Speech Quality Assessment for Wideband Communication Scenarios

H. W. Gierlich, S. Völl, F. Kettler (HEAD acoustics GmbH) P. Jax (IND, RWTH Aachen)

- Workshop on Wideband Speech Quality in Terminals and Networks

supported by:

HEAD acoustics GmbH

Outline

- General aspects of speech quality in wideband systems
- Subjective evaluations
 - Conversational tests
 - Speech intelligibility
 - Background noise transmission
 - Echo tests
- Summary

Speech Quality Parameters

Auditory Parameters

...contributing to speech quality:

Roadmap for the development of objective measurements

- Conversational tests → parameter identification (qualitative)
- 2. Listening-only tests \rightarrow quantitative judgement
- 3. Development of objective measurement methods to reproduce the results of the LOT

→ Quality evaluation of wideband systems without subjective tests

Outline

- General aspects of speech quality in wideband systems
- Subjective evaluations
 - Conversational tests
 - Speech intelligibility
 - Background noise transmission
 - Echo tests
- Summary

Conversational Tests

- Purpose: identification of parameters characterizing the communicational quality in wideband systems
- Test conditions:
 - Experts tests
 - "Kandisky"-test
 - 4 wideband codecs under test
 - 3 conditions for each codec: "normal" conversation, with music in office room, with babble in office room
 - "free answering"

Setup and test procedure

• Setup:

- Test procedure:
 - Different codecs included
 - One echo-canceller for all tests

Results

• Sorting the comments in categories:

 Speech sound quality, echo behavior, Quality of background noise, others (e.g. noise, clipping)

Example: speech sound quality codec comments G.722 sounds naturally, high dynamic ... AMR-WB sounds rough, naturally, distorted, ... AMR-WB2 high dynamic, hollow, clank, ... BWE rattles, crackles, blunt sound, ...

Conclusion

- Relevant parameters to be studied further:
 - sound of speech
 - Echo: level, masking, intelligibility
 - quality of background noise transmission
 - Noise
 - Double talk
 - Switching/clipping
- Design of listening-only tests concerning
 - speech intelligibility: narrow band vs. wide band
 - quality of transmitted background noise
 - annoyance of echo

Outline

- General aspects of speech quality in wideband systems
- Subjective evaluations
 - Conversational tests
 - Speech intelligibility
 - Background noise transmission
 - Echo tests
- Summary

Speech intelligibility test

- Sensitive test: logatom-test
- Consonant vowel consonant
- Informal test:
 - 3x 12 test persons,
 - 29 logatoms
- · Test persons note the "word" they understood

Recording & Listening

 Listening: test persons listen to the artificial head recordings

Results

• Increased intelligibility for wideband codecs

www.head-acoustics.de

Outline

- General aspects of speech quality in wideband systems
- Subjective evaluations
 - Conversational tests
 - Speech intelligibility
 - Background noise transmission
 - Echo tests
- Summary

Background noise assessment: music

- Background noise: additional information
 about talkers environment
- Tests with
 - untrained persons: assessment on a 5 point MOS scale
 - experts: assessment on a 5 point MOS scale and giving reasons why
- 16 different codecs under test

Background noise tests

• Recording listening samples:

- Listening: test persons listen to artificial head recordings
- ACR scale:

excellent - good - fair - poor - bad

Results

 3 quality levels with significantly different MOS - values

Outline

- General aspects of speech quality in wideband systems
- Subjective evaluations
 - Conversational tests
 - Speech intelligibility
 - Background noise transmission
 - Echo tests
- Summary

Echo annoyance test

- Using hands-free telephones → echo disturbances a dominant problem
- Investigation of the annoying aspects of echo using *wide-band* links:
 - influence of echo sound,
 - influence of echo level,
 - influence of codec, ...
- Mean one-way transmission time constant for all listening samples: 170 ms

Echo annoyance tests

• Recording:

 Listening: test persons listen to the artificial head recordings: → direct speech + echo

Tests & assessment

Tests with

- untrained persons: assessment on a 5 point MOS scale
- experts: assessment on a 5 point MOS scale and giving reasons why
- DCR scale:
 - 5 echo is inaudible
 - 4 echo is audible, but not annoying
 - 3 echo is slightly annoying
 - 2 echo is annoying
 - 1 echo is very annoying

Echo levels

• TCLw acc. ITU-T P.79

 Note: hands-free on boths sides, SLR = 7dB, RLR = 5dB (including HFT correction of 14 dB) => TELR(max) = 39dB

 \rightarrow Investigation of codec and echo level

Results

• Comparision of annoyance by echo level (experts)

→ Differences for echos with the same echo level
 → Echo masked by direct speech

Influence of the bandwidth

• Filtering of the echo signal

- Speech modulated noise (two examples)
- Level adjustment to TCLw = → "medium" echo level

Results

www.head-acoustics.de

Results echo annoyance

- High frequencies \rightarrow very annoying
- Wide-band and low freq. \rightarrow slightly annoying
- Experts more critical than untrained test persons
- Speech modulated noisy echo:
 - Experts: very annoying \rightarrow no advantages
 - Untrained: felt insecure

Summary (1)

Background noise transmission - relevant aspects:

- Bandwidth
- "intelligibility" / brightness / low distortion (small difference to the original)

• Echo annoyance - relevant aspects:

- Level
- Masking properties
- Distortion and frequency characteristics
- Additional parameters to be investigated subjectively:
 - Noise
 - Switching/clipping
 - Double talk behavior

Summary (2)

• To do:

- Additional subjective testing
- Deriving/Adaptation of methods to measure
 - Sound quality
 - Echo
 - Background noise transmission
 - Double talk performance
 - Switching/clipping
 - Noise