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ABSTRACT

A novel noise-robust soft Voice Activity Detector (VAD) operating in
the short-time Fourier domain is presented. A speech energy gain is
obtained by frame-wise processing of a noisy speech signal with a
speech codebook algorithm. This gain can be used for robust voice
detection. A speaker-independent speech codebook, consisting of
spectral envelopes, is created in the training process. While applying
the algorithm, the codebook is adapted in every frame to the current
speaker by combining the harmonic pitch structure of the actual
noisy speech frame with the codebook entries. Soft VAD values
ranging from zero to one are calculated by post-processing of the
speech gain which is obtained using gain shape vector quantization.
A binary VAD is carried out by applying a threshold. The proposed
method does not rely on noise a-priori knowledge and is robust
w.r.t. highly non-stationary noise and adverse SNR conditions. In
addition, it is possible to compromise between the detection-rate and
the false-alarm-rate by varying a threshold without increasing the
total number of mis-detections. Compared to state-of-the-art VAD
systems, the proposed method is characterized by better detection-
rates at significant lower false-alarm-rates.

Index Terms— Voice activity detection, Codebook, Noise robust

1. INTRODUCTION

The rapid progress of digital and mobile speech communication en-
ables audio-visual communication from almost anywhere in the world.
As a consequence, voice is often transmitted from acoustically dis-
turbed environments. The objective of a Voice Activity Detector
(VAD) is to detect the presence or absence of human speech in a
microphone signal which might be degraded by background noise.
Algorithms such as noise and echo control as well as speech coding
and speech recognition are often supported by a robust VAD. In a
video conference a joint speaker dependent VAD and a video face
tracking enables new applications such as an artificial scene composi-
tion where the audio signals and the active speakers are emphasized.

1.1. Relation to prior work

Early VAD systems extract simple energy features such as SNR
estimations, that respond while speech is present, and compare the
quantified values to a fixed or adaptive threshold for a VAD decision,
e.g., [1, 2, 3]. In the GSM cellular radio system the VAD [4] is
basically an energy detector whose accurary is improved by adaptive
filtering to increase the speech-noise ratio. Since the encountered
noise in mobile environments may be constantly changing with time
and frequency the adaptive filter is only updated when speech is
absent, the signal seems stationary, and does not include a pitch
component which is inherent in voiced speech.

However, energy based techniques do not work reliably under
adverse acoustic conditions, e.g., at signal-to-noise ratios of 0 dB
or below. Recent systems mainly employ statistical models, also
including additional features like the zero crossing rate, pitch, tone,
complex-signal correlation, and the energy levels of frequency bands
[5, 6, 7, 8]. Adding more microphones, the voice activity detection
accuracy can be improved (see, e.g., [9, 10]). All these approaches
cope with moderate, mainly stationary noise. However, for many
applications, they are not sufficiently robust with respect to highly
non-stationary noise.

Sohn [6] proposed a likelihood ratio test, combined with a markov
process, that models speech occurrences in order to obtain a VAD.
Cho [7] analyzes this method and improves some fundamental prob-
lems at speech offset regions using a smoothed likelihood ratio for the
adaptation of the noise variance, resulting in an improved decision of
voice activity. Tan [11] employs a likelihood ratio test and modifies
the handling of voiced frames by selecting exclusively the harmonic
components for computing. Ghosh [8] introduces a “long-term signal
variability measure”, which represents the degree of non-stationarity.
Combined with the assumption that speech is significantly less sta-
tionary than noise, this measure discriminates between noise and
noisy speech, resulting in a robust VAD performance.

In this contribution, a new approach is proposed that uses a speech
codebook as a-priori knowledge similar to our speech enhancement
approach [12]. Acoustically degraded signals are frame-wise com-
pared with the speech codebook in order to determine a similarity
measure between the input signal and typical spectral speech compo-
sitions. This new technique is robust to highly non-stationary noises
and reliably detects speech also in adverse SNR conditions of -5 dB.
Since the speech codebook is designed speaker-independently and as
we do not rely on a noise codebook, the algorithm is not restricted to
known speakers or known noise types.

2. SIGNAL MODEL

It is assumed that the noisy input signal x(k) consists of clean speech
s(k) degraded by an additive noise n(k) according to:

x(k) = s(k) + n(k), (1)

where k is the discrete time index. The samples x(k) are obtained by
analog-digital conversion with a sampling frequency of fs=16 kHz.
Since the proposed VAD algorithm is performed in the frequency
domain, x(k) is segmented into 50 % overlapping frames of length
LF , followed by windowing (square root Hann-window) and zero-
padding. Subsequently, each frame is transformed by applying the
Fast Fourier Transform (FFT) of length M ≥ LF . The spectral
coefficients of the input signal x(k) at frequency bin µ and frame λ
are given by:

X(λ, µ) = S(λ, µ) +N(λ, µ), (2)
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where S(λ, µ) and N(λ, µ) correspond to the spectral coefficients of
the clean speech signal and the noise signal. The proposed VAD algo-
rithm operates on the short-term energy spectrum (STES) |X(λ, µ)|2.

3. PROPOSED VAD ALGORITHM

This section describes the training of the speaker-independent code-
book (Sec. 3.1) and the codebook matching algorithm (Sec. 3.3),
which provides a robust voice indicator. The soft VAD is obtained
by further post-processing. The codebook is adapted in every frame
to the current speaker by incorporating the pitch from the actual
degraded speech signal using a cepstral approach (Sec. 3.2).

3.1. Codebook Creation

The codebook is trained with speech files from several speakers. The
training sequence is transformed into frames of STES according to
Sec. 2. All frames with an energy below a threshold are discarded.
This removes on the one hand silent parts of the training data which
may be over-represented in the codebook training. On the other hand,
it eliminates frames with mere recording noise. To make the codebook
speaker-independent, the speaker-dependent excitation is removed by
using the cepstral approach described in Sec. 3.2. Afterwards, the
frames are normalized to an energy of one.

The LBG algorithm [13] with the Itakuro Saito distance

dIS(A(µ), B(µ)) =

M−1∑
µ=0

[
A(µ)

B(µ)
− log

A(µ)

B(µ)
− 1

]
, (3)

as distance measure is used for the codebook training, with A and B
as placeholders for two STESs. Finally, a codebook with Ncb entries,
consisting of STESs |El(µ)|2 with the entry indices l = 1, ..., Ncb,
is created. Each STES is normalized to an energy of one.

3.2. Cepstral Processing

Due to the source-filter model [1], human speech is composed of a
spectral envelope and its excitation. The speaker-dependent pitch
frequency fp of the excitation is assumed to be in the range between
50 Hz and 500 Hz [1]. A cepstral approach, like in [14], is applied
to separate the spectral envelope and the excitation. Therefore, the
STESs |X(λ, µ)|2 are frame-wise transformed to the cepstral domain:

c|X(λ)|2(q)=
1

2

M−1∑
µ=0

log
(
|X(λ, µ)|2ej2π

µq
M

)
, q=0, ...,M−1. (4)

A pitch frequency of fp is represented in the cepstrum as a peak in the
cepstral bin

⌊
fs
fp

⌋
(e.g., [14, 15]). Assuming that pitch frequencies

are bounded to be lower than 500 Hz and considering the symmetry of
the cepstral coefficients, the range qp < q < M−qp with qp =

⌊
fs
fp

⌋
is called the excitation part in the following.

Before generating the codebook, the speaker-dependent excita-
tion is removed from the training sequence by setting the correspond-
ing cepstral coefficients to zero:

c|X̃(λ)|2(q) =

{
0 qc < q < M − qc
c|X(λ)|2(q) else.

(5)

Afterwards, the modified cepstrum c|X̃(λ)|2 is transformed back to

the spectral domain:∣∣∣X̃(λ, µ)
∣∣∣2 = exp

(
2 ·

M−1∑
q=0

c|X̃(λ)|2(q)e−j
2π
M
µq

)
. (6)

3.3. Codebook Matching

The concept of codebook matching is to compare the noisy speech
signal frame-wise with the speech codebook entries in order to find the
entry

∣∣Elopt(µ)
∣∣2 which fits best the current noisy frame. In a second

step, the speech gain is determined to scale
∣∣Elopt(µ)

∣∣2 to the correct
energy. Since the speaker-independent codebook, in contrast to the
noisy frames, contains only spectral envelopes, its harmonic structure
has to be re-established. The goal is a comb-like structure whose
pitch frequency equals the one of the current input speech frame. This
is realized by means of a cepstral approach, i.e. the excitation part
from the noisy STES |X(λ, µ)|2 is extracted and incorporated into
each codebook entry |El(µ)|2. This procedure is repeated for each
input frame. The cepstral representation c|El|2(q) of the codebook
entries is calculated analogously to Eq. (4) and c|X(λ)|2(q) is the
cepstrum of the noisy speech signal. The envelope from c|El|2(q)
and the pitch from c|X(λ)|2(q) are combined according to:

c|Ẽl(λ)|2(q) =

{
c|X(λ)|2(q) qc < q < M − qc
c|El|2(q) else, (7)

transformed to the spectral representation analogously to Eq. 6 and

normalized to an energy of one. The result
∣∣∣Ẽl(λ, µ)

∣∣∣2 is a codebook
entry which is adapted to the current speaker, i.e. with a correspond-
ing harmonic frequency structure.

In the next step, the index lopt of the best fitting codebook entry
is determined by

lopt(λ) = arg min
l

dist
µ

(
|XE (λ, µ)|2 ,

∣∣∣Ẽl(λ, µ)
∣∣∣2) , (8)

where

|XE (λ, µ)|2 =
1∑M−1

µ′=0 |X(λ, µ′)|2
|X (λ, µ)|2 (9)

is the energy-normalized noisy STES, and dist refers to the relative
energy distance,

dist
µ

(
|XE(µ)|2, |Ẽl(µ)|2

)
=

∑M−1
µ=0

∣∣∣|XE(µ)|2−|Ẽl(µ)|2
∣∣∣∑M−1

µ=0 |XE(µ)|2
, (10)

which turned out to be the best metric. Using the index of the best
codebook entry, lopt(λ), a speech gain σ2

vad is calculated,

σ2
vad(λ)=arg min

σ2
dist
µ

(
|X (λ, µ)|2, σ2

∣∣∣Ẽlopt(λ)(λ, µ)
∣∣∣2) , (11)

where the possible gains are equally distributed in Nσ steps:

σ2 ∈

 i

Nσ − 1
·
M−1∑
µ′=0

∣∣X(λ, µ′)
∣∣2 ∣∣∣∣∣∣ i = 0, ..., Nσ − 1

 . (12)

While speech is present, a suitable codebook entry and a gain
σ2
vad close to the speech frame energy can be found. In turn, dur-

ing speech pauses, no suitable codebook-entry is available in general.
Thus, the spectral envelopes of the codebook entry and the normalized
noise frame differ significantly. The resulting relative energy distance
is very high and in general greater than the distance of |X|2 to zero.
Therefore, a small gain minimizes the distance measure. Thus, the
speech gain σ2

vad is used as speech presence indicator. Since spectral
overlaps while speech absence between X and Ẽlopt cannot be ex-
cluded, a noise floor in the gain is observed. Further post-processing
is necessary to obtain a reliable VAD.
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Fig. 1. Example of smoothed gain σ2
vad, floor estimation bf

and ceiling estimation bc for male speech and jackhammer noise
(SNR = 5 dB). A blue background indicates true speech activity.

3.4. Speech gain σ2 post-processing

In a first step of the post-processing, the speech gain σ2
vad is smoothed

recursively by:

σ2
vad(λ) =

[
α

√
σ2

vad(λ− 1) + (1− α)
√
σ2
vad(λ)

]2
. (13)

The smoothing parameter 0 < α < 1 determines the smoothing
intensity and is chosen differently for rising or falling values in order
to control on- and offset of voice activity differently:

α =

{
α+ σ2

vad(λ) ≥ σ̄2
vad(λ− 1)

α− σ2
vad(λ) < σ̄2

vad(λ− 1).
(14)

The smoothed sequence σ2
vad(λ) is a reliable speech presence in-

dicator with a range of values in [0,∞). An example of this indica-
tor is given in Fig. 1. It shows a noise floor during speech pauses
and considerably higher levels during speech presence. However,
soft VAD-values between zero and one are desired, which requires
a mapping of σ2

vad to a range between zero and one (see Eq. 17).
Therefore, a baseline tracing of the noise floor bf(λ) and ceiling bc(λ)
is employed. This method is similar to noise estimation known from
speech enhancement [16, 17]. The noise floor tracing is implemented
according to:

bf(λ) = bf(λ− 1) + sign
[
σ2

vad(λ)− bf(λ− 1)
]

∆′(λ) (15)

bc(λ) = max [η · bf(λ), bc,min] , (16)

where bc,min defines a minimum value for the ceiling bc(λ) and the
factor η controls the upper clipping of σ2

vad. In each frame, the
noise floor bf(λ) is updated by shifting ±∆′(λ) in order to follow
σ2

vad(λ) slowly. Finally, soft VAD values for σ2
vad between bf and

bc are interpolated linearly according to

vsoft(λ) = max

(
min

(
σ2

vad(λ)− bf(λ)

bc(λ)− bf(λ)
, 1

)
, 0

)
. (17)

Gains lower or equal to the noise floor are mapped to zero, whereas
gains higher or equal to the ceiling bc(λ) are mapped to one. The
resulting soft values are robust to different noise floor levels in the
speech gain which may result from low SNR and varying noise types.

In order to be independent of the sampling frequency fs and the
frame advance LA, a relative shift ∆ is introduced with dimension

%
time

such that LA
fs

∆ is the relative change per frame. Moreover, it is
desirable to update the noise floor mainly in cases of speech absence,
yielding the absolute shift to

∆′(λ) =

{
LA
fs
·∆ · bf(λ−1) σ2

vad(λ) ≤ bc(λ−1)
LA
fs
·∆ · bf(λ−1) · βsp σ2

vad(λ) > bc(λ−1).
(18)

Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20 ms)
Frame advance LA 160 (=̂ 10 ms)
FFT length M 512 (including zero-padding)
Frame overlap 50% (

√
Hann-window)

Speech codebook entries Ncb 128
Number gains Nσ 10
Smoothing parameter α+|α− 0.8 | 0.91
Gain ceiling factor η 2.5
Ceiling minimum bc,min 3
Relative shift ∆ 0.2 s−1

Speech presence factor βsp 1
4

Table 1. Simulation system settings

If the speech gain exceeds the ceiling bc, speech presence is assumed
and the tracing speed is reduced by the factor 0<βsp<1 . It is not
set to zero in order to avoid a status in which the system gets stuck
in case that the floor and ceiling estimation are completely wrong.
Experiments confirmed that the relative shift over time ∆ should be in
the range between 0.2%

20ms
and 0.8%

20ms
, i.e., the noise floor changes by the

given percentage during 20 ms, a time in which speech is considered
to be stationary [1].

If a binary VAD is desired, it can be calculated by a simple
comparison with a threshold 0 < thr < 1 according to

vbin(λ) =

{
0 if vsoft(λ) < thr

1 if vsoft(λ) ≥ thr .
(19)

4. EVALUATION

The proposed VAD system is compared in a benchmark with three
reference methods proposed by Sohn [6], Tan [11], Ghosh [8] and
GSM VAD [4]. All algorithms except GSM VAD provide soft VAD
values. Since the objective scores require a binary VAD, Eq. (19) is
applied for different thresholds varying between zero and one.

To evaluate the binary VAD vbin(λ), a reference VAD vtrue(λ)
is necessary. In this simulation, the clean speech and the scaled noise,
from which the noisy signal is additively generated, are separately
available. The squared magnitude of the clean speech signal is com-
pared sample-wise with a fixed threshold of 10−5, which fits well to
the TIMIT database [18]. If the threshold is exceeded at least once
during the last 2 ms, speech is assumed (vtrue(λ) = 1).

4.1. Simulation
The parameters for the simulation are given in Tab. 1. The speech
codebook is trained according to Sec. 3.1 with randomly chosen
speech files from the training set of the TIMIT database [18], resulting
in a total training sequence length of 938 s. The configuration of the
remaining algorithms are chosen as suggested in [6, 11, 8].

For the benchmark, 24 randomly chosen sentences belonging to
12 male and 12 female, randomly chosen speakers from the test set
of the TIMIT database are selected and concatenated. The test set is
not included in the training set. Three seconds of silence are inserted
at the beginning and the end of the sequence as well as between
the sentences. The resulting 160 s speech sequence is mixed with
10 types of noise (white, pink, jackhammer, wind, outside traffic,
inside car, train station, nature, inside train, pub noise) from the ETSI
database [19] at different SNR values from -5 dB to 20 dB in 5 dB
steps, resulting in 60 different noisy signals, respectively 160 minutes.
The threshold varies for all tested algorithms in 24 steps from zero to
one.
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Fig. 2. The upper part depticts the ROC curves for varying thresholds.
The ROC curve for 4 exemplary noises is shown in the lower plot for
the proposed and 2nd best algorithm Gosh [8] at varing thresholds.

4.2. Objective Scores
Let Q be the set of frame indices for which holds vtrue(λ) = 1 and
Q the complementary set for vtrue(λ)=0. K=Q ∪Q is the set of
all frames. The first 160 frames, i.e., 1.6 s, are not included in the
evaluation to ignore transient effects. The measures are defined as:

Pa = 1− 1

|K| ·
∑
λ∈K

|vbin(λ)− vtrue(λ)| ,

Pd =
1

|Q| ·
∑
λ∈Q

vbin(λ), Pf =
1∣∣Q∣∣ ·∑

λ∈Q

vbin(λ).

The accuracy rate Pa is the percentage of frames in which the VAD-
estimation is correct. The detection rate (or true positive rate) Pd is
the fraction of active speech frames that are detected correctly. The
false alarm rate (or false positive rate) Pf is the fraction of frames
without speech that are classified erroneously as speech.

4.3. Results
When applying a VAD, a compromise between detection-rate and
false-alarm-rate has to be made by choosing an appropriate threshold
(resp. a working point on the receiver operating characteristic (ROC)
curve). The upper plot of Fig. 2 shows the ROC curve which is
generated by averaging the objective scores (detection rate, false
alarm rate) for all permutations of the SNR and noises, separately for
each threshold thr. It shows the achievable combinations of detection-
rate and false-alarm-rate that result from varying the threshold. In
addition the binary GSM VAD [4] is depicted as reference.

For the proposed VAD system, it is obvious that it holds the best
relationship between the false-alarm-rate and the detection-rate. The
false-alarm-rate never exceeds 23 % with a maximum detection-rate
of 93 %. In order to achieve the same detection-rate, significantly
higher false-alarm-rates of 32 % (Ghosh), 42 % (Tan) or 44 % (Sohn)
must be tolerated. However, the reference VAD systems achieve a
higher maximum-detection-rate, but at the expense of a significantly
higher false-alarm-rate.

The lower plot of Fig. 2 depicts the same ROC curve as above,
but for different noise types. For the sake of clarity, only the proposed
VAD and the best reference method, i.e., Ghosh [8], are visualized.
For all noise types, the proposed method holds best performance.
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Fig. 3. In the upper plot, the average accuracies for varying thresholds
are depicted, while the lower plot shows the average accuracies over
the SNR. For each algorithm, the most favorable threshold is chosen.

Moreover, the proposed algorithm performs well for stationary noise
types, e.g. inside train and car, and for instationary noises like the
jackhammer. However, a reliable voice detection during babble noise
is not possible because this sort of noise is very similar to speech-
codebook entries. Hence, babble noise is frequently classified as
speech, leading to a high false alarm rate, yet better than Ghosh [8].

In Fig. 3 (upper plot), the average accuracies for varying thresh-
olds are visualized. An advantage of the proposed technique is the
flatness of this measure. Because of that, it is possible to set any
desired working point on the ROC curve by adjusting the threshold
without losing accuracy. In addition, it holds the best accuracy (es-
pecially for thresholds up to 0.4) over the complete threshold range.
The accuracy of the remaining VAD algorithms increases with the
threshold, with similar performance among them for thr>0.3.

In order to analyze the accuracy over the SNR, the best thresholds
for each algorithm are selected from Fig. 3 (upper plot). Using those
thresholds, the accuracy is depicted over the SNR in the lower plot of
Fig. 3, where the proposed VAD also provides the best scores.

5. CONCLUSION
A novel robust VAD system is presented, which utilizes a speech
codebook to provide a speech energy gain in each frame. This gain
provides a stable speech indicator and may contain a noise floor, es-
pecially at low SNR. A baseline tracing algorithm, known from noise
reduction, is employed during the post-processing and subsequently
the gain is mapped to soft VAD values between zero and one. The
speaker-independent codebook is created by training a vector quan-
tizer, using only the spectral envelopes of speech. While processing,
the codebook is adapted in every frame to the current speaker by in-
corporating the pitch from the noisy input signal. The new VAD does
not rely on noise a-priori information, which makes it robust also to
highly non-stationary noise and adverse SNR conditions (e.g., -5 dB).
If desired, a binary VAD can be calculated by applying a threshold.
Instrumental measurements confirmed a consistent improvement in
comparison to state-of-the-art systems [6, 11, 8], resulting in better
detection rates at a significant lower false alarm rates. In addition, it
is possible to adjust the compromise between a higher detection-rate
versus a higher false-alarm-rate by changing the threshold without
increasing the total number of miss-detections.
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