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Abstract— In this paper, we investigate Turbo-coded transmis-
sion over a temporally correlated flat Rayleigh fading channel.
Conventionally, channel estimation is performed prior to decod-
ing and is solely based on periodically inserted pilot symbols. We
here consider the case that the pilot spacing is not small enough to
satisfy the Nyquist criterion for the bandlimited channel process.
It is demonstrated that iterative code-aided channel estimation
can then significantly improve the bit error rate (BER). Further-
more, we show that the convergence speed of the iterative channel
estimation can be significantly accelerated without additional
computational power by just carefully choosing the mapping
strategy of systematic bits to data symbols.

I. INTRODUCTION

With the invention of Turbo codes [1], iteratively operating
receivers have moved more and more into the focus of re-
search. As compared to non-iterative receiver structures, such
systems are capable of achieving a certain bit error rate (BER)
at significantly reduced signal-to-noise ratios (SNR).

The integration of synchronization into the iterative decod-
ing process, commonly referred to as joint iterative synchro-
nization and decoding [2], Turbo synchronization [3] or code-
aided synchronization [4], is a promising approach to face the
challenge of accurate synchronization at low SNRs with high
spectral efficiency. The basic idea is to use information which
is available after each decoding step to compute estimates of
the transmitted symbols. With the aid of these estimated sym-
bols, channel estimates are generated and subsequently used to
correct the received signal prior to performing further decoding
iterations. The synchronization can, thus, be described as code-
aided.

In the case of convergence, code-aided channel estimation
guarantees very high accuracy and, therefore, also good decod-
ing results. However, code-aided channel estimation only con-
verges within a narrow estimation range and its convergence
speed has to be considered carefully. Accurate initialization
of the iterative process plays a decisive role in this context,
e.g. [5]. It is important that the very first estimate that is used
to synchronize the received symbols prior to the first decoding
step is of sufficient accuracy in order to enable the convergence
of the (Turbo) decoder. The more accurate the estimate is, the
faster the code-aided synchronization converges.

Considering the estimation of a stationary time-variant flat
Rayleigh fading channel, the accuracy of the initial estimate is
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determined by the sampling rate of the time-variant process by
pilot symbols, the so-called pilot spacing. We here consider the
case where the pilot spacing is not small enough to satisfy the
Nyquist criterion for the bandlimited channel process and refer
to this scenario as the undersampled case. Undersampling the
bandlimited channel process is especially attractive for systems
with multiple transmit antennas, since then the number of
necessary pilot symbols scales with the number of transmit
antennas. Hence, depending on the channel dynamics and
the number of transmit antennas that are involved, quite a
significant amount of bandwidth and transmit power needs to
be allocated to pilot symbols in order to satisfy the Nyquist
criterion for the bandlimited channel process. Not satisfying
the Nyquist criterion can therefore be considered an attractive
option. In this paper, we only consider the single antenna
case, but it should be kept in mind that the results are
straight forward to extend for the multiple antenna case. In
the context of an undersampled bandlimited channel process,
we investigate (iterative) code-aided channel estimation for a
Turbo-coded systems and we demonstrate that this approach
succeeds in significantly improving the BER performance.
Furthermore, it is shown that the positioning of systematic
symbols, i.e. data symbols that consist only of systematic bits,
within the burst significantly influences the convergence speed
for code-aided channel estimation.

The paper is structured as follows: the transmission model
and the employed code-aided channel estimator are described
in Section II and Section III, respectively. Section IV explores
the proposed mapping strategy and simulation results are
discussed in Section V. Section VI concludes this paper.

II. TRANSMISSION MODEL

The transmission model considered in this paper is shown
in Fig. 1. Information bits are grouped into packets of N bits,
encoded with a rate 1/3 Turbo code, interleaved1 and mapped
onto a modulation alphabet. We limit the modulation alphabets
to M-ary PSK, i.e. modulations with constant amplitude.

The resulting data symbols are then transmitted over a
flat Rayleigh fading channel that also suffers from additive
white Gaussian noise (AWGN). The fading is assumed to
be temporally correlated. The maximum Doppler spread fd

normalized to the symbol duration Ts is given by Fd = fdTs.

1The systematic bits and the parity bits are interleaved separately.
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Figure 1. System Model

At transmit side, pilot symbols are multiplexed into the
data symbol stream periodically. Two pilot symbols are then
separated by PS − 1 data symbols and PS is also referred to
as pilot spacing.

The corresponding signal model is given as

yk = hk · xk + nk, (1)

where hk is the complex fading coefficient at time instance k
with E

{|hk|2
}

= 1 and xk is the transmitted symbol
with |xk|2 = 1. nk is a sample of complex-valued AWGN
with independent real and imaginary part, each having zero-
mean and variance N0/(2Es).

At receiver side, the received data samples are corrected
with channel estimates that are obtained via a Wiener filtering
process [6] with filter length F

[init]
W and the subsequently

demapped coded bits are deinterleaved and then decoded.
Up to here, this is a classical pilot symbol assisted system
(PSAM) [7], [8], where only pilot symbols contribute to
the channel estimate. After soft-demapping and decoding,
estimates of the data samples are now fed back from the
decoding unit and used to improve the channel estimation
accuracy and also the decoding result. This feedback-loop will
be discussed in more detail in Section III.

III. CODE-AIDED CHANNEL ESTIMATION

In this section, we shortly summarize the principle of code-
aided channel estimation that we make use of in this paper.
For a more detailed analysis, the reader is referred to e.g. [9].

For the code-aided estimation of a time-variant channel,
information feedback of the channel decoder is used in order
to estimate the transmitted symbols [9]. For the case of no
feedback from the decoder (initial channel estimation) and
the case of perfect feedback from the decoder, the linear
minimum mean squared error (LMMSE) channel estimator
is optimum [6]. Therefore, in accordance with e.g. [9], we

here consider LMMSE channel estimation also for the case of
imperfect feedback from the decoder.

For the observation of the channel h̃k at the data symbol
positions, we then get

h̃k = yk · x̂∗
k = hk · xk · x̂∗

k + nk · x̂∗
k, (2)

where x̂k denotes the (hard) estimate of the transmitted symbol
at time instant k and (·)∗ denotes the complex conjugate. It
has been shown by means of simulation, e.g. [9], that soft
symbols outperform hard symbols also in the case of code-
aided LMMSE channel estimation. However, since we here
solely focus on mapping strategies, we will restrict to the usage
of hard symbols.

For the (offline) calculation of the Wiener filter coefficients,
in accordance with [9], we assume perfect feedback from the
decoder. The iterative channel estimate for the k-th symbol
can then be given as:

ĥk = wTh̃, (3)

where h̃ is the concatenation of the F
[itr]
W channel observations

that are centered around k. According to LMMSE estimation
theory, the filter coefficients w can be obtained as

w = C−1
zz · Czh (4)

where Czz is the (F [itr]
W × F

[itr]
W ) covariance matrix given by

Czz = Rhh + Iσ2
n (5)

=

⎛
⎜⎜⎝

rhh(0) + σ2
n · · · rhh(F [itr]

W −1)
...

. . .
...

rhh(−(F [itr]
W −1)) · · · rhh(0) + σ2

n

⎞
⎟⎟⎠ ,

and rhh(l) represents the autocorrelation function of the
fading process. In the case of the Jakes’ model, it is given as:

rhh(l) = J0(2πfdTsl), (6)
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where J0(·) represents the zeroth order bessel function of
the first kind. The (F [itr]

W × 1) cross covariance vector Czh

captures the influence of the closest F
[itr]
W observations on the

channel at time index k. It is given as

Czh =

⎛
⎜⎜⎝

rhh(−�F [itr]
W /2 − 1�)
...

rhh(�F [itr]
W /2�)

⎞
⎟⎟⎠ . (7)

IV. CONSIDERATION OF DIFFERENT POSITIONS OF THE

SYSTEMATIC SYMBOLS

When considering a Turbo-coded system, the grouping of
bits to symbols and the transmission order of the data symbols
(in our system model this functionality is covered by the
’Mapper’) is of significance for the convergence speed of the
code-aided estimator.

Without loss of generality, we assume that an individual
symbol xk either consists solely of systematic bits, solely of
parity bits of the first encoder or solely of parity bits of the
second encoder. Due to the principle of Turbo decoding, the
reliability of the systematic bits is crucial for the convergence
speed of the decoding process, whereas the reliability of the
parity bits is crucial for the asymptotic performance. This fact
has been made use of in the context of puncturing in e.g. [10].

As the main issue of code-aided synchronization is the
joint convergence of the decoding and estimation process,
we here successfully make use of this property and signifi-
cantly improve the convergence speed by better protecting the
systematic bits against distortions due to the initial channel
estimation error. This is feasible, as the reliability of both
parity and systematic bits improves during the channel es-
timation/decoding process due to the continuing improvement
of the channel estimate. Therefore, good asymptotic behavior
can be guaranteed nevertheless.

This principle has already been discussed in [11] in the
context of carrier frequency estimation. There, the improve-
ment that can be obtained by carefully placing the systematic
symbols is rather slight. For the case of (code-aided) LMMSE
channel estimation the gain is far more significant, if the
channel sampling is below the Nyquist rate of the channel
fading process, i.e.

PS > 1/(2 · Fd). (8)

Let us first consider the case, where the pilot spacing is
small enough, so that the channel is sampled with Nyquist rate.
For this case, it is shown in [12] that the channel estimation
error is independent of the time index k. Therefore, the dis-
tortion on the received samples after initial channel estimation
is comparable, irrespective of the symbol position within the
burst. Hence, there are no particularly well-protected positions
within one burst. If the pilot spacing is increased beyond
Nyquist rate, i.e. PS > 1/(2 · Fd), this is no longer the case.
It is then impossible to acquire a sufficient statistic of the
fading process in the first iteration and the expected value of
the channel estimation error then depends on the data symbol
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Figure 3. Different Positions of Syst. Symb. for a Rate-1/3 Turbo Code
S : systematic symbol, P : parity symbols

position, cf. Fig. 2. The channel estimation error is low in
the vicinity of the pilot symbols, whereas it is rather high in
the middle between two pilot symbols. The difference in the
protection level increases, the higher the product 2 · PS · Fd

increases beyond 1.
Making use of the afore-described property of Turbo codes,

we conjecture that transmitting systematic symbols adjacent
to pilot symbols improves the convergence properties of code-
aided LMMSE channel estimation, if the inverse of the pilot
spacing equals less than the Nyquist rate of the channel
fading process (cf. Fig. 3). It should be stressed again that
this mapping strategy does not entail any degradations, when
the asymptotic system behavior is considered. This is due to
the fact that in the case of convergence, each data symbol
can function as a pilot symbol, making the residual channel
estimation error completely independent of the data symbol
position (for Fd < 0.5).

V. SIMULATION RESULTS

In this section, we evaluate the mapping strategy described
in the previous section by means of semi-analytic method and
by means of Monte-Carlo BER simulation. We here consider
the scenario of an 8PSK modulation with Gray Mapping.
The component codes of the Turbo decoder are recursive
convolutional codes with the generator polynomial 1 + D2

and the feedback-polynomial 1 + D + D2. The correlation
properties of the fading process are determined by the Jakes’
spectrum with normalized maximum Doppler shift set to Fd =
0.02 and 5 Turbo decoding iterations are performed per chan-
nel estimation iteration. The filter length for initial (PSAM)
channel estimation is set to F

[init]
W = 10, whereas the filter
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length for iterative channel estimation is set to F
[itr]
W = 100.

We first consider the benefit with respect to the mutual
information I(Xenc;L

ap
dec) between the encoded bits Xenc and

the a posteriori log-likelihood ratios (LLR) of these bits at the
Turbo decoder output Lap

dec after a specific number of Turbo
decoding iterations (here: 5 Turbo decoding iterations). This
measure provides a valuable description of the convergence
behavior of the system (cf. [13]).

The average mutual information for one frame can be
obtained as:

I(Xenc;L
ap
dec)

= 1− 1
ld(M)K

K∑
k=1

ld(M)∑
i=1

ld
[
1 + exp(−(Lap

dec)
i
k · (Xenc)i

k)
]
,

(9)

where ld(·) is the binary logarithm. (Xenc)i
k denotes the

bipolar coded bit that was mapped onto the i-th bit position
on the k-th symbol and (Lap

dec)
i
k represents the corresponding

a posteriori LLR. We choose this measure, as it is reliability
information on the coded bits that is exchanged during code-
aided synchronization. The results are depicted in Fig. 4. We
here consider three options of placing the systematic symbols:
adjacent to the pilot symbols (cross markers) (cf. Fig. 3 (a)),
as far away as possible from the pilot symbols (diamond
markers) (cf. Fig. 3 (b)), and random positioning (rectangular
markers). Since the maximum normalized Doppler frequency
is set to Fd = 0.02, the pilot spacing PS = 25 still obeys the
Nyquist rate. The solid lines represent the mutual information
at the decoder output after initial channel estimation that is
solely based on pilot symbols, whereas the dashed lines show
the mutual information at the decoder output after the second
iteration, where already one code-aided channel estimation has
been carried out.

It can be seen in Fig. 4 that the benefit in choosing
well protected positions for the systematic bits only exists
if the pilot spacing PS is larger than 1/(2 · Fd). It also
becomes obvious that the convergence speed of code-aided
channel estimation increases with increasing accuracy of the
initialization. E.g. for PS < 30, convergence already seems to
be obtained after the second channel estimation procedure –
irrespective of the mapping scheme. Furthermore, we note that
the larger the pilot spacing, the larger is the relative gain of
the proposed mapping scheme over the conventional scheme
(random positions).

Fig. 5 depicts the BER versus the SNR for code-aided
iterative synchronization. The dashed curve corresponds to the
BER result after (initial) PSAM channel estimation. Subfigures
(a) – (c) correspond to the result after 5, 10 and 15 channel
estimation iterations. First, it can be seen that if one decides to
choose a rather high pilot spacing (here PS = 50) in order to
guarantee a high spectral efficiency, the improvements in terms
of the SNR gain that can be achieved by code-aided channel
estimation are significant. Furthermore, we see that carefully
placing the systematic symbols significantly accelerates the
convergence speed of code-aided channel estimation. It should
be stressed that, we do not claim asymptotic gains for the
proposed mapping scheme, but solely faster convergence.

VI. CONCLUSION

In this paper, it is pointed out that in a Turbo-coded system,
systematic bits have a larger impact on the convergence
properties of code-aided channel estimation than parity bits.
Systematic bits should, therefore, be grouped into separate
symbols and be transmitted at positions in the burst that
suffer from the least distortion due to channel estimation
inaccuracies. For LMMSE channel estimation, these positions
are well known in advance, and do only exist if the channel
is not sampled with sufficiently dense pilot symbols. It is
demonstrated that in this scenario, carefully choosing the
mapping strategy leads to a rather significant gain in terms
of the convergence speed.
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