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ABSTRACT
A novel noise power spectral density (PSD) estimator for disturbed
speech signals which operates in the short-time Fourier domain is
presented. A noise PSD estimate is provided by constrained tracing
with time of the noisy observation separately for each frequency bin.
The constraint is a limitation of the logarithmic magnitude change
between successive time frames. Since speech onset is assumed as
sudden rises in the noisy observation, a fixed and adaptive tracing
parameterβ has been derived to track the contained noise while pre-
venting speech leakage to the noise PSD estimate. The experimental
evaluation and comparison with state-of-the-art algorithms, SPP and
Minimum Statistics, confirms a lower logarithmic noise estimation
error and superior speech enhancement rated in a standard noise
reduction system. The proposed concept has extremely low compu-
tational complexity and memory usage. Thus, it is well suited for
applications where processing power and memory is limited.

Index Terms— Noise power estimation, speech enhancement,
noise reduction, low complexity, low memory

1. INTRODUCTION
In mobile communication voice is often captured in acoustically
disturbed environments. A noisy near end signal, e.g., captured by
a microphone, is usually enhanced for the far end by reducing the
noise while preserving the target speech signal as much as possible,
e.g., [1, 2, 3, 4, 5, 6, 7]. The intelligibility of a clean far end signal
perceived in strong near end environmental noise can be enhanced
by a pre-processing of the far end signal, e.g., [8, 9]. All mentioned
algorithms rely on an estimate of the noise power spectral density
(PSD). Thus, the noise PSD estimation is one of the most important
prerequisite for speech enhancement.

1.1. Relation to prior work

If the noise is stationary or only slowly varying with time, a noise
PSD estimate can either be obtained during speech pauses or by
continuously tracking the magnitude minima in the short-time Fourier
domain. Further processing and updating over time is necessary.
Several methods have been proposed for the estimation of noise
PSD by tracking and post-processing the magnitude minima in the
short-time Fourier domain, e.g., [2, 3, 4, 10, 11, 12, 13].

In [2] the noise spectrum is estimated for each frequency bin
based on a smoothed periodogram over time of the noisy observation
by nonlinear temporal minima tracking. If the last noise PSD estimate
is smaller than the current noisy observation the tracking is realized
by a weighted average of the last and current noisy frame. In the other
case the current noisy observation serves as new noise PSD estimate.

The Minimum Statistics [3, 4] method is based on two assump-
tions: speech and noise are statistically independent and the power of

the noisy signal often decays to the power level of the noise. Using
a smoothed periodogram of the noisy signal it is possible to track a
minimum separately for each frequency within a certain time window
to obtain a noise PSD estimate. The duration of the time window for
the minimum search states a trade-off between fast noise tracking and
speech portions in the noise PSD estimate.

The SPP algorithm [12] (a further development of [11]) estimates
the noise PSD for each frequency by a smoothed linear combination
of the current observed noisy PSD and the last estimate of the noise
PSD weighted by the speech presence and speech absence probabil-
ity, respectively. The determination of speech presence probability
depends on the observed noisy PSD, the last noise PSD estimate and
a threshold parameter.

These approaches take a quite significant portion of the memory
capacity and the computational power of the whole enhancement
algorithm. The application of speech enhancement in hearing aids
or low cost mobile phones require low complexity and low memory
algorithms. In this contribution a new noise PSD estimator operat-
ing in the short-time Fourier domain is presented and evaluated in
comparison with [2], Minimum Statistics [3, 4] and SPP [12].

2. SIGNAL MODEL

The noisy input signal x(k) consists of a clean speech signal s(k)
additively degraded by a noise component n(k) according to:

x(k) = s(k) + n(k), (1)

where k is the discrete time index.
Since the noise PSD estimation is performed in the short-time

Fourier domain, x(k) is segmented into overlapping frames of length
LF with frame advance LA, followed by windowing with a square
root Hann-window and zero-padding. Subsequently, each frame is
transformed by applying the fast Fourier transform (FFT) of length
MF . The spectral coefficients of the input signal x(k) at frequency
bin µ and frame λ are given by:

X(λ, µ) = S(λ, µ) +N(λ, µ), (2)

where S(λ, µ) and N(λ, µ) correspond to the spectral coefficients of
the speech and noise signal, respectively.

3. PROPOSED NOISE PSD BASELINE TRACING

The noise estimation problem is formulated in the logarithmic ampli-
tude domain, while the actual processing is carried out with linear
amplitudes. This procedure is beneficial for the following reasons:

• the linear domain processing is computationally less complex
than in the log domain,

• the log domain estimator is inherently unbiased and does not
need correction terms like Minimum Statistics [3, 4],
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Fig. 1. Equivalent block diagram of proposed noise PSD estimator

• the log domain formulation of the estimator does not need
explicit amplitude normalization.

The equivalent log domain block diagram of the proposed noise PSD
estimator is depicted in Fig. 1. The estimator can be explained in
terms of delta modulation with an adaptive step size ∆(λ, µ). For
each fixed frequency bin µ, the variable step size is deliberately
adjusted such that the estimate ln |N̂(λ, µ)|2 follows the base line of
the log noisy sub-band (Baseline Tracing).

In a first order delta modulator, the input signal is traced by an
estimate which increases or decreases with a linear slope, which is
determined by the step size ∆ and the sign of the error between the
input and the estimate. By adaptive control of the step size, the delta
modulator is operated here in the slope overload mode [14] such that
the estimate follows the base line, which is determined by the noise.
Due to the additive noise, the magnitudes of the speech component
frequently decay to the level of the noise component. This is also
exploited by SPP [12] and Minimum Statistics [3, 4]. By means of
a stationary noise component it can be seen, that the signum series
d(λ)∈ {−1, 0, 1} alternates with time step λ and is zero mean on
average. Thus, the proposed estimator is unbiased expect of the
granular noise known from delta modulation. In contrast to delta
modulation d(λ) = 0 is allowed, which is favorable as the noise
estimation may exactly match the, e.g., constant input.

For complexity reasons, the logarithmic noise PSD estimator is
implemented in the linear amplitude domain. The resulting equa-
tions (3) and (4) are partly similar to [13]. However, the adaptation
mechanism is significantly different and the control is effective in the
log amplitude domain. Given a noise estimate N̂(λ−1, µ)2 from the
last frame, the current estimate N̂(λ, µ)2 is calculated by stretching
or compressing the last estimate with the tracing factor β(µ) in each
frequency bin. The tracing factor β is equivalent to exp (∆(λ, µ))
and can be realized frequency dependent or independent. A further
option is to use a time varying β(λ, µ) in analogy to the adaptive step
size control in delta modulation [14, 15]. As criterion for stretching
or compressing, the signum function is used. If the difference be-
tween the current noisy observation X(λ, µ) and the last estimate
N̂(λ− 1, µ) is greater than zero, N̂(λ− 1, µ) will be stretched by β
and compressed by 1/β in the other case. The estimation step, which
is equivalent to the “Delta Modulation Algorithm” in the log am-
plitude domain of Fig. 1, is described by the following equations:

|N̂(λ, µ)|2 = |N̂(λ− 1, µ)|2 · β(λ, µ)D(λ,µ), (3)

D(λ, µ) = sign
(

ln |X(λ, µ)|2 − ln |N̂(λ− 1, µ)|2
)

(4)

= sign
(
|X(λ, µ)|2 − |N̂(λ− 1, µ)|2

)
, (5)

with the initialization of the first estimate |N̂(1, µ)|2 = |X(1, µ)|2.
A proof of concept example for a frequency bin corresponding to

a frequency of 1816 Hz is depicted in Fig. 2. Therefore, a noisy signal
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Fig. 3. Long-term speech spectrum LTA(f) plotted in the linear
domain normalized for clarity to a max of one and its inverse φ(µ)

consisting of factory1 noise [16] and a female speaker randomly
taken from the NTT database [17] at 5 dB SNR was processed with a
frequency independent β(λ, µ)=1.05, which corresponds to approx.
5 % change in |N̂(λ, µ)|2 from frame to frame. In the lower plot the
clean speech and noise signal can be seen, while in the upper plot the
noisy mixture and the noise PSD estimate are depicted. It is visible
that the simple concept of the new estimator is able to track the noise.

4. TRACING FACTOR β

Although the choice of β = 1.05 in the previous example (Fig. 2)
works properly, it seems reasonable to define a frequency and time
(frame) dependent scaling factor β:

β(λ, µ) = 1 + α(λ)φ(µ), (6)

where α represents the time and φ the frequency dependent compo-
nent. Since compression or stretching is realized by multiplication
and division, β has to be greater than one.

4.1. Speech dependent scaling φ(µ) over the frequency

If β is too large, |N̂(λ, µ)|2 follows unintentionally also the speech
signal and the noise PSD estimate thus contains parts of speech. In
order to prevent that speech contributes to the noise PSD estimate,
the tracking speed for speech relevant frequencies is decreased while
allowing faster tracking at the remaining frequencies. Therefore,
φ(µ) is chosen proportional to the inverse of the long-term speech
spectrum average (LTA) as shown in Fig. 3 with the definition of the
LTA [18]

LTA(f)|dB =− 376.44 + 465.439 log10(f)

− 157.745 log2
10(f) + 16.7124 log3

10(f), (7)

where f is the frequency in Hz. A piece-wise approximation of the
inverse long-term speech spectrum average INVLTA(µ) is introduced,
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)−1
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MF
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(

10LTA(230Hz/20)
)−1

if fs
MF

µ < 230 Hz,

(8)

which ensures a smooth transition at low frequencies. Hence, the new
speech dependent φ(µ) is specified as:

φ(µ) =
MF · INVLTA(µ)∑MF−1
i=0 INVLTA(i)

. (9)

Note, φ(µ) is normalized to a mean of one. Both, the long-term
speech spectrum and its inverse φ(µ) are depicted in Fig. 3.

4.2. Fixed scaling α with the time

As mentioned above, a large β leads to an erroneous noise PSD
estimate including also speech. As φ(µ) is one on average, β(λ, µ)

may be too large in many cases and |N̂(λ, µ)|2 changes excessive
in successive frames, which can be solved by an appropriate choice
of α(λ). According to Fig. 3 the main part of speech energy is
distributed up to approx. 3.4 kHz. Allowing a change in 10 ms of
about 5 % on average at this frequency range (as in the presented
example Fig. 2), yields to a fixed α(λ) of:

α(λ) =
5 ·LA

(⌊
3.4 kHz·MF

fs

⌋
+1
)

fs ·
∑⌊

3.4 kHz·MF
fs

⌋
i=0 φ(i)

≈ 0.13 ≈̂ 0.4 dB/10 ms. (10)

4.3. Adaptive scaling α(λ) with the time

A further option is an adaptive α(λ) as a function of the frame a pos-
teriori SNR. If the a posteriori SNR is extremely high, the adaptive
α(λ) should be very small, resulting in small changes of |N̂(λ, µ)|2
with the frames. Whereas with decreasing SNR, α(λ) should grow,
allowing a faster tracking of the noise. In order to prevent error prop-
agation, the adaptive α(λ) is chosen as a function of the segmental
internal SNR with an upper limit of SNRmax defined as

SNRint(λ) = min

(
1

MF

MF−1∑

µ=0

|X(λ− 1, µ)|2
|N̂(λ− 1, µ)|2

, SNRmax

)
, (11)

controlled by a second independent a posteriori SNR estimate,

SNR2nd(λ) =

∑MF−1
µ=0 |X(λ, µ)|2

∑MF−1
µ=0 |N̂2nd(λ, µ)|2

, (12)

Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20 ms)
FFT length MF 512 (including zero-padding)
Frame overlap 50% (

√
Hann− window)

Table 1. Simulation system settings

where N̂2nd(λ, µ) is provided by a second Baseline Tracer with a
large fixed α2nd, resulting in a fast but rough noise tracking. Reason-
ing behind SNR2nd is to reduce the tracking speed in case of sudden
increase of the speech component. Combining both SNR estimates,
the adaptive α(λ) is now specified as,

α(λ) =
1− SNRint(λ)/SNRmax

SNR2nd(λ)
, (13)

where the denominator provides fast and robust scaling of α(λ) which
is refined by the nominator and SNRmax defines the upper limit for
noise tracking.

5. EVALUATION

A benchmark is carried out to compare the proposed noise PSD es-
timator Baseline Tracing in two different configurations for β(λ, µ)
with three state-of-the-art methods: Minimum Tracking [2], Mini-
mum Statistics [4] and the SPP noise tracker [12]. The first con-
figuration employs a frequency dependent φ(µ) according to the
inverse long-term speech average spectrum (Sec. 4.1) and a fixed
α(λ) = 0.4 dB/10 ms, while in the second configuration α(λ) is a
posteriori SNR dependent (Sec. 4.3) with an SNRmax=̂15 dB and
α2nd = 1.6 dB/10 ms. The parameters of the Minimum Tracking,
Minimum Statistics and SPP algorithm are chosen as suggested in
[2, 4, 12], respectively. In the following, a standard speech enhance-
ment system which is depicted in Fig. 5 serves as benchmark platform.
The simulation parameters are summarized in Tab. 1.

The comparison is performed for all permutations of the fol-
lowing parameters: the input SNR varies from -15 to 25 dB in
5 dB steps and 15 male and female english speakers (randomly
taken from the NTT database) are mixed with seven different sta-
tionary and non-stationary noise types (f16, factory1, babble, bucca-
neer1 [16], modulated Gaussian noise, vacuum cleaner, passing cars).
The Gaussian noise is modulated with fmod = 0.5 Hz according to
f(k) = 1 + 0.5 sin(2πkfmod/fs). The evaluation is carried out by
the logarithmic noise PSD estimation error. In addition, the perfor-
mance is rated using a speech enhancement system by the objective
scores segmental speech (SA) and noise attenuation (NA) as well as
the cepstral distance (CD).
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Fig. 4. Logarithmic error measure averaged over 30 speakers taken from the NTT database at various SNRs for selected noise types.
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Fig. 5. Block diagram of standard noise reduction system

5.1. Noise PSD estimation performance

The logarithmic error measure between the estimated and the real
noise PSD is defined as

LogErr =
1

LMF

L∑

λ=1

MF∑

µ=1

∣∣∣∣∣∣∣
10 log10


 |N(λ, µ)|2∣∣∣N̂(λ, µ)

∣∣∣
2




∣∣∣∣∣∣∣
, (14)

where, lower values indicate a better performance. In applications
such as speech enhancement an overestimation of the true noise
power likely results in an attenuation of the speech and thus in speech
distortions. On the other hand, a noise power underestimation causes
probable lower noise attenuation.

In Fig. 4 the averaged results are summarized for selected noise
types at various SNRs. Comparing the proposed Baseline Tracing
with fixed α (orange) to the best state-of-the-art algorithm, i.e., SPP
(green), the performance is quite similar for all noise types and SNR
conditions, except for babble noise at 10 and 15 dB, where SPP
performs slightly better. The Minimum Statistics (blue) and Mini-
mum Tracking (purple) have a comparable performance regarding the
LogErr measure and perform 0.59 dB worse on average compared to
SPP and the proposed estimator with fixed α. In contrast to Minimum
Statistics, the LogErr analysis of Minimum Tracking confirmed a
dominant underestimation of the noise PSD, indicating lower perfor-
mance in terms of noise reduction. For all noises and SNR conditions,
the proposed estimator Baseline Tracing with adaptive α(λ) (red)
holds the best performance in all error measures with a projection up
to 1.1 dB and 0.71 dB on average.

5.2. Noise reduction performance
The performance of the different noise estimators is also measured
in terms of the cepstral distance (CD), segmental noise attenuation
(NA) and speech attenuation (SA) [19] using them in a standard noise
reduction system depicted in Fig. 5. Regarding the cepstral distance,
lower values indicate a lower speech distortion. The difference be-
tween NA and SA corresponds to the noise reduction performance.
In the following, it will be presented normalized to the NA-SA dif-
ference of a reference estimator using the real noise PSD, which is
available in the simulation environment. Hence, lower values indicate
better performance. The estimate of the a priori SNR and a poste-
riori SNR is provided by the decision-directed approach [1]. For
the spectral gains, the Wiener filter is utilized which depends on the
SNR estimate. The enhanced time domain signal ŝ(k) is obtained
by applying an Inverse Fast Fourier Transform (IFFT), windowing
(square root Hann-window) and overlap-add.

Fig. 6 shows the results. As indicated in the previous section, the
Minimum Tracking has the highest distance from the reference NA-SA
measure over the SNR. Since the noise is underestimated significantly,
the speech distortion should be low, which is confirmed by the CD
measure up to 10 dB. While the Minimum Statistics and the proposed
system with fixed and adaptive α perform in the NA-SA measure
similar over the complete SNR, the SPP method has a higher distance
of approx. 3.5 dB at -10 dB SNR reaching a similar performance
starting with 10 dB SNR. Except the Minimum Tracking for high SNR,
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Fig. 6. The upper plot shows the normalized difference between noise
attenuation (NA) and speech attenuation (SA) while the lower plot
depicts the cepstral distance over the input SNR

the SPP has a slightly higher CD over the SNR, where the proposed
estimator with adaptive α and Minimum Statistics perform similar
with the best scores on average. Up to 10 dB SNR, the Baseline
Tracing with fixed α performs also likewise. This confirms the great
LogErr performance also in the noise reduction task for both new
Baseline Tracing estimators, as they provide a high noise attenuation
at simultaneously low speech distortion.

6. CONCLUSIONS
A novel noise PSD estimator Baseline Tracing is presented which
operates in the short-time Fourier domain. The basic idea consists of
a constrained logarithmic magnitude tracing of the noisy observation
separately for each frequency bin µ. The estimator can be explained
in terms of delta modulation with an adaptive step size, operated in
the slope overload mode. In the linear domain, the noise PSD of
the current frame is calculated by a simple scaling of the last noise
estimate with a certain frequency and time dependent β. Stretching
or compressing is decided according to the sign of the difference
between the last noise PSD estimate and the current noisy frame.
Doing so, the estimator aims to follow the noisy observation. Since
speech onset is assumed as sudden rises in the noisy observation, β
has to be selected to only follow the noise. A fixed as well as an
adaptive β(λ, µ) have been presented which consider the long-term
speech spectrum and frame SNR. Compared to state-of-the-art sys-
tems, the new Baseline Tracing algorithm with adaptive β(λ, µ) has
a superior performance with respect to the noise PSD error measure
while performing similar to the SPP using a fixed β(µ). The noise
reduction performance is characterized by a low cepstral distance,
i.e., low speech distortion and strong NA-SA measures resulting in a
high noise attenuation.
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