by a func-
tion or rule p, with ¢, = py(rs,...,Tv41,€1,...,Cp=1)-
‘When selecting ¢, the distances D;,. . .,D,_ are already fixed
and only D,,...,Dy can be influenced. Previous vectors
r;, ¢; (i < v —2) do not affect the latter, due to the limited
length of the impulse response.

Therefore the function p, has only three arguments, i. e. the
task is now to find a set of rules

Cy =pPu(Py—i—Copuy, Xy, Tuq1) for v=1,....,.M (4)

that minimizes E{P,}.

According to the repeating dependence (4) one should note
that cps indirectly depends on the selection of ¢;. Further, P,
is a function of M random variables r; and M functions p;

P. = Pe{r1,...,ry, P1,..., DM} . )

The expectation value means averaging over ry,...,rp thus
the problem is

E{P.}=f{p1,...,DM}— Min. 6)

The described problem is of the class treated by the calculus
of variations. Following this theory e. g. [4, pp. 147], the
existence of a solution is generally not guaranteed. Usually
necessary conditions are imposed first because the question
of existence is more complicated.
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3.2 Derivation of a Necessary Condition

We now presuppose that the ¢; are the function values of the
functions p; as given by (4). To derive a condition for p,
the following splitting is advantageous

E{P.}

v—1 M
= E{Z D?} + E{Z [H (ria—cia) + H?(ri—ci)"z} .
=1 i=v
(U]
Since the left hand side expression is not involved by variation
of p, it is equivalent to minimize the right hand expression.
To extract the dependence on the function value ¢, we as-
sume first that the arguments r,_;—€,1,ry, Iy Of Py see (4)
are given (and thus ¢,) and average afterwards over these
arguments as represented by

= E{:Z;D?}+

' M
E E{E |H: @ia—cia) + H?(r-‘"ci)uz

=y

T 31~=Cm1,L, T H-:l}

6y v —=Co1,Ty ~Cu, T, Pusy- - - D M) ®
Analyzing the inner expected value, it can be seen that r,
has only influence via r, —p,(r)c1—Cpy,XpFupy ) = 1, —Cy
as noted in the abbreviation §,.
Minimizing the inner expected value minimizes the outer and
vice versa, therefore M minimization conditions result:
Find a set of functions p;, with ¢ = 1,..., M such that all
6,(---) v =1,...,M are minimized.

By varying over the functions p,43, - - -, py and selecting ¢,
the minimum of 6, must be achieved.
A set of solution functions shall be ¢4, ..., pp With ¢** =

@rya1—Cyy, T, ). Using a recursion §, = f(6,41) and
the minimum conditions, a necessary condition for the ¢,
can be derived as proven in the appendix. The result is stated
below:

If A(cy,c3**) is defined as

Afc,, ") =
H (x, 1 ~com1) + HO(r = )|+
“ H,.(rv-c)+Hy, ( Ty41—

2
E{@y ity =", p 41, Euga)lry =3 Ty } ) “
©)
with the given function @, 41(ry — €y, Ty41,Ty42) then the
following relation

Ales,c2*) > A(c2",c2®*) holds for all ¢, € RE.  (10)

This is an implicit criterion for c’'. Inserting a test vector
¢’ leads to A(c,,€:”*). If the minimum of this function
is taken for ¢, = €3**, then the necessary condition for &;**
being an optimal value is fulfilled. With this criterion the
problem can generally be solved; at least theoretically. Be-
ginning with ¢ (- ++) and ending with ¢ (- - ) all functions
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can be obtained recursively. Practically, approximations were
found that allow a forward directed proceeding.

If the filter matrices are interpreted as random values, too
and are provided up to the same time index as the residual
vectors, the expected values must include averaging over the
filter matrices. A similar criterion can be derived in this case
but its usefulness is very limited because for an application
(e. g- RPE) expected values of matrix vector products includ-
ing inverse filter matrices have to be taken which denies any
practical solution.

Instead, by using condition (10) analytical and practical so-
lutions were derived.

4. APPLICATION

For the fixed grid RPE-approach, an analytical solution can be
obtained. For this type of quantization the excitation vector
must satisfy ¢, = Q¢, with £, € RF and k < L, denoting by
Q an (L x k) position matrix . Since k < L this corresponds
to a projection which results in a linear quantization rule.
By solving the minimization conditions backward, it can be
shown that the quantization functions are given by

Pi(Ta—Cia,Fi,Tipn) = (11)
QL) QT{Ai(ria—cit) + Biri + Dirinn } .

with matrices L;, A;,B; and D; to be determined recur-
sively. Applying (10) leads to a matrix recursion for all
matrices. For the main matrix L; it is of the form L; =
f [(L.-+1 )"1] beginning the backward recursion with

L= QT (H3,)THYQ. (12)

In practice it turns out that the iteration converges very
rapidly, or in other words that the dependence on the ini-
tial value Ljs decays very quickly and vanishes for M — co.
This means that for an almost precise computation of L, only

few future filter matrices HJ ,HJ,_, , - - - have to be known.

The application of the theoretic results to a special speech
codec based on the GSM-codec [5] gave improvements in
SNR of 0.2 dB on average but 3 dB for sine signals. The it-
eration converges such fast, that three to four filter matrix sets
(HS,H}) were sufficient to compute cg”*. So the proposed
solution can be applied without introducing additional delay.

In the case of vector quantization when ¢, is a codevector
taken from a codebook, analytical solutions can not be ex-
pected. But equation (9) and (10) can be interpreted in an
instructive way: If the expected value of the future optimum
excitation vector E{c;‘,:_'1 e } were given, the optimum c;**
could be computed by minimizing the special squared error
over two frames as noted in (9).

Using estimated values &7} for E{c:3} |- - - } provides the ba-
sis to develop new improved sequential quantization methods
as an approximation to the theoretic solution. One proposed
scheme is the following: If one determines &%) with the
assumplion ryys ~C,ye = 0 from minimizing

IHL (ro—co) + Hiy (taa —é;’.;{)"z + | Hie (to —253) ]|2
(13)
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and uses this &,3) for determination of &** from (9) and (10)
an approximate solution for ¢;** can be found.

This must be done by iteration since in (13) ¢, is already
included. It starts with r, —c, = 0 in (13) then (9) is used
to find an iteration value of &** which in tun can be used
in (13) to improve the iteration value of &3%;. If & does
not change any more (fixpoint), the iteration stops and &;7* is
taken as the quantized excitation sequence for frame I,.
Using the proposed algorithm will raise SNR without chang-
ing an existing decoder or the channel structure.

S. SUMMARY AND CONCLUSIONS

In this paper we have addressed the problem of analysis-by-
synthesis quantization in which the quantization error depends
on several excitation vectors together that must be determined
sequentially, one afier the other. This type of quantization is
typical for state-of-the-art speech coders but may also occur
in other fields. Especially, we were interested in the question
to what extent information about the future original signal
can improve quantization.

The task of coupled optimization was systematically de-
scribed. It falls in the area of calculus of variations. After
analyzing, a necessary condition for the optimum quantiza-
tion rule was presented which is strong enough to determine
explicit solution functions.

Thus a theoretical bound of the weighted mean square error
has been derived for realistic conditions. This allows to
judge how far a specific analysis-by-synthesis coding scheme
approaches the theoretical optimum.

Application of the implicit criterion to a fixed grid RPE-
approach led to an analytical solution. It was implemented in
a simulation of the GSM-codec and gained some improvement
as stated by theory. This approach supports e. g. compatible
performance improvements of the GSM-codec for signaling
tones and voice band data signals.

Exploitation of the theoretical results to other quantization
methods is possible and was indicated for the vector quanti-
zation method in form of an approximation. This scheme is
practical implemented too and currently under investigation.

APPENDIX

Starting from (8) and the minimum conditions we derive the
necessary condition (10).

For §,,(- - -) the following recursion can be shown by separat-
ing the constant part not involved by the inner averaging and
reducing the condition to effective elements.

63 1m1 —Com1 Ty —CiyT 141, Pty - P M) = (14)
[HL(rvm1 —cumn) + HY(ru—c)| '+
B{bulrv—cuv, Tupt =Pupa (P —Co, P s, Tui2),
Tut2, Putrr - sPM)|Tu—CoTut1 }

In this recursion the expected value just corresponds 10 aver-
aging over r, 5. Inserting a set of solution functions in the

1125



expression §, (- - -), it takes the minimum value smin(.. ) in
which the dependency on ¢;,...,pa Will be omitted.

As usual R denotes the set of real numbers. For given
ry, ¢, Ty € RE, 6740 (l‘u—cu,!‘u+1—0u+1, ry2) is mini-
mized by taking ¢, 43 = ¢}J] = <p,.+1(r €y T, Tisz). Thus
Cot1 = Pua(T—6,Ta,Tig2) With &, € RE will yield a

value greater or equal and

i1 Ty = CnTups — Punt(T—E0 T, Tii2), Tiga) 2

Taking expected values (which is just averaging over r, ;2) on both sides does not change the inequation, which leads to

Ay (Cv, év) = "H},(rv-l_cv—l) + Hg(ru—cu) "2 + E{ 6:;;(1‘11“014,1'»1 —(Puu(l'u-éul'u{-brm), rnﬁ)lrv“cmrv—éwrw{-l }

2

Az(ey) = [|HL (rua—cos) + H)(r,~c.) “ + E{ 633 (ry —CuTupt =0 ua(TrmCu s Tuiz), Tuge) [Ty — €y Xy }

= 5:1“‘“(1'»-1 "Cv-hrv‘cu"uﬂ)

for all ¢,,&, € RE.

Further application of (14) gives
Al(cm v) =
|H: (fsa—coa) + HY (r.,—c,,)" +

E{"Hv+1 (ro—c) + Blyi(¥u41 —tpun(ru-éurm,rm))"z +

™min (15)
et (ry =CuTupr = Purpt(Tr~Cy T, Tui2 ), Ti2)
bolds for all ¢,,&, € RE.
(16)

E{&“'"(l’uﬂ —(Puu(l‘u'éurul-hrun): rm—tpm(l‘uu —(pw](rréy,ru*-l,rlﬂnz)y 1‘9{-2;1‘:4-3), rw.a)lr.,;.z -¢v+1(l'w-éul‘n+1,l‘»2)» Tup2 }

2

Az(e)) =
|8 (rsa—cia) + HY(rv—c.) ﬂ +

E{ ”Hv+1 (rv—cu) + H?,-q.z (res1 —¢n+1(ru-curv+1,ru+2))"2 +

Ty—Cy, T8y, Tupn }

E{605 (xur1 = unt(TrCulutt,T i), Tuge ~ @utdTits = @uht(TomCo T ubtTut2)s Fuidr L) Tus ) I utt = @ua(T o Culuin,Tudz), T }

Ty—Cy) Fujl } .
an
As presupposed 67 (£, —C,—1,Ty —C,,Tuyy ) takes its minimal value for ¢, = ¢{** = @,(r)1—Cpy, 1T ). Thus
Ai(ey, &) > Az(cn) 2 A2{c”) = Ai(cs,éu) 2 A2(cP*) forall ey, &y € RE. (18)
If now &, = ¢ is chosen, the last terms on either side in (17) become equal and
|8 (o) + H S| + E{ [H 41 (ro—co) + Hoys (togr =oun(rici®ru, r,—Cy,Py—c2’ ,r.,u} > )

"Hv(l‘p:l—c»—l) <+ Ho (ry—c"') " + E{ ”H,,+1 (r,,—c”') + H,,.H (l‘y.“ —(ppu(r.r-c:”,r»u,

follows for all ¢, € RE.

l’y—cy N r,,u}

The following equality E{”K x| } = ||K — E{x}||* + Var{x} for the random value x and the constant K can be used in
(19) to subtract the term that corresponds to Var{x} on both sides, which resuits in

Ales, ") =B (rus—cums) + HY(rv—c) | + [ HL41(rv—co) + oy (rus1 — E{ ouna(romc ruarue) 1o —c2 rus D 2

"H (Foa—cimq) + H, (ry—c”') " + "HVH Fy—Cy

for all ¢, € RE and (10) follows.
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