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Abstract
A novel speech enhancement system is presented which
exploits a codebook for noise estimation. In contrast to
state-of-the-art noise estimators which usually rely on the
assumption that the noise signal is only slightly time-
varying, codebook approaches allow also non-stationary
environments. The basic concept of the proposed code-
book noise estimation is a superposition of a scaled speech
and noise codebook entry. In order to be independent of a
priori noise knowledge, the new estimator is able to learn
new noise types online. Training vectors for codebook up-
dates are identified using a speech activity detector (VAD)
and a codebook mismatch measure. The VAD is realized
as part of the codebook matching. A Wiener filter or any
state-of-the-art weighting rule can be applied subsequently
for speech enhancement. Experiments confirmed that the
new system is able to learn new noise types and provides
improved performance compared to state-of-the-art algo-
rithms.

1 Introduction
Since communication is mobile it takes place at many dif-
ferent locations. As a result speech intelligibility and qual-
ity may significantly be degraded by the presence of back-
ground noise such as traffic, wind, engine, babble and con-
struction site noise.

There are established techniques for enhancing de-
graded speech. One of the popular methods represents
the noisy signal in the short-time Fourier domain and ap-
plies individual adaptive gains to each frequency bin based
on a noise power spectral density (PSD) estimation, e.g.,
[1–3]. Other approaches such as beamforming exploit
multi-channel techniques, where multiple microphones are
placed at different positions to exploit the spatial informa-
tion [4–6]. Their common aim is to suppress noise while
preserving the speech as purely as possible.

Single channel systems usually rely on the assumption
that background noise is stationary or only slightly time-
varying [2, 7, 8] which is often not fulfilled. The class
of codebook based enhancement systems [9–11] faces this
constraint by a priori knowledge about speech and noise.
Spectral speech and noise estimates are obtained by a lin-
ear combination or a weighted sum of entries from pre-
trained codebooks. However, the performance is limited
depending on the quality of the codebook matching which
is mainly degraded either by missing a priori knowledge
(especially with respect to noise) or deviations due to the
signal transmission path, i.e., the (changing) acoustic and
electrical (recording equipment, microphone) path. In [11]
the adaption of codebooks focuses on compensating the
influence of the transmission path while in [12] fixed delta
codebooks between the actual and a conventional noise es-
timate (e.g., [2, 7, 8]) are employed to reduce the effect of
missing a priori noise knowledge.

In this contribution a codebook speech enhancement

system is developed which adapts new noise types online
and therefore relies only on speech a priori knowledge.
The remainder of this paper is organized as follows. A
brief overview of the proposed speech enhancement sys-
tem is given in Sec. 2. In Sec. 3 the concept of the code-
book based noise PSD estimation is presented. Experi-
mental results are presented in Sec. 4 and conclusions are
drawn in Sec. 5.

2 System Overview
In Fig. 1 a simplified block diagram of the proposed noise
reduction system is given. It is assumed that the noisy input
signal x(k) consists of a clean speech signal s(k) degraded
by an additive noise component n(k) according to:

x(k) = s(k)+n(k). (1)

The samples x(k) are obtained by analog-digital conver-
sion with a sampling frequency of fs = 16kHz.

The noise suppression relies on a codebook based noise
PSD estimation which is performed in the frequency do-
main. Hence, x(k) is segmented into overlapping frames
of length LF , followed by windowing (square root Hann-
window) and zero-padding. Subsequently each frame is
transformed by applying the Fast Fourier Transform (FFT)
of length MF . The spectral coefficients of the input signal
x(k) at frequency bin µ and frame λ are given by:

X(λ ,µ) = S(λ ,µ)+N(λ ,µ), (2)

where S(λ ,µ) and N(λ ,µ) correspond to the spectral co-
efficients of the speech and noise signal.

The minimization of the distance between the noisy in-
put frame X(λ ,µ) and an estimate X̂(λ ,µ) which is a su-
perposition of scaled speech and noise codebook entries
according to

X̂ = σsS̃leiϕs +σnÑmeiϕn , (3)

delivers the estimate |N̂(λ ,µ)|2 = σ2
n Ñ2

m of the current
noise PSD, where l,m denote the codebook indices and
σs,σn the gain factors of speech and noise, respectively.
While the speech codebook is pre-trained in advance, the
noise codebook is adapted to new noise types online. Es-
sential for a noise codebook update is a mismatch measure
and the absence of speech. This requires a voice activity
detection (VAD) in addition, which is provided by means
of the speech codebook. The codebooks are created by
training of vector quantizers (refer to Sec. 3.1).

Using the noise PSD estimate |N̂(λ ,µ)|2 two SNR pa-
rameters, namely the a posteriori SNR γ(λ ,µ) and the a
priori SNR ξ (λ ,µ) defined as:

γ(λ ,µ) =
|X(λ ,µ)|2

|N̂(λ ,µ)|2
, ξ (λ ,µ) =

E {|S(λ ,µ)|2}
|N̂(λ ,µ)|2

, (4)
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Figure 1: Proposed speech enhancement system using a codebook based noise PSD estimator

can be derived. For the a priori SNR estimation the
decision-directed estimation approach [1] is applied. Fi-
nally, by multiplying the noisy spectrum X(λ ,µ) with
spectral gains G(λ ,µ):

Ŝ(λ ,µ) = G(λ ,µ) ·X(λ ,µ), (5)

the noise suppression is achieved. As spectral gains the
well-known Wiener filter is utilized which is dependent
on the SNR estimates. The enhanced time domain signal
ŝ(k) is obtained by applying an Inverse Fast Fourier Trans-
form (IFFT), windowing (square root hann window) and
overlap-add.

3 Noise Estimation
Given an additively disturbed speech signal the magnitude
square of the resulting noisy signal can be expressed as:

|X(µ)|2 =
∣∣(|S|eiϕs + |N|eiϕn

)∣∣2
= |S|2 + |N|2 +2 |S| |N|cos(ϕs−ϕn) .

(6)

The phase difference ϕ = ϕs−ϕn is unknown. Accord-
ing to measurements with plain speech and noise it is con-
sidered to be an equally distributed random variable on
[0,2π]. Because of E{cos(ϕ)}= 0 the cross-term is omit-
ted in the following due to averaging in the SNR estima-
tion. Experiments have confirmed that the resulting error
with respect to the noise reduction is negligible.

The noise estimation is performed by estimating the
PSD of current noisy frame |X(λ ,µ)|2 by an optimized
superposition of a speech and noise codebook entry:

|X̂(µ)|2 = σ
2
s |S̃l(µ)|2 +σ

2
n |Ñm(µ)|2 (7)

where l, m denote the codebook entry indices and σs ≥ 0,
σn ≥ 0 the corresponding scaling factors. The codebook
entries S̃l(µ), Ñm(µ), with l ∈ {1, . . . ,L}, m ∈ {1, . . . ,M}
are normalized to one with respect to their energy and con-
sist of spectral magnitudes. Thus, the gain factors σ2

n and
σ2

s represent the speech and short-term noise energy. In
order to reduce the speaker dependence only spectral en-
velopes are stored as speech codebook entries. An esti-
mate of the noise PSD for the current frame thus is given
by σ2

n
∣∣Ñl(µ)

∣∣2. With the assumption

∑
µ

∣∣X̂l,m,σs,σn(µ)
∣∣2 ≈∑

µ

|X(µ)|2 =: σ
2
x , (8)

the speech gain σs can be substituted and Eqn. 7 simplifies
to:∣∣X̂l,m,σn(µ)

∣∣2 = (
σ

2
x −σ

2
n
)∣∣S̃l(µ)

∣∣2 +σ
2
n
∣∣Ñm(µ)

∣∣2 , (9)

which reduces the number of parameters to be optimized
and the computational expense. Techniques known from
gain shape quantization to determine the codebook en-
try and gain independently cannot be applied since the
shape of

∣∣X̂l,m,σn(µ)
∣∣2 strongly depends on the gain fac-

tors. Hence, all permutations of the parameters l, m, and
σn must be taken into account, which can be realized by a
quantization of σn according to:

σn =
i

p−1
σx i = 0, ..., p−1. (10)

Finally, the optimal parameters lopt ,mopt ,σn,opt can be
found by minimizing:

arg min
l,m,σn

dist
(
|X (µ)|2 ,

∣∣X̂l,m,σn(µ)
∣∣2) . (11)

We use as in [11] the Itakura-Saito-distance measure:

dist
(
P(µ), P̂(µ)

)
=

M−1

∑
µ=0

[
P(µ)
P̂(µ)

− log
P(µ)
P̂(µ)

−1
]
. (12)

3.1 Codebook Training
A training sequence segmented in overlapping and win-
dowed frames is transformed into the frequency domain
according to Sec. 2. After taking the magnitude square op-
eration, all resulting PSD frames below a certain energy
threshold are discarded. This removes silent parts of the
training data which may be over-represented in the later
vector quantization and prevents for frames with upscaled
recording noise after the subsequent energy normalization.

Applying this procedure, a large amount of vectors
(frames) exists which are used for the training of a vec-
tor quantizer (VQ). The result of the VQ training is used
as codebook. In this work the LBG algorithm [13] is em-
ployed together with the Itakuro Saito distance (Eqn. 12)
as distance measure.

While this procedure is useful for the noise codebook
creation, an extension is necessary for the speech codebook
training to reduce the speaker dependence. Therefor, the
spectral envelope is calculated using a cepstrum approach
as in [11] before the quantization process, resulting in a
speaker independent codebook.

3.2 Voice Activity Detection
The performance of many noise robust VAD systems rely
on the quality of an underlying noise PSD estimation.
Since the VAD is required by the noise PSD estimation sys-
tem a VAD is developed which is independent of a noise
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estimation. The new VAD is based on the codebook match-
ing with the speech gain, named σvad in this context, as
speech presence indicator. In speech pauses the gain is as-
sumed to be very small since no suitable codebook entry
can be found whereas in frames with speech activity the
gain will be significantly larger.

In contrast to Sec. 3 the distance minimization is car-
ried out using only the speech codebook:

argmin
l,σs

dist
(
|X (µ)|2 ,

∣∣σvad S̃l(µ)
∣∣2) , (13)

with σs =
i

p−1 σx, i = 0, ..., p−1. For simplicity we use the
relative energy difference

dist
(
P(µ), P̂(µ)

)
=

1

∑
M−1
µ=0 P(µ)

N−1

∑
µ=0

∣∣P(µ)− P̂(µ)
∣∣ ,
(14)

as distance measure. Afterwards the speech gain σvad is
smoothed recursively by:

σ̄
2
vad(λ ) = ασ̄

2
vad(λ −1)+(1−α)σ2

vad(λ ). (15)

The smoothing parameter 0 < α < 1 determines the
smoothing intensity and is chosen different for falling or
rising values:

α =

{
α+ σ2

vad(λ )≥ σ̄2
vad(λ −1)

α− σ2
vad(λ )< σ̄2

vad(λ −1).
(16)

The parameters are set to α+ = 0.6 and α− = 0.95 in the
following. This ensures a fast rising of the speech indica-
tor at sudden speech activity with a slow decay resulting
in a slight overestimation of speech presence which is de-
sired in the case of noise codebook adaption to assure no
adaption while speech presence.

3.3 Noise Codebook Adaptation
Since the noise environment is not known a priori an on-
line adaption of the noise codebook is required. Therefore,
training sequences with the unknown noise types are es-
sential. They can be found if speech is absent and the mis-
match defined as dist(|X(µ)|2, |X̂(µ)|2) exceeds a thresh-
old. In addition the following conditions must match:
• A frame is assumed of voice activity if σ̄vad > 2.7,
• Training frames must not contain speech. Therefor, a

hangover frame distance to the last VAD frame of Ls is
introduced,

• A frame is classified as new noisy type if the mismatch
dist(|X(µ)|2, |X̂(µ)|2)> 1
• The distance measure evaluation of the last LT frames

must have detected an unknown noise sound, i.e.,
T percent of the last LT frames exceed the distance
threshold TD

• A safety margin between two adaptions of frame length
LA has to be kept.

Given at least LT frames in the past which satisfy these
conditions the same vector training as in Sec. 3 is utilized
to obtain M∆ new codebook entries which are then com-
bined with the noise codebook. If the maximum defined
noise codebook size Mmax is exceeded, the less used en-
tries of the last LR frames are discarded.
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Figure 2: Example of online noise codebook adaption
learning ten unknown noise types (SNR 0 dB). The up-
per plot shows the VAD performance while the lower plot
presents the codebook mismatch. Red vertical lines indi-
cate codebook update times

4 Results
A prove of concept which illustrates the performance of
the online codebook adaption is given in Fig. 2. A noisy
input signal is generated consisting of ten different six sec-
onds long stationary and non-stationary noise types mixed
with five male and female english speakers taken from the
TIMIT corpus [14] at an SNR of 0 dB. Since the noise
codebook is initialized with a white noise codebook en-
try it has to be adapted every six seconds. Tab. 1 shows
the parameters for the simulation and the codebook algo-
rithm settings are summarized in Tab. 2, with a maximum
noise codebook size of M = 28. The upper plot depicts the
clean speech spectogram of the input signal to emphasize
the performance of the VAD in terms of σ̄vad (black line).
Apart from wind noise (arround 49 s) the presented new
VAD algorithm provides reliable decisions. Vertical red
lines indicate a codebook adaption which uses each time
the past 40 frames as training sequence, while green lines
indicate the thresholds for VAD frame indicator and code-
book mismatch, respectively. In the lower plot of Fig. 2 the
noise-only spectogram of the input signal can be seen to-
gether with the codebook mismatch indicator (black line).
It is obvious that each noise change is detected and the
noise codebook is adapted accordingly. In seven out of
ten cases a single adaptation is sufficient while repeatedly
adapting is necessary in the remaining cases, which reflects
a fast changing characteristic of the noise. It is also appar-
ent that adaptation takes exclusively place in speech pauses
while always a certain safety distance to speech activity
frames is maintained which preserves the noise codebook
from speech.

Parameter Settings

Sampling frequency 16 kHz
Frame length LF 320 (=̂ 20 ms)
FFT length MF 512 (including zero-padding)
Frame overlap 50% (

√
Hann−window)

SNR estimation Decision-directed approach [1]

Table 1: System settings
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Parameter Settings
Training frames LT 40
Distance threshold TD 1
VQ output size M∆ 4 codebook entries
Hangover VAD margin LS 60 frames
Adaption margin LA 40 frames
Hit rate T 95%
Speech codebook size L 128 entries
Histogram window LR 500 frames

Table 2: Codebook algorithm parameters
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Figure 3: Difference between noise attenuation and
speech attenuation plotted over input SNR

In addition a benchmark is carried out to compare the
proposed noise PSD estimator in three different configu-
rations two fixed noise codebooks and the proposed adap-
tive with the state of the art SPP noise tracker [8]. For all
configurations the speech codebook was trained with 400
sentences taken from the TIMIT corpus [14]. The perfor-
mance is measured in terms of segmental noise attenuation
(NA) minus speech attenuation (SA) [15] using the noise
reduction system depicted in Fig. 1. Higher values indi-
cate a better performance. Therefor the noise estimate for
the SNR estimation stage is adapted for the different algo-
rithms. The benchmark consists of all permutations of the
following parameters: the input SNR varies from -5 to 15
dB in 5 dB steps and four male and female english speakers
(disjunct with the training data) are mixed with ten differ-
ent stationary and non-stationary noise types. Each permu-
tation is performed independently and begins with 3 s of
speech pause to allow for codebook adaption. Configura-
tion A exhibits a pre-trained large (M=42) noise codebook
consisting of four entries for each noise type (6 s training
sequence) together with white and pink noise entries while
in configuration B the codebook from A is condensed to
M=4 entries as representative for a small fixed codebook.
In C the proposed online learning is applied with the noise
codebook from B as initialization and a codebook size of
M=4+rM∆≤28, with r the number of online updates. The
parameters of the SPP algorithm are chosen as suggested in
[8]. The configurations of the simulation and the codebook
matching algorithm remain (see Tab. 1, 2).

In Fig. 3 the result of the benchmark is depicted. As
expected, configuration A with the best a priori knowl-
edge defines the upper bound over the complete SNR range
while for B the performance is only comparable to the SPP
approach. The system with online adaption (C) is superior
compared to system B and the SPP. This clearly demon-
strates the advantage of the proposed algorithm. Since a
reliable VAD (needed for adaption) can be expected for
SNRs greater than 0 dB the performance gain grows with
increasing SNR.

5 Conclusions
A codebook based speech enhancement system was pre-
sented which is capable of learning new noise types online
under the constraint of a given maximum codebook size.
By minimizing a distance between the noisy input and a
scaled superposition of clean speech and noise codebook
entries, a noise PSD estimate can be found. As mismatch
the Itakuro Saito distance between the codebook choice
and the noisy input turned out to be favorable. Adapting
the noise codebook online requires for a mismatch mea-
sure and a reliable VAD to determine training sequence.
Given a training sequence new noise codebook entries can
be calculated by vector quantizer training. The VAD can
be computed easily by a slight modification of the code-
book matching algorithm and thus is inherent integrated.
It reduces the codebook matching to only the speech code-
book and employs the determined smoothed speech energy
as speech activity indicator providing a stable VAD. Instru-
mental measurements confirmed a consistent improvement
compared to the state-of-the-art SPP algorithm and a fixed
noise codebook system with averaged a priori knowledge.
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