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Abstract

Mobile phones as well as tablets are omnipresent and belong to everyday life. Today
audiovisual communication takes place at different locations and in a large variety
of acoustic environments. In consequence, the intelligibility as well as the quality
of speech may significantly be degraded by ambient background noise. In order to
improve speech intelligibility and to ensure a convenient communication with high
audio quality, speech enhancement techniques are required. In this thesis all critical
components contributing to the enhancement of the up-link signal are addressed:

• signal capturing at the acoustic front-end with a new near field beamformer,
• new codebook based speech and noise estimation procedure generating and

exploiting reliability information, and
• actual noise reduction exploiting spectral dependencies of human speech.

For the acoustic front-end of the digital processing chain a novel concept for the filter
optimization of a near field beamformer is introduced. The optimization scheme
allows to closely approximate a predefined reception characteristic which can be
freely chosen according to the application. The output of the beamformer provides
a pre-enhanced signal with improved SNR for subsequent single-microphone based
speech enhancement.

Single-microphone noise reduction usually relies on statistical properties of
speech and noise. In general, the noise is assumed to be stationary or only slightly
time-varying, which is in practice often not fulfilled. Due to imprecise noise
estimation, single-microphone systems are prone to unpleasant artifacts that are
called musical tones. In this context different Information Combining methods,
merging various estimates, are presented which address specifically the problem of
non-stationary noise signals, leading to a significant improved estimation accuracy.

On the one hand, the proposed Information Combining is used with respect to
spectral dependencies of human speech. On the other hand, it merges the best of
several speech and noise estimates depending on their reliability. The necessary
estimates are provided by a new statistical noise estimator as well as a codebook
driven speech and noise estimation algorithm. The achieved estimation quality
opens up the possibility to close the gap between the conflicting goals of high noise
attenuation, low speech distortion, and the prevention of undesired musical tone
artifacts. Finally, the practical aspects of the proposed enhancement systems are
considered and discussed with two implemented real-time demonstrators.
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Chapter 1

Introduction

Speech is one of the most important manners of human interaction. The invention
of the telephone enables a communication with persons all around the world which
is a matter of course nowadays. As a result of continuous technological progress
and economical interests, wireless communication as well as the internet have
been evolving. Mobile phones and tablets are omnipresent and belong to everyday
life. The Internet enables new multi-modal communication services such as video
conferencing, gaining more and more importance, e. g., for international cooperation
of companies, for home office or for social communication.

Mobile communication takes place at different locations and in a large variety
of acoustic environments. In consequence, the intelligibility as well as the quality
of speech signals may be significantly degraded in case of background noise such as,
e. g., traffic, engine, wind, babble, and office noise.

In order to ensure the speech intelligibility and even to improve the listening
comfort with high audio quality, speech enhancement techniques are required. These
algorithms aim at reducing echos, reverberation and background noise without
affecting the underlying speech signal. A typical application scenario is depicted
in Fig. 1.1. A clean speech signal s is disturbed by surrounding noise sources n
which are captured by the microphones of a mobile phone. Before the signal is
transmitted over the radio channel, speech enhancement is applied. In this thesis
the focus is on the problem of noise reduction.

Noise reduction systems can be subdivided into two classes: single-microphone
systems and multi-microphone systems. Single-microphone systems usually rely on
statistical properties of speech and noise for signal enhancement. In general, the
noise is assumed to be stationary or only slightly time-varying. In practice, however,
this assumption is often not fulfilled. Consequently, single-microphone systems
suffer frequently from unpleasant artifacts due to imprecise noise estimation. These
artifacts are called musical tones. Adding a second microphone allows to exploit
the coherence for improved noise estimation. In contrast, multi-microphone speech
enhancement systems are designed to exploit additionally spatial information as
the desired and interfering audio signals are usually spatially separated. Utilizing
the spatial information, a beamformer with usually more than two microphones,
for example, can amplify a target speaker efficiently while simultaneously damping
other speakers and background noise. Hence, an appropriately designed microphone
array allows to achieve a substantial improvement of the signal-to-noise ratio

1



Chapter 1 – Introduction

Beamforming

s + n

Speech enhancement

Coding, modulation,
up-link

s + n

Figure 1.1: Application scenario for speech enhancement: Mobile communica-
tion in noisy environments.

(SNR) already at the acoustic front-end. Quite often both concepts, multi- and
single-microphone systems, are concatenated for improved speech enhancement.

Addressing multi-microphone speech enhancement at the acoustic front-end, a
novel concept for the optimization of filter coefficients for a near field beamformer
is presented. The optimization scheme allows to closely approximate a predefined
reception characteristic which can be freely chosen according to the application.
The output of the beamformer might be subject to further single-channel based
speech enhancement systems.

Strong emphasis of this thesis is on single-microphone (single-channel) noise
reduction. New approaches are developed which exploit different aspects of so
called Information Combining utilizing different estimates. In the context of this
work the term Information Combining is used in a different manner as usually
known from channel coding, wireless diversity receivers, and information theory
[Huber & Huettinger 2003; Land et al. 2005; Land & Huber 2006]. On the one hand,
Information Combining is used with respect to spectral dependencies of human

2



1.1 Related Works

speech between the low band (50Hz – 4 kHz) and the high band (4 kHz – 7 kHz)
yielding a refined noise estimate. On the other hand, information about the reliabil-
ity of different estimates of speech and noise is generated and exploited. Depending
on this information the estimates are combined resulting in refined estimates of
speech and noise, enabling advanced speech enhancement. The necessary different
estimates of speech and noise are provided by a novel codebook based algorithm
and a new developed low complexity noise estimator called Baseline Tracing. It
turns out, that the use of codebook driven speech and noise estimation together
with Information Combining is able to model and cope with highly non-stationary
noise. It is of special interest that the occurrence of undesired artifacts such as
musical tones is reduced tremendously.

Furthermore, in a video conferencing application, multi-modal Information
Combining is carried out. The proposed near field beamformer is embedded in a
high quality video conferencing client. Exploiting information provided from audio
and video analysis, the activity of speakers is determined in terms of soft decision
values as a function of space and time. On this basis, the most active speakers can
be identified and separated.

1.1 Related Works
In literature, a vast amount of proposals for speech enhancement can be found. A
comprehensive overview including the historical evolution up to state-of-the-art
approaches for the estimation of the short-term noise power spectral density (PSD),
the input SNR, and different weighting gain functions is presented in, e. g., [Benesty
et al. 2009, 2007; Hänsler & Schmidt 2006, 2008; Loizou 2013; Vary et al. 1998;
Vary & Martin 2006]. The first practical implementations date back to the year
1965. In [Schroeder 1965] the first patent on spectral subtraction was published for
an analog circuit implementation.

In the digital era, digital signal processors (DSPs) prepared the ground to
implement adaptive and more sophisticated noise reduction algorithms. The key
digital signal processing approaches can be found in [Boll 1979; Lim & Oppenheim
1979; McAulay & Malpass 1980] and are based on spectral subtraction or the
Wiener filter [Wiener 1949] method.

For real-time speech enhancement, the noisy input signal is segmented into
overlapping frames. Usually these segments are transformed into a domain, in which
speech and noise are better separable, e. g., the short-term Fourier domain (STFD)
or the cepstral domain. This procedure is called analysis. Model based processing is
carried out in the transform domain. A statistical estimation framework is usually
applied exploiting certain assumptions about the statistics of speech and noise.
While a Gaussian model is often used for noise, speech is modeled by either a
Gaussian or super-Gaussian distribution. Specific solutions are detailed, e. g., in
[Breithaupt et al. 2007, 2008; Ephraim & Malah 1984, 1985; Erkelens et al. 2007;
Lotter & Vary 2005; Martin 2005; Vary 1985]. After manipulation, the enhanced
signal is transformed back into the time domain which is called synthesis.

3



Chapter 1 – Introduction

In particular, the precise estimation of the time varying noise spectrogram
remains the most crucial part in speech enhancement and is a prerequisite for
noise reduction by adaptive time and frequency dependent filtering. If the noise is
stationary or only slowly varying with time, a short-term noise PSD estimate can
either be obtained during speech pauses or by continuously tracking the magnitude
minima in the STFD. Further processing and updating over time is necessary.
Several methods have been proposed for the estimation of noise, e. g., [Baasch et al.
2014; Cohen 2003; Doblinger 1995; Dörbecker & Ernst 1996; Gerkmann & Hendriks
2011; Hendriks et al. 2010; Jeub et al. 2011; Martin 2001, 2006; Nelke et al. 2013].

Specialized solutions are, e. g., [Chen et al. 2009; Esch et al. 2010c] for rapidly
time-varying harmonic car engine noise, [Godsill et al. 2015; Talmon et al. 2013]
facing an abrupt or impulsive noise sound which is typical for keyboard typing or
door knocking. Wind noise is covered, e. g., in [Nelke et al. 2015; Nelke & Vary
2015] and references therein.

1.2 Structure of this Thesis
The thesis is subdivided into six chapters which are supplemented by a number of
appendices.

In Chap. 2 the concept of microphone array processing is introduced. The
difference between the far and near field is emphasized motivated by a video
conference application scenario. On this basis an optimization scheme for near field
beamforming is derived. The optimization scheme allows to closely approximate
a predefined reception characteristic which can be freely chosen according to the
application. Finally, the novel concept for filter optimization is assessed in a free
field scenario as well as in a reverberant room.

The basic principles of statistical noise reduction are introduced in Chap. 3.
Subsequently, Baseline Tracing, a novel short-term noise PSD estimator, is pre-
sented. The basic idea consists of a constrained logarithmic magnitude tracing of
the noisy observation separately for each frequency bin. The new short-term noise
PSD estimator is an inherently unbiased estimator and does not need correction
terms. A detailed performance analysis is provided covering the noise estimation
performance as well as the application embedded in a conventional noise reduction
system. Furthermore, the estimator is evaluated also on pure speech signals.

In addition, an approach to wideband (50Hz – 7 kHz) noise reduction is presented.
Spectral dependencies between the low band (50Hz – 4 kHz) and the high band
(4 kHz – 7 kHz) of speech signals are investigated. An analysis of meaningful and
noise robust features is carried out. Applying techniques known from artificial
bandwidth extension, features from the enhanced low band signal are extracted
and used to improve the noise estimate in high band. Spectral weighting gains
determined from this noise estimate are adaptively combined with conventional
gains obtained in addition for the high band. This combining in the high band is
possible employing a pre-trained SNR dependent look-up table.

Codebook based speech and noise estimation is detailed in Chap. 4. A priori

4



1.2 Structure of this Thesis

knowledge about speech and noise allows to model and to cope with highly non-
stationary noise environments. A brief overview of the development and the
fundamental principles is presented. Starting point is a brute force codebook
matching approach, which provides the upper performance bound and serves as
reference. The basic concept is a superposition of scaled speech and noise codebook
entries. At first, the a priori assumptions of speech and noise are analyzed with
respect to practical application scenarios. While the speech codebook is pre-trained
in advance, the noise codebook is adapted to new noise types online. Thus, the
system becomes independent of a priori knowledge regarding noise. Training
vectors for online noise codebook updates are identified using a voice activity
detector (VAD) and a codebook mismatch measure. For this purpose, a novel noise
robust VAD is developed which depends only on a priori knowledge about speech.

In Chap. 5 a generic theoretical analysis of the joint speech and noise estimation
problem is carried out given the noisy observation. The analysis considers an
arbitrary number of different speech and noise estimates. An analytic solution is
formulated which minimizes the estimation error power with respect to the noisy
observation. This procedure is called Information Combining and provides optimal
mixing coefficients of the different speech and noise estimates. On this basis two
main restrictions of codebook based speech and noise estimation are addressed.

Missing a priori codebook knowledge regarding noise is compensated utilizing an
additional noise estimate as automatic fallback, e. g., provided by the new proposed
statistical noise estimator Baseline Tracing. In a second step this procedure is
generalized to additionally provide a refined speech estimate.

With respect to practical application scenarios, a substantial complexity reduc-
tion is necessary. Utilizing the Information Combining procedure in this context,
the brute force codebook driven speech and noise estimates can be replaced by two
cascades of gain shape vector quantizer (VQ) estimates, i. e., the determination
of the spectral shape using a codebook in a first step and the calculation of the
corresponding gain in a second step. The chapter closes with a comprehensive
evaluation including all presented aspects of codebook driven noise reduction.

In Chap. 6 two application examples are presented. The near field beamformer
detailed in Chap. 2 is utilized in a high quality video conferencing scenario in order
to determine the most active speakers as a function of time and space. In the
second part of the chapter, the codebook driven speech enhancement system is
analyzed and a further complexity reduction is carried out, for both the codebook
matching as well as the VAD. Utilizing a software based private branch exchange
(PBX) a proof of concept implementation on a lightweight embedded computing
platform is created. Finally, the results of this thesis are discussed in Chap. 7.

5



Chapter 1 – Introduction

Parts of this thesis have been presented in the following references published by
the author: [Heese et al. 2010; Heese et al. 2011; Heese et al. 2012a; Heese et al.
2012b; Heese et al. 2013; Heese et al. 2014a; Heese & Vary 2015; Heese et al. 2015;
Esch et al. 2010a; Esch et al. 2010b; Esch et al. 2010c; Esch et al. 2012; Schlien
et al. 2013; Schäfer et al. 2012; Bulla et al. 2013; Hadad et al. 2014; Niermann et al.
2015]. Throughout this thesis, these references are marked by underlining the year.
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Chapter 2

Near Field Beamforming

The aim of sensor array signal processing is to estimate a desired signal which may
be degraded by additive noise using temporal and spatial information from array
sensors [Haykin & K. R. Liu 2010]. The design of such systems is an ongoing topic
of research with many applications in the radio frequency domain [Haykin et al.
1993] as well as in the acoustic domain [Brandstein & Ward 2001]. Especially in the
acoustic domain the class of linear microphone arrays received attention since they
can easily be integrated into communication systems such as video conferencing
terminals. If the desired and the interfering audio signals are spatially separated,
an appropriately designed microphone array allows to achieve a substantial signal-
to-noise ratio (SNR) gain already at the acoustic front-end.

Spatial separation of audio source is often present, e. g., in a conferencing
scenario or a typical office room. Moreover, the reverberation as well as the level
of diffuse background noise are usually quite low in these environments. Hence,
speech enhancement techniques utilizing multichannel microphone arrays, such
as beamformer algorithms, are appropriate to amplify a target speaker efficiently
while simultaneously damping other competing speakers and background noise.

Beamformer algorithms can be subdivided into fixed and adaptive approaches
[Brandstein &Ward 2001; Haykin & K. R. Liu 2010]. Fixed beamforming algorithms
are independent of the input signals and can realize robust directional gains
with moderate numerical complexity. Typical representatives are the (weighted)
delay-and-sum as well as the filter-and-sum beamformer. Adaptive beamforming
algorithms are well suited for cancelling moving interferers. Among various adaptive
beamforming categories, the minimum variance distortionless response (MVDR),
the multichannel Wiener filter (MWF), the linearly constrained minimum variance
(LCMV) beamformer, and the generalized sidelobe canceller (GSC) are the most
commonly used [Griffiths & Jim 1982; Markovich Golan et al. 2009; Van Veen &
Buckley 1988].

Furthermore beamformers can be realized operating in the time domain or the
sub-band domain, e. g., [De Haan et al. 2001; Lorenzelli et al. 1996; Nordholm et al.
2008; Zhao et al. 2011]. Using a sub-band beamformer offers several advantages
compared to a full-band beamformer such as an overall lower filter degree or an
improved reception characteristic with respect to the operational frequency.

When designing beamformers, a specific spatial and if necessary frequency-
dependent reception characteristic is usually the desired goal. For the far field case,
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Figure 2.1: Filter-and-sum beamformer with M microphones and N non-
uniform sub-bands

i. e., if the distance to the array is significantly larger than its geometric setup,
many beamformer design methods are known, e.g., [Doclo & Moonen 2003; Ward
et al. 1995]. There are also procedures known, aiming specifically at the near field,
where the far field assumption provides only an approximation in the best case,
see e. g., [Doclo & Moonen 2003; Fisher & Rafaely 2011; Kennedy et al. 1996;
Ryan & Goubran 2000] and references therein. However, these approaches optimize
the reception characteristic limited by several design constraints, e. g., only on a
(semi-)circular arc at one specific distance from the array.

To circumvent this limitations, an alternative new design strategy is considered
[Heese et al. 2013; Schäfer et al. 2012]. The reception characteristic is optimized for
a certain predefined two-dimensional target area in the near field, simultaneously
for different distances and angles. The work in [Schäfer et al. 2012] considered a
weighted delay-and-sum array with full-band processing as basis for the optimization
while in [Heese et al. 2013] a more generalized approach using sub-bands and a
filter-and-sum beamformer is applied which is presented in the following.
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2.1 Non-Uniform Near Field Sub-band Filter-and-Sum
Beamformer

A simplified block diagram of the proposed beamformer system is depicted in Fig. 2.1.
It consists of M microphones followed by non-uniform filter-banks [Löllmann 2011]
each comprisingN sub-bands. Subsequently, all sub-bands are processed by different
filter-and-sum units represented by the impulse responses hmn , m ∈ {1, . . . ,M},
n ∈ {1, . . . , N}, where n denotes the sub-band index and m the microphone index.
Finally, the summation of the output signals of the filter-and-sum units result in
the all-over beamformer output signal ŝ(k).

The microphone signal samples ym(k) are obtained by analog-digital conversion
with a sampling frequency of fs, where k represents the discrete time index. A
point source s(k) is assumed to be at position p on an appropriately chosen
two-dimensional spatial grid, e. g.,

• in a polar coordinate system: p = (r ϕ)T or

• in a Cartesian coordinate system p = (x y)T .

Given the impulse responses hpm(k), m ∈ {1, . . . ,M}, from the point source p to
each of the M microphones, each microphone signal ym(k) can be expressed as:

ym(k) = hpm(k) ∗ s(k) , (2.1)

where ∗ denotes the linear discrete convolution operator. The output ŝ(k) thereby
depends on the source location p and can be calculated according to:

ŝ(k) =
M∑

m=1

N∑

n=1

hmn (k) ∗
(
hFB
n (k) ∗ ym(k)

)
, (2.2)

where hFB
n (k) represents the bandpass impulse responses of the filterbank and hmn (k)

the finite impulse response (FIR) sub-band filters of length L to be determined by
numerical optimization.

2.2 Numerical Optimization
The optimization of the filter-and-sum units is carried out in frequency sub-bands
to decouple the optimization procedure. Furthermore the frequency resolution
is chosen following the human auditory system. The principle of the numerical
optimization procedure for each sub-band is depicted in Fig. 2.2. An iterative
minimization of an error measure is carried out. The error measure is a function of
the level difference between a predefined target reception characteristic and the
simulated one. The simulated reception characteristic is calculated on the current
state of the filter coefficients and the impulse responses, modeling the acoustic path
between the source positions and the microphones, in each iteration.
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Figure 2.2: Optimization process for each frequency sub-band

Since the optimization is performed in exactly the same manner for simulated
impulse responses as well as for measured ones, it is very flexible referring to
different practical application scenarios.

2.2.1 Definition of the Target
In order to determine the filter coefficients of the beamformer, a target area in
front of the microphone array with different amplification or attenuation gains
has to be defined. Hence, the target reception characteristic Sp(f) is defined as a
spatial distribution of areas with defined amplification or attenuation in front of
the microphone array.

The spatial target reception characteristic Sp(f) can be defined as frequency-
dependent but a frequency-independent target, i. e., Sp(f) = Sp, is suitable in
many applications. The target speaker should be in the amplified region Phigh
(target amplification gain Shigh) while the attenuated area Plow (target attenuation
gain Slow) is chosen to contain all interfering signals. This corresponds to a given
SNR improvement compared to a single omnidirectional microphone for the received
signal. Hence, the target reception characteristic is defined as,

Sp =

{
Shigh for p ∈ Phigh

Slow for p ∈ Plow .
(2.3)
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0.54 m

1m

1 m

Phigh Plow

Figure 2.3: Example of target reception characteristic. The black dots indicate
the two-dimensional spatial grid in front of the microphone array.
The amplified region Phigh and the attenuated region Plow are
represented by the red and blue rectangle, respectively

The precise choice of the areas and gains depends on a priori knowledge from the
application, e. g., in a conference scenario the target speaker in Phigh should be
amplified by gain Shigh, while all interfering sources in Plow shall be attenuated
by gain Slow. An example of a typical target reception characteristic within an
conferencing scenario is given in Fig. 2.3.

2.2.2 Determination of the Reception Characteristic in the Near
Field

With respect to the iterative optimization procedure of the filter coefficients hmn ,
the predefined target reception characteristic Sp is compared to the current state
of the simulated reception characteristic Ŝp(f). Applying the following three steps,
the reception characteristic Ŝp(f) based on the current state of the filter coefficients
is calculated:

• simulating or measuring impulse responses between all grid positions within
the target region (p ∈ {Phigh ∪ Plow}) and all M microphones,

• processing these impulse responses with the filter-and-sum beamformer (see
Fig. 2.1 and Sec. 2.1) to get an overall filter including all microphones for
every point in the near field, and

• calculating the amplification or attenuation for every point from these overall
filters.

11
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Since the output signal ŝ(k) for each source location p can be expressed as a
linear superposition of the filtered version of the source signal:

ŝ(k) =
M∑

m=1

N∑

n=1

hmn (k) ∗ hFB
n (k) ∗ hpm(k) ∗ s(k), (2.4)

the overall filter gp(k) can be calculated as:

gp(k) =
M∑

m=1

N∑

n=1

hmn (k) ∗ hFB
n (k) ∗ hpm(k). (2.5)

Applying the frequency transform of the overall filter gp(k) yields:

Gp(f)
Fs cgp(k) . (2.6)

Finally, the reception characteristic Ŝp(f) in dB of the beamformer at frequency f
for every point in the target region (p ∈ {Phigh ∪ Plow} of the microphone array is
obtained by:

Ŝp(f) = 20 · log10 |Gp(f)| . (2.7)

2.2.3 Error Function

The reception characteristic Ŝp(f) represents the intermediate reception character-
istic which is realized by the respective filter coefficients in each iteration step. By
variation of the sub-band filters, the distance between the predefined target Sp and
Ŝp(f) is minimized in terms of the summed quadratic gain difference ∆S(n) for
each sub-band n. For all points, where Sp is defined according to Eq. (2.3), and over
all frequencies fi with i ∈ {imin, . . . , imax}, for which the reception characteristic
shall be optimized, the sum of the quadratic gain differences is calculated according
to:

∆S(n) =
imax∑

i=imin

∑

p∈{Phigh∪Plow}

(
Sp − Ŝp(fi)

)2
, (2.8)

where fimin and fimax denote the lower and upper edge frequencies of sub-band n.

2.2.4 Optimization Procedure
The optimum filter coefficients for each microphone and each sub-band n are
determined in a minimum mean-square error (MMSE) sense by:

[
h1
n, . . . ,hMn

]
opt = arg min

h
∆S(n) . (2.9)
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For the optimum search, the iterative interior-point algorithm according to [Byrd
et al. 2000] is employed with the constraint that the filter coefficients range within
−1 and 1. Since this constraint only limits the maximum amplification that is
achievable by the array itself and does not change the relation between the filter
coefficients, subsequent scaling of the output ŝ(k) can be applied to map the
reception characteristic to a desired gain.

2.3 Performance Example
The proposed new design strategy using decoupled sub-band filters for the optimiza-
tion of the reception characteristic in the near field is demonstrated in two steps.
At first the proposed new design strategy is compared with two other beamforming
approaches. In a possible application scenario, e. g., a video conferencing system,
the simulation of the impulse responses can be rather simple since conference
rooms are usually not highly reverberant. In this case, a simple mirror-image
approach or even the approximation by a free field model is suitable. Hence, the
assessment is based here (without loss of generality) on a free field setup since this
allows for a clearer evaluation of the impact of the filter coefficients. In a second
example the proposed beamformer is evaluated using measured impulse responses
of a reverberant room.

2.3.1 Free Field
In this assessment the proposed new design strategy is compared with two other
beamforming approaches. A beamformer which also allows to optimizes the re-
ception characteristic in the near field and a conventional unoptimized one. The
performance is evaluated by comparing the reception characteristic of the different
methods.

As representative for an unoptimized beamformer the Chebyshev weighting
approach [Harris 2004] is utilized. This is a fair comparison since the Chebyshev
weighting allows to specify a minimum attenuation for all sidelobes while at the
same time also minimizing the width of the main lobe. Hence, this combination
allows to maximize the SNR between a target area and a diffuse noise field.

As a second reference, the near field full-band optimized weighted delay-and-sum
beamformer from [Schäfer et al. 2012] is considered as an optimized beamformer
candidate. In order to demonstrate the benefit of the proposed sub-band processing,
the full-band weighted delay-and-sum beamformer [Schäfer et al. 2012] is modified
utilizing a filter-and-sum unit instead of the weighted delay-and-sum unit. In the
following this beamformer is referred as modified full-band beamformer.

The reception characteristics are evaluated for a one square meter sized area in
front of the microphone array and the density of the spatial grid is set to 0.01m for
both dimensions (x and y). Since the simulation is based on an acoustic free field,
the impulse responses hpm(k) from each point of the spatial grid to the microphone
array represent the corresponding delays. All beamformer setups are parameterized
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such that they are supposed to achieve a level difference between the amplified and
damped area of 40 dB.

For the two optimized beamformer setups (proposed sub-band and modified
full-band) the target area can be defined explicitly and is depicted in Fig. 2.3. The
microphone arrays are designed to amplify sources on the left (Phigh: −0.5 m ≤
x < 0 m ∧ 0.2 m < y ≤ 0.8 m) while attenuating sources on the right (Plow:
0 m < x ≤ 0.5 m ∧ 0.2 m < y ≤ 0.8 m). Due to the specified spatial grid resolution
this leads to 3000 points in Phigh and Plow, respectively.

The sample rate fs is set to 48 kHz and the microphone line array consists of
M = 8 omnidirectional sensors which have a spacing of 3 cm between the sensors
and a gap of 30 cm in the middle of the array, e. g., for camera mounting in a video
conferencing application. The microphone array is centered at the origin of the
coordinate system as depicted in Fig. 2.3. Spatial aliasing can be expected for
frequencies higher than approximately 5600Hz due to the microphone spacing. For
the proposed system the number of sub-bands is set to N = 6 using a non-uniform
filter bank according to the human auditory system [Löllmann 2011]. The frequency
range of each sub-band can be seen in Table 2.1. For simplicity all sub-band filters
have been realized as FIR filters. The degree of the filter-and-sum units hmn is set
to L = 8 resulting in 48 filter coefficients to be optimized. Thus, the modified
full-band beamformer based on [Schäfer et al. 2012] is also set up with a filter
length of 481.

A comparison of the three reception characteristics is given for two different
operating frequencies:

• fi = 500 Hz as a representative for the lower frequencies for which the
microphone array can be utilized,

• fi = 2000 Hz as a frequency that is right in the center of the operational
frequency range of the microphone array.

In Fig. 2.4 the two-dimensional reception characteristics in front of the micro-
phone array are depicted for the Chebyshev weighting. Looking at the operational
frequency of 2000Hz in Fig. 2.4b there is a notable level difference between the
amplified area Phigh and the damped area Plow on average. However, the desired
reception characteristic within Plow is only achieved at the bottom right corner of

Table 2.1: Filterbank sub-bands

Band Frequency range / Hz Band Frequency range / Hz
1 1 - 268 4 1549 - 2614
2 268 - 839 5 2614 - 4731
3 839 - 1549 6 4731 - 12049

1The optimized filter coefficients are listed in Appendix A.1.1 for the sub-band beamformer
and in Appendix A.1.2 for the full-band approach.
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Figure 2.4: Reception characteristic of the microphone array with Chebyshev
weighting [Harris 2004] at different operational frequencies

Plow. For the 500Hz case which is depicted in Fig. 2.4a the reception characteristic
of the microphone array is resembling the behavior of a single omnidirectional
microphone which is located in the origin of the coordinate system. Hence, no level
difference between Phigh and Plow is visible.

Fig. 2.5 and Fig. 2.6 present the reception characteristics for the optimized
beamformer algorithms. The performance based on optimized weighting according
to [Schäfer et al. 2012] is shown for the 500Hz case in Fig. 2.5a. A noticeable
level difference between the areas Phigh (right side) and Plow (left side) can be
seen. However, the target for the damped area is only partly achieved, yet it is
better compared to the Chebyshev weighting. The reception characteristic for the
proposed system (see Fig. 2.6a) fits the previously defined areas of attenuation and
amplification very well even at this low frequency.

Comparing the performance for the 2000Hz case (Fig. 2.5b and 2.6b) the
difference of the reception characteristics is smaller. Both algorithms provide a
significant level difference between Phigh and Plow and outperform the result given
by the Chebyshev weighting (cf. Fig. 2.4b). However, especially in the critical
border region at x = 0 m the new beamformer matches the predefined target
reception characteristic even better.
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Figure 2.5: Reception characteristics of the microphone array employing the
modified full-band optimized filters at different operational fre-
quencies
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Figure 2.6: Reception characteristics of the microphone array employing the
proposed sub-band optimized filters at different operational fre-
quencies
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Figure 2.7: Geometric setup. The nodes of the spatial grid for the determi-
nation of the impulse responses are indicated by the dots. The
amplified region Phigh and the attenuated region Plow are repre-
sented by the red and blue shape, respectively

2.3.2 Reverberant Room
As a real performance example the proposed algorithm was also evaluated using
26 measured impulse responses for the optimization procedure2. Therefore the
Speech & Acoustics Lab of the Faculty of Engineering at Bar-Ilan University, with
controllable reverberation time, was utilized to create an audio-database using an
8-channel microphone array.3

According to a typical scenario, e. g., a video conference, the reverberation time
was set to 160ms. The density of the spatial grid (in polar coordinates) for this
setup as depicted in Fig. 2.7 is given by angles from 0◦ to 180◦ in 15◦ steps for 1m
and 2m radii. Plow in polar coordinates maps to all radii for angles from 0◦ to 90◦,
Phigh from 91◦ to 180◦, respectively. The remaining parameters are not changed
comparing to the previous Sec. 2.3.1. Fig. 2.8 presents the magnitude transfer
function for the center of regions Phigh and Plow. A significant level difference (in
average approx. 19.4 dB) can be seen over the complete frequency range up to the
spatial alias frequency of approx. 5600Hz. This also confirms the performance of
the proposed system independently of the operational frequency.

2The optimized filter coefficients are listed in Appendix A.2
3The audio-database consists of eight channel impulse responses. The measurements were

taken for different microphone setups and different reverberation times at different locations
on a spatial grid as depicted in Fig. 2.7. For details, cf. [Hadad et al. 2014].
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Figure 2.8: Transfer function of the proposed microphone array with sub-band
optimized filters presented for the center of regions Phigh and Plow

2.4 Summary
A novel concept for filter optimization of a filter-and-sum beamformer based on
numerical near field optimization is presented. The beamformer consists of a non
uniform filterbank with FIR filters in the sub-bands which are optimized to achieve
improved beamforming. The proposed design strategy combines the advantages of
decoupled sub-band filter optimization with a frequency resolution according to the
human auditory system. The optimization scheme allows to closely approximate
a predefined reception characteristic which can be freely chosen according to the
application. The proposed system provides a distinct spatial selectivity independent
of the operational frequency. Switching between different reception characteristics,
e. g., for speaker selection in a conference scenario, can be easily achieved by several
pre-computed filter sets. A further demonstration of the novel beamformer is
included in Sec. 6.1 where it is employed for a spatial voice activity detector (VAD)
in order to determine the active speakers in a video conference scenario.
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Chapter 3

Statistical Noise Reduction in the
Frequency Domain

This chapter introduces the basic principles of statistical noise reduction in the
frequency domain which are required in the sequel of this thesis. A general overview
about statistical noise reduction techniques including state-of-the-art approaches
for the estimation of the short-term noise power spectral density (PSD), the input
signal-to-noise ratio (SNR), and different gain functions is provided. For a more
detailed insight into statistical noise suppression techniques the reader is referred
to the literature, e. g., [Benesty et al. 2007, 2009; Hänsler & Schmidt 2006, 2008;
Vary & Martin 2006].

When it comes to the transmission of speech signals in communication systems,
the original speech signal is often impaired by annoying background noise. Noise
reduction algorithms aim at suppressing the background noise while keeping the
speech signal as natural as possible. Since more than 30 years, noise reduction
is covered in literature and is still an ongoing topic, e. g., [Boll 1979; Ephraim
& Malah 1984, 1985; Vary & Martin 2006]. The noise reduction approaches can
be subdivided into two classes: single-microphone systems and multi-microphone
systems. Systems comprising multiple microphones are able to employ statistical
and spatial information about speech and noise. Single microphone systems usually
rely on (temporal) statistical properties of the speech and noise signal components
for noise reduction. Depending on the application, the environment, the number
of microphones, the noise type and source signals, different approaches are used
in practice. Specialized solutions are, e. g., [Chen et al. 2009; Esch et al. 2010c]
for rapidly time-varying harmonic (car engine) noise, [Godsill et al. 2015; Talmon
et al. 2013] facing an abrupt change or impulsive noise sound which is typical for
keyboard typing or door knocking.

Throughout this thesis all developed algorithms are tailored to real-time process-
ing of single-microphone audio signals. This covers typical applications including
hearing-aid or mobile-phone scenarios. With this constraint only causal modifica-
tions of the recorded audio signal are possible, i. e., only signal properties from the
current point in time and the past are available but no information from the future.

A commonly used approach to perform single-microphone speech enhancement
utilizes the so called spectral decomposition exploiting statistical techniques to
separate speech and noise from the noisy observation. In order to transform the
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noisy signal into the frequency domain, the signal is segmented into frames which
are subsequently transformed utilizing the short-term Fourier domain (STFD)
transformation. Individual adaptive gains are applied to each STFD coefficient to
perform the actual noise suppression. If the SNR for a specific STFD coefficient
is high an absolute gain close to one is chosen. In the opposed case where the
SNR is low an absolute gain close to zero is applied. The gain function minimizes
a specific distortion measure between the clean speech and the speech estimate.
Usually, the gain function requires knowledge about the short-term noise PSD and
the input SNR, which are in general not known a priori and have to be estimated.
Thereafter, the processed spectrum is transformed back into the time domain.

The first part of this chapter is organized following the signal flow of a typical
statistical noise reduction system. After introducing the signal model, the analysis –
synthesis framework (Sec. 3.2.1) is described including the transformation into
and from the short-term frequency domain. A conventional noise suppression
system is detailed in Sec. 3.4 including the estimation of the short-term noise
PSD (Sec. 3.4.1), the short-term SNR (Sec. 3.4.2) and the spectral weighting gain
calculation (Sec. 3.4.3). Subsequently, a new statistical short-term noise PSD
estimator is presented in Sec. 3.5. In Sec. 3.6 a wideband (50Hz – 7 kHz) noise
suppression approach is presented exploiting spectral dependencies between the
low- and high-band. Conclusions are drawn in Sec. 3.7.

3.1 Problem Formulation
In Fig. 1.1 the problem of capturing speech signals in the presence of noise is
illustrated for a mobile phone scenario. In the following the speech enhancement
problem is discussed for single-microphone systems. In general, the microphone
of a mobile phone does not only record the desired speech signal s(k) but also
a superposition of surrounding noise signals. The samples from the microphone
signal y(k) are obtained by analog-digital conversion with a sampling frequency
of fs. The noisy input signal y(k) is modeled by a clean speech component s(k)
which is degraded by additive noise components nj(k) according to:

y(k) = s(k) +
∑

j

nj(k) = s(k) + n(k), (3.1)

where k is the discrete time index and j the index of the noise sources. The speech
and noise signals are modeled as uncorrelated and zero-mean random processes.
The aim of noise reduction is to estimate the clean speech signal having only the
noisy observation y(k) available. This is achieved by attenuating the noise as much
as possible while keeping the speech distortion as low as possible at the same time
using adaptive filtering. The resulting speech signal estimate at the output of the
noise reduction system is denoted by ŝ(k). A further requirement of the speech
enhancement system is to allow a convenient conversation without notable delay of
the recorded signal y(k). With this constraint only causal modifications are possible,
i. e., only signal properties of the past can be taken into account to estimate ŝ(k).
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Figure 3.1: Generic block diagram of a speech enhancement system

3.2 System Overview
Throughout this thesis all considered noise reduction approaches are covered by
the block diagram depicted in Fig. 3.1. Wide arrows indicate multi-channel signals
and thin arrows single-channel signals, respectively.

For the derivation of most statistical noise reduction algorithms, speech and
noise are considered as stationary processes. Hence, the resulting filter coefficients
would be fixed over time and could be applied using simple finite impulse response
(FIR) or infinite impulse response (IIR) filters. However, regarding noise, the
assumption of stationarity strongly depends on the noise type and in case of speech
it does not hold at all. The human speech production is a time varying process and
especially plosive sounds, created by sudden pressure rises in the vocal tract, result
in a highly non-stationary speech signal. However, segmenting the speech signal
into short-time segments of 10 – 100ms, speech can be assumed as short-term
stationary within the segment [Rabiner & Schafer 1978].

In order to respect the short-term stationarity of speech, the noisy input signal
y(k) is subdivided into short-time frames and the processing of the noisy input
signal is carried out framewise. Hence, the delay of the system results in one frame
which is below the threshold of perception in the context of speech communication
[Cox 1984; Kitawaki & Itoh 1991]. The temporal changes of speech and noise are
considered for updating the filter coefficients continuously on a frame by frame
basis. The frames are transformed into a domain in which the desired and the
noise signal are better separable. Usual transformation domains are the frequency
or cepstral domain. Using the frequency domain is a widely accepted technique
for speech enhancement as it is very similar to the processing taking place in the
human auditory system [Zwicker & Fastl 1990]. Therefore, the discrete Fourier
transform (DFT) frequency domain is used as transfer domain in this thesis. The
procedure including segmenting, windowing and transformation is called analysis.
After manipulation in the transform domain the enhanced segments are transformed
back into the time domain and combined which is called synthesis. Hence, an
analysis – synthesis framework with perfect reconstruction forms the basis for the
speech enhancement system.

3.2.1 Analysis and Synthesis
A block diagram of the analysis and synthesis framework used in this work is
depicted in Fig. 3.2. As mentioned before, the input signal y(k) is segmented due
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Figure 3.2: Analysis – synthesis framework: (a) Analysis block including
segmentation, windowing and DFT, (b) Synthesis consisting of
IDFT, windowing and overlap-add.

to short-term (quasi) stationarity into frames of LF samples which may overlap
according to

yλ(κ) = y(λ · LA + κ) with κ ∈ {0, . . . , LF − 1}, λ ∈ N0, (3.2)

where λ is the frame index, LA the frame advance in samples, and κ is the sample
position within one frame. If no overlap is required LA equals LF . In order to avoid
major discontinuities at the frame edges and to counteract the spectral leakage
effect, a tapered window function w(κ) is applied to each frame [Vary & Martin
2006]. The effect of the window function is a fade in and fade out of the frame. In
addition, this reduces the unavoidable cyclic effects of DFT domain processing. In
consequence, windowing requires a frame overlap to ensure perfect reconstruction of
the frames during synthesis. An example of a window can be seen in Fig. 3.3 (e. g.,
one of the colored curves). Suitable and frequently deployed window functions are
the Hann window, Hamming window or Blackmann window [Oppenheim et al. 1989].
Typical values for the frame length in speech processing are TF ∈ {5 ms, . . . , 40 ms}
[Paliwal et al. 2010; Vary & Martin 2006], which results in a frame-size in samples
of

LF = bTF · fsc, (3.3)
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3.2 System Overview

with a frame overlap of typical 50% – 75% [Benesty et al. 2007; Loizou 2013].
Arbitrary frame overlaps require a window function whose shifted versions according
to LA add up to at least a constant value or to one for perfect reconstruction1.
The Hann window fulfills this requirement at least for a subset of frame overlaps.
Due to the symmetric bell shape of the window function the maximum value is
located in the center of the window. Hence, the frame overlap has to be greater
or equal than 50% for perfect reconstruction. To circumvent this limitation the
so called flat top Hann window is introduced here, which allows arbitrary frame
overlaps and perfect reconstruction. The window is composed of three parts: a half
Hann window, a series of ones and the second half of the Hann window. The size
of each part depends on the frame size and the frame advance. The flat top Hann
window wftHann(κ) for frame size LF and frame advance LA, where LA ≤ LF , is
calculated according to:

Nw/2 = LF −
⌈
LF
2LA

⌉
· LA (3.4)

wHann/2(κ) = 1
2

(
1− cos

(
πκ

Nw/2 − 1

))
(3.5)

wftHann(κ) =





wHann/2(κ) if 0 ≤ κ < Nw/2

1 if Nw/2 ≤ κ < LF −Nw/2
wHann/2(LF − 1− κ) if LF −Nw/2 ≤ κ < LF

0 otherwise .

(3.6)

From 100% down to 50% frame overlap the flat top Hann window is identical to a
regular Hann window

wHann(κ) = 1
2

(
1− cos

( 2πκ
LF − 1

))
. (3.7)

With decreasing overlap but less than 50% the center of the window is filled with
ones and in the border case where LF = LA, i. e., no frame overlap, the flat top
Hann window results in a rectangular window.

As depicted in Fig. 3.2 the window function is applied in the considered frame-
work during analysis and synthesis. The window function is applied twice for
the following reasons. On the one hand negative effects mainly caused by cyclic
convolution which are introduced due to spectral modifications are reduced and on
the other hand the spectral modifications are cross-faded in the overlapping parts of
the windows [Marin-Hurtado & Anderson 2011]. Doing so, the square root function
is applied to the window function due to the multiplicative concatenation of analysis
and synthesis which yields an allover perfect reconstruction. The resulting square
root Hann windows are visualized on the right hand side of Fig. 3.2.

After segmenting and windowing and, if necessary, zero-padding each resulting
noisy short-time frame yλ(κ) is transformed into the frequency domain using a

1Note if the constant is not equal to one, a normalization has to be applied within the
synthesis.
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Chapter 3 – Statistical Noise Reduction in the Frequency Domain

short-time discrete Fourier transform (DFT)2 of length NDFT. Zero-padding is
required if NDFT > LF . The spectrum of the input signal y(k) at frequency bin µ
and frame λ is given by:

yλ(κ) · w(κ)
DFTc s Y(λ, µ) = S(λ, µ) +N (λ, µ), (3.8)

where S(λ, µ) and N (λ, µ) correspond to the spectral coefficients of the speech
and noise signal, respectively. Note that the frequency domain representation of
the input, the speech and noise signal already includes the effect of windowing.
Thereafter, the actual speech enhancement takes place in the frequency domain
which is detailed in Sec. 3.4.

In order to obtain the enhanced signal in the time domain the operations which
are applied in the analysis stage are reversed. As presented in Fig. 3.2b the enhanced
frames Ŝ(λ, µ) are transformed into time domain segments ŝλ(κ) using the IDFT.
Subsequently, the window function is applied. Since it is possible that the windows
add up to a constant greater than one (due to the overlap) a normalization factor
gw within the synthesis procedure is necessary which is calculated by:

Nw =
⌈
LF
LA

⌉
, (3.9)

gw =
⌊
Nw
2

⌋
+Nw mod 2 , (3.10)

where Nw specifies the number of beginning windows within one frame. Finally, the
enhanced signal in the time domain ŝ(k) is constructed by overlap-add [Crochiere
1980] of the normalized and windowed segments

Ŝ(λ, µ)
IDFTs c ŝλ(κ), (3.11)

ŝ(k) =
∑

λ∈N0

1
gw
· ŝλ(κ) · w(κ), (3.12)

with κ = λ · LA − k. Note that the enhanced signal frames in the time domain
ŝλ(κ) and the window function w(κ) are zero for 0 < κ > LF − 1.

An example of the overall windowing including the analysis and synthesis stage
is depicted in Fig. 3.3 for successive frames. The effective windows are colored
and the sum of the windows is indicated by the black curve. Note for perfect
reconstruction at least Nw overlapping windows are necessary. Hence, perfect
reconstruction can not be achieved at the beginning and the end of ŝ(k). If not
stated otherwise the square-root Hann window is used and a frame length of 20ms
is applied with an frame overlap of 50% throughout this thesis.

Both, the analysis and the synthesis stage are not subject of this work. Different
solutions can be found for an analysis – synthesis framework, e. g., by a filter-bank

2Throughout this thesis the fast Fourier transform (FFT) [Cooley & Tukey 1965] is used
as efficient implementation of the DFT. A prerequisite for applying the FFT is a frame size
of a power of two.
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Figure 3.3: Windowing example with LA = 1/4LF

structure (see [Löllmann 2011] and references therein). This work focuses on the
modification block depicted in Fig. 3.1, i. e., the detection of speech and noise from
the noisy input and the subsequent enhancement of the degraded speech signal.

3.3 Signal Properties
Quite often, only a single realization of a stochastic process can be observed.
Subsequently, it is not possible to estimate its statistics by averaging over an
ensemble of observations. If the true statistics of a stationary random process
may be obtained from the time averages over single observations within time, the
random process is called ergodic, i. e., the state space of the random process is
completely covered over the time. Given an ergodic random process the ensemble
averages can be replaced by time averages, e. g., [Papoulis & Pillai 2002].

In the context of speech enhancement, statistical quantities can only be estimated
by time averages. Since speech and noise signals are not stationary and thus not
ergodic, the signals are subdivided into short time segments which are considered
as stationary. Hence, to apply time averages the underlying signals are required to
be short-term stationary. Therefore, it is beneficial to define certain expectation
operators. The expectation of x(k) is defined by

E {x(k)} = lim
K→∞

1
2K + 1

K∑

κ=−K
x(κ). (3.13)

The mean short-term expectation of x(k) is defined by

EK {x(k)} = 1
K

K−1∑

κ=0

x(k + κ) (3.14)

25
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The recursive short-term expectation of x(k) is defined by

Ẽα {x(k)} = (1− α) · x(k) + α · x(k − 1). (3.15)

The parameters K and α control the smoothing properties of the respective short-
term expectation estimator. Assuming an uncorrelated signal x(k), a relation
between the two parameters can be found by equating the variance of the mean short-
term expectation EK {·} and recursive short-term expectation Ẽα {·} estimators.
It can be shown that the equivalent rectangular window length of the recursive
short-term expectation estimator is given by

α = K − 1
K + 1 , (3.16)

in terms of the samples K which are used for the moving average estimator and
vice versa

K = 1 + α

1− α. (3.17)

Refer to Appendix B for a detailed derivation.
With regard to speech enhancement, most of the algorithms are derived based

on power spectral density (PSD) Φ(µ), short-term PSD Φ(λ, µ) or power signal
quantities |·|2. The computation of power quantities should be normalized to the
frame-size for a correct physical definition, but will be neglected as it is usually
done in literature. This is possible as within a specific speech enhancement system
the used frame-size and frame advance are fixed and therefore no normalization
is necessary. Moreover, power quantities are almost always used in ratios, e. g.,
for SNR computation. Hence, the dependency of the normalization factor on the
frame-size is canceled out. Thus, the PSD of x(k) is defined as

Φxx(µ) = E
{
|X (λ, µ)|2

}
, (3.18)

where X (λ, µ) is the frequency representation of x(k) according to Sec. 3.2.1. The
short-term PSD is given by

Φxx(λ, µ) = EK
{
|X (λ, µ)|2

}
. (3.19)

3.4 Conventional Noise Suppression
Most state-of-the-art noise reduction systems are realized in a framework as depicted
in Fig. 3.1 employing the presented or a similar analysis – synthesis framework (see
Sec. 3.2.1). In the following the functionality of the intermediate modification block
in Fig. 3.1 is described in detail including state-of-the-art examples. A common
approach to enhance degraded speech is presented in Fig. 3.4. It consists of a
detection or estimation part on the left hand side and the actual speech enhancement
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Figure 3.4: Block diagram of standard noise reduction system working in the
frequency domain

on the right hand side. The estimate3 of the short-term noise PSD Φ̂nn(λ, µ) is
the basis from which the a priori SNR estimate ξ̂(λ, µ) and the a posteriori SNR
estimate γ̂(λ, µ) can be calculated. A weighting gain G(λ, µ) is computed which
aims to minimize a specific distortion measure between the clean speech S(λ, µ)
and the speech estimate Ŝ(λ, µ) signal as a function of one or more of the estimated
quantities Φ̂nn(λ, µ), ξ̂(λ, µ) and γ̂(λ, µ). The actual noise reduction is carried out
by spectral weighting, i. e., multiplying the noisy input Y(λ, µ) with the spectral
gain G(λ, µ) and results in the clean speech estimate Ŝ(λ, µ). Frequency bins of
the noisy input signal Y(λ, µ) which contain mostly noise shall be damped while
frequency bins comprising mainly speech shall pass. Utilizing the synthesis stage
the corresponding enhanced time domain signal ŝ(k) is created.

3.4.1 Noise Estimation
All speech enhancement systems covered in this thesis rely on knowledge about
the short-term noise PSD. The estimation of the short-term noise PSD Φ̂nn(λ, µ)
remains a crucial and challenging task in every noise reduction system, especially
in case of non-stationary noise. Noise estimation algorithms usually rely on the
assumption that speech and noise have different temporal statistics which can be
used to estimate the noise from the noisy input signal. Overestimation of the
noise leads likely to over-attenuation of the speech signal resulting in strong speech
distortions. On the other hand, high remaining levels of noise is the consequence of
noise underestimation.

If the noise is stationary or only slowly varying in time, a short-term noise
PSD estimate can either be obtained during speech pauses or by continuously
tracking versus time the magnitude minima in the short-time Fourier domain.

3An estimated signal or parameter is indicated by the hat symbol ̂ throughout this
thesis
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Further processing and updating over time is necessary. Several methods have been
proposed for the estimation of the short-term noise PSD by tracking and post-
processing the magnitude minima in the short-time Fourier domain, e. g., [Baasch
et al. 2014; Cohen 2003; Cohen & Berdugo 2002; Doblinger 1995; Gerkmann &
Hendriks 2011; Hendriks et al. 2010; Martin 2001, 2006].

A comparison of state-of-the-art single microphone short-term noise PSD es-
timators can be found in [Taghia et al. 2011]. The most important methods are
briefly presented in the following.

Voice Activity Detection

One of the first approaches known from literature for the estimation of the short-
term noise PSD, e. g., [McAulay & Malpass 1980; Van Compernolle 1989] is based
on a voice activity detector (VAD). A short-term noise PSD estimate is obtained
by updating the noise PSD only in phases of speech absence. A simple noise PSD
estimate is provided using a first order recursive system with 0 < αΦ < 1 given by

Φ̂nn(λ, µ) = αΦ · Φ̂nn(λ− 1, µ) + (1− αΦ) · |Y(λ, µ)|2 , (3.20)

while speech is absent and kept constant during speech presence, i. e., αΦ = 1.
However, the quality of VAD is limited by the input SNR leading to unreliable VAD
estimates for low input SNR conditions [Vary & Martin 2006]. Hence, a suitable
short-term noise PSD estimate is only possible for moderate SNR conditions and
rather stationary background noise. In recent years more sophisticated methods
were developed which update the noise PSD also during speech presence.

Minimum Tracker

In [Doblinger 1995] the noise spectrum is estimated for each frequency bin based on
a temporally smoothed periodogram of the noisy observation by nonlinear temporal
minima tracking. If the last noise PSD estimate is smaller than the current noisy
observation the tracking is realized by a weighted average of the last and current
noisy frame. In the other case the current noisy observation serves as new noise
PSD estimate.

Minimum Statistics

The Minimum Statistics [Martin 1994, 2001, 2006] method is based on two assump-
tions:

• speech and noise are statistically independent and

• the power of the noisy signal often decays to the power level of the noise.

Using a smoothed periodogram of the noisy signal, it is possible to track a minimum
separately in each frequency bin within a certain sliding time window to obtain a
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3.4 Conventional Noise Suppression

short-term noise PSD estimate Φ̂nn(λ, µ). The smoothed signal power is also given
by a first order recursive system according to

∣∣Y(λ, µ)
∣∣2 = αMS(λ, µ) ·

∣∣Y(λ− 1, µ)
∣∣2 + (1− αMS(λ, µ)) · |Y(λ, µ)|2 , (3.21)

with 0 < αMS(λ, µ) < 1 denoting a time and frequency dependent smoothing factor.
The smoothing factor αMS(λ, µ) minimizes the conditional minimum mean-square
error (MMSE) between the true noise Φ̂nn(λ, µ) and the smoothed signal power∣∣Y(λ, µ)

∣∣2. The smoothing factor can be expressed as a function of the smoothed
a posteriori SNR [Martin 2001]. Afterwards the minimum within a sliding time
window of the past LMS frames is computed separately for each frequency bin by

∣∣Y(λ, µ)min
∣∣2 = min

λ̃

∣∣Y(λ̃, µ)
∣∣2 , (3.22)

with λ̃ ∈ {λ − LMS + 1, . . . , λ} representing the frame index of the sliding time
window. The duration of the time window for the minimum search states a trade-
off between fast noise tracking and remaining speech portions in the noise PSD
estimate. A typical value for the time window length corresponds to 1.5 s. As the
minimum is always smaller or equal to the mean noise power a bias correction
B(λ, µ) is necessary. The bias correction is mainly dependent on the length of the
minimum search interval and on the variance of the noisy input periodogram and
thus dependent on the smoothing parameter αMS(λ, µ) of the periodogram. The
short-term noise PSD estimate is finally given by

Φ̂nn(λ, µ) = B(λ, µ, αMS(λ, µ)) ·
∣∣Y(λ, µ)min

∣∣2 . (3.23)

Minimum Statistics performs well in stationary and slowly changing noise
conditions as the minimum at each frequency bin within the search time window
provides a good estimate of the actual noise power.

Noise power estimation based on the probability of speech presence (SPP)

Given a reliable VAD, the aforementioned VAD based noise estimator updates the
short-term noise PSD estimate only in phases of speech absence. In contrast, the
SPP algorithm [Gerkmann & Hendriks 2011, 2012], which is a further development
of [Hendriks et al. 2010], estimates the noise PSD for each frequency by a smoothed
linear combination of the current observed noisy short-term PSD and the last
estimate of the noise PSD weighted by the speech presence and speech absence
probability, respectively. The speech presence probability (SPP) is a time and
frequency dependent soft value for the speech activity ranging between zero and
one. Assuming a Gaussian distribution for the real and imaginary components of
the noise and speech spectral coefficients the SPP can be formulated. Applying
Bayes’s theorem, the probability p of speech presence H1 can be expressed given
the noisy observation Y(λ, µ) and a noise PSD estimate Φ̂nn(λ, µ) according to
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[Cohen & Berdugo 2001] by4

p(H1|Y(λ, µ)) =
(

1 + (1 + ξopt) exp
(
−|Y(λ, µ)|2

Φ̂nn(λ, µ)
· ξopt

ξopt + 1

))−1

, (3.24)

where the fixed optimal a priori SNR ξopt is chosen as 10 log10(ξopt) = 15 dB under
the constraint that the true a priori SNR is less or equal to 20 dB [Gerkmann et al.
2008]. Moreover, the speech presence and speech absence is modeled equiprobable,
i. e.,

p(H1) = p(H0) = 0.5. (3.25)

If the short-term noise PSD estimate Φ̂nn(λ, µ) underestimates the true short-term
noise power, the SPP p(H1|Y(λ, µ)) is overestimated since the denominator of
Eq. (3.24) gets smaller due to the dominant ratio −|Y(λ,µ)|2/Φ̂nn(λ,µ) in exp(·). In
the extreme case, i. e., Φ̂nn(λ, µ) << |Y(λ, µ)|2, the SPP p(H1|Y(λ, µ)) tends to
one although |Y(λ, µ)|2 is small with respect to the true, but unknown, noise
power. In order to avoid stagnation for SPP values close to one post-processing of
p(H1|Y(λ, µ)) is applied, including recursive smoothing and bounding the smoothed
SPP to an upper limit. According to [Gerkmann & Hendriks 2011] the SPP can be
interpreted as frequency and time dependent soft VAD which is suitable to control
the update of the noise periodogram leading to

∣∣∣N̂ (λ, µ)
∣∣∣
2

= p(H0|Y(λ, µ)) |Y(λ, µ)|2 + p(H1|Y(λ, µ))Φ̂nn(λ− 1, µ) (3.26)

with the probability of speech absence given by

p(H0|Y(λ, µ)) = 1− p(H1|Y(λ, µ)). (3.27)

Finally, the spectral noise power estimate is computed by temporal smoothing of
the noise periodogram according to

Φ̂nn(λ, µ) = 0.8 · Φ̂nn(λ− 1, µ) + 0.2 ·
∣∣∣N̂ (λ, µ)

∣∣∣
2
. (3.28)

The evaluation carried out in [Gerkmann & Hendriks 2012] confirmed a good perfor-
mance for this noise PSD tracking algorithm also in challenging noise environments,
i. e., in case of at least slowly time-varying noise.

3.4.2 Signal-to-noise ratio Estimation
The signal-to-noise ratio (SNR) is an important measurement for speech enhance-
ment and is exploited by many algorithms. Various spectral weighting rules can
be formulated as a function of the SNR. Two important SNR quantities are the

4In a realistic system the noise estimate Φ̂nn(λ, µ) is approximated by the noise estimate
from the previous frame Φ̂nn(λ− 1, µ) to estimate the SPP.
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a priori SNR ξ and the a posteriori SNR γ. Their estimates are defined in [McAulay
& Malpass 1980]. The a posteriori SNR is defined as the ratio between the noisy
periodogram and the short-term noise PSD as given by

γ(λ, µ) = |Y(λ, µ)|2
Φnn(λ, µ)

= |Y(λ, µ)|2

EK
{
|N (λ, µ)|2

} , (3.29)

where EK {·} represents the short-term mean expectation operator, i. e., the short-
term average of its argument in this context as defined in Sec. 3.3. Given an
estimate of the short-term noise PSD Φ̂nn(λ, µ) the a posteriori SNR can easily be
measured. In contrast, the a priori SNR defined by

ξ(λ, µ) = Φss(λ, µ)
Φnn(λ, µ)

=
EK
{
|S(λ, µ)|2

}

EK
{
|N (λ, µ)|2

} , (3.30)

is more challenging to estimate since the short-term PSD of speech Φss(λ, µ) is
necessary. In general, Φss(λ, µ) is not known a priori. Using the relation

Y(λ, µ) = S(λ, µ) +N (λ, µ), (3.31)

and assuming again that speech and noise are uncorrelated the cross terms

Φsn(λ, µ) = Φns(λ, µ) = 0, (3.32)

are close to zero and the a priori SNR can now be formulated in terms of the
a posteriori SNR according to:

ξ(λ, µ) = Φss(λ, µ)
Φnn(λ, µ)

= |Y(λ, µ)|2
Φnn(λ, µ)

− 1 = γ(λ, µ)− 1. (3.33)

The decision-directed approach is a widely accepted method in literature to
estimate the a priori SNR ξ(λ, µ) and was suggested by [Ephraim & Malah 1984].
It is assumed that a speech estimate Ŝ(λ− 1, µ) of the previous frame is available
and furthermore that S(λ, µ) ≈ S(λ − 1, µ), which is true for a quasi-stationary
speech sound but less valid for, e. g., transient sounds. Now, the a priori SNR
is computed by a linear combination of speech and noise estimates from the last
frame and an instantaneous realization of the a posteriori SNR

ξ̂(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)
∣∣∣
2

EK
{
|N (λ− 1, µ)|2

} + (1− αξ) max (γ(λ, µ)− 1, 0), (3.34)

where max (·, ·) returns the maximum of the two arguments. The choice of αξ
states a tradeoff between noise reduction and speech distortion. A typical value for
αξ lies in the range 0.9 < αξ < 0.99. In this work αξ = 0.98 is chosen as suggested
in [Ephraim & Malah 1984].
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3.4.3 Spectral Weighting
As depicted in Fig. 3.4 the actual noise reduction is achieved by spectral weighting
yielding the enhanced speech estimate Ŝ(λ, µ) in the frequency domain by

Ŝ(λ, µ) = G(λ, µ) · Y(λ, µ) = G(λ, µ) · |Y(λ, µ)| eiϑY (λ,µ), (3.35)

where |Y(λ, µ)| is the noisy magnitude and ϑY(λ, µ) the corresponding phase at
frequency bin µ and frame λ. The weighting gain is updated in each frame and
the calculation is usually a function of the previously introduced short-term noise
PSD estimate Φ̂nn(λ, µ) and the SNR estimates ξ̂(λ, µ) and γ̂(λ, µ). Typically, the
optimization of the weighting gain function aims to minimize a specific mathematical
cost function between the clean speech signal S(λ, µ) and its estimate Ŝ(λ, µ)
assuming certain statistical characteristics about speech and noise. Often used cost
functions are the MMSE, the maximum likelihood (ML) or maximum a posteriori
(MAP) criterion. In general, the weighting gains can be complex-valued. As the
human auditory system is rather insensitive w. r. t. to phase distortions [Vary 1985;
Wang & Lim 1982] most weighting gain rules modify only the spectral magnitudes
of the noisy DFT coefficients. Doing so, G(λ, µ) is real-valued and lies in the range
between zero and one. Hence, the noisy phase is applied during synthesis to obtain
the enhanced speech signal in the time domain.

In the following the well-known Wiener filter weighting rule [Lim & Oppenheim
1979; Vaseghi 1996] is presented. The Wiener filter minimizes the MMSE between
the clean speech DFT coefficients S(λ, µ) and the enhanced DFT coefficients
Ŝ(λ, µ) independently for each frequency bin µ assuming Gaussian probability
density functions (PDFs) for both. Using Eq. (3.35) it follows for the MMSE
expression:

E

{∣∣∣S(λ, µ)− Ŝ(λ, µ)
∣∣∣
2
}

= E
{
|S(λ, µ)− G(λ, µ) · Y(λ, µ)|2

} != min .

(3.36)

Assuming that the DFT coefficients are independent, it can be shown that the
partial derivation of Eq. 3.36 with respect to the real and imaginary parts of G(λ, µ)

∂ E

{∣∣∣S(λ, µ)− Ŝ(λ, µ)
∣∣∣
2
}

∂ Im{G(λ, µ)} = 0,
∂ E

{∣∣∣S(λ, µ)− Ŝ(λ, µ)
∣∣∣
2
}

∂ Re{G(λ, µ)} = 0 (3.37)

yields [Vaseghi 1996]

Im{G(λ, µ)} = 0, (3.38)

Re{G(λ, µ)} =
E
{
|S(λ, µ)|2

}

E
{
|S(λ, µ)|2 + |N (λ, µ)|2

} = Φ̂ss(λ, µ)
Φ̂ss(λ, µ) + Φ̂nn(λ, µ)

(3.39)
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where Re{·} and Im{·} denote the real and imaginary parts, respectively. Hence,
the Wiener filter weighting is real valued and it can also be expressed in terms of
the a priori SNR estimate ξ̂ as

GW (λ, µ) = ξ̂(λ, µ)
1 + ξ̂(λ, µ)

. (3.40)

Another popular approach is called spectral subtraction and was proposed by
[Boll 1979]. The noise reduction is achieved by subtracting an estimate of the noise
magnitude spectrum from the noisy speech magnitude spectrum according to

∣∣∣Ŝ(λ, µ)
∣∣∣ = |Y(λ, µ)| − E {|N (λ, µ)|} , (3.41)

which leads to the weighting gain calculation rule:

GS(λ, µ) = 1− E {|N (λ, µ)|}
|Y(λ, µ)| . (3.42)

In [Hansen 1991] a gain rule was proposed which generalizes the approach of
[Boll 1979] introducing the two parameters αG and βG and using the noise estimate
N̂ (λ, µ). The gain rule is given by

G(λ, µ) =

√√√√√√


1−




∣∣∣N̂ (λ, µ)
∣∣∣
2

|Y(λ, µ)|2




βG


αG

. (3.43)

The parameters αG and βG can be either fixed or adaptive incorporating the
characteristics of speech and noise over the time. Using αG = 2 and βG = 0.5 yields
the spectral subtraction rule by [Boll 1979], whereas αG = βG = 1 leads to the
power subtraction rule. Setting αG = 2 and βG = 1 results in the Wiener filter
weighting gain (refer Eq. 3.39).

3.5 Noise Estimation by Logarithmic Baseline Tracing
A novel noise PSD estimator for disturbed speech signals that operates in the
short-time Fourier domain is presented [Heese & Vary 2015]. A short-term noise
PSD estimate is provided by constrained tracing with time the noisy observation
separately for each frequency bin. The constraint is a limitation of the logarithmic
magnitude change between successive time frames. Since speech onsets are assumed
as sudden rises in the noisy observation, a fixed and an adaptive tracing parameter
β will be derived to track the contained noise while preventing speech leakage to
the noise PSD estimate. In other words, the new estimator is explicitly designed
to estimate all signal components with a lower dynamic than speech. Hence,
the remaining signal estimate is considered as noise. The constraint frequency
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dependent magnitude change causes inertia of the noise estimate over time which
models the different temporal and frequency dependent statistics of speech and
noise.

The experimental evaluation and comparison with state-of-the-art algorithms,
SPP [Gerkmann & Hendriks 2011] and Minimum Statistics [Martin 2001, 2006],
confirms a lower logarithmic noise estimation error and superior speech enhancement
rated in a standard noise reduction system. The proposed concept has an extremely
low computational complexity and memory consumption. Thus, it is well suited
for applications where processing power and memory is limited.

The property of the new estimator to largely prevent speech leakage to the noise
estimate along with the low computational complexity is an important feature for
information combining as detailed in Sec. 5 of different speech and noise short-term
PSDs.

3.5.1 Signal Model
For the derivation of the new short-term noise PSD estimator it is assumed that
the speech and noise signals have zero mean and are independent so that

E
{
|Y(λ, µ)|2

}
= E

{
|S(λ, µ)|2

}
+ E

{
|N (λ, µ)|2

}
. (3.44)

3.5.2 Definition of the Noise Signal Baseline
In most derivations of (short-term) noise PSD estimators speech and noise are
assumed as uncorrelated and the noise is modeled as a stationary process [Gerkmann
& Hendriks 2012; Martin 2006]. Hence, applying the expectation operator in the
derivations cancels the speech-noise cross-terms out which simplifies the estimation
problem. As noise estimators and speech enhancement systems operate on a frame-
by-frame basis, this simplifications do not hold. In this section the aforementioned
simplifications are analyzed relaxing the requirement of the noise to be stationary
and by formulating the estimation problem including the speech-noise cross-terms.
The final estimation term can be expressed in terms of a baseline which is equivalent
to the short-term noise PSD.

In the following consideration an arbitrary but stationary noise only signal is
assumed. Since most speech enhancement algorithms are derived based on the noise
signal power spectral density (PSD) Φnn(µ), the determination of the noise signal
PSD or at least the short-term noise PSD Φnn(λ, µ) is the objective of a noise
estimator. Quite often, it is not possible to observe more than a single realization,
i. e., a noise signal frame, of a stochastic noise signal process. Then, the estimation
of the PSD by averaging over an ensemble of observations is not possible. The
periodogram |N (λ, µ)|2 [Schuster 1898] is a commonly utilized non-parametric
simple estimator for the noise PSD Φnn(µ) resulting in a so called short-term
PSD estimate Φ̂nn(λ, µ) = |N (λ, µ)|2. Since the periodogram in contrast to the
PSD is calculated from a finite segment length, e. g., a signal frame nλ(κ), it is
suitable for block processing which is demanded in the context of real-time signal
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3.5 Noise Estimation by Logarithmic Baseline Tracing

enhancement. However, the difference between Φ̂nn(λ, µ) and Φnn(µ) is caused
by the finite frame length, which is in the order of 20ms in speech enhancement,
used for the calculation of the periodogram. Hence, the finite frame length and the
random nature of most noise signals cause the obtained short-term periodograms
of consecutive signal frames to vary randomly around the true average spectrum,
i. e., the PSD Φnn(µ). In order to reduce the variance of the short-term noise PSD
estimate Φ̂nn(λ, µ) = |N (λ, µ)|2 possibly adaptive temporal smoothing is applied
to the periodograms, which yields a refined short-term noise PSD estimate

Φ̂nn(λ, µ) = Ẽα {N (λ, µ)N ∗(λ, µ)} (3.45)

= αΦ(λ, µ) · Φ̂nn(λ− 1, µ) + (1− αΦ(λ, µ)) · |N (λ, µ)|2 ,

as close approximation of the true noise PSD Φnn(µ).
With regard to more realistic noise scenarios, the requirement for the noise

signal is relaxed allowing both, stationary or slowly varying short-term stationary
noise which is denoted by Φnn(λ, µ) (where λ is the frame index). Then, the true
noise PSD Φnn(µ) would be a sub-optimal noise power estimate with respect to an
arbitrary signal frame λ, since it does not provide temporal information. Assuming
a short-term stationary noise signal, the desired short-term PSD estimate Φ̂nn(λ, µ)
is an approximation of the short-term noise PSD Φnn(λ, µ) which is defined as the
average over all K signal frames centered around the current frame λ which are
considered as stationary:

Φnn(λ, µ) = EK
{
N (λ̃, µ) · N ∗(λ̃, µ)

}
, with λ̃ = λ−

⌈
K

2

⌉
. (3.46)

In general, the smoothing parameter αΦ(λ, µ) is set such that the resulting smoothed
estimate is also short-term stationary. The choice of the smoothing parameter states
the trade off between estimation delay and noise power over- and under-estimation.

Another interpretation of the smoothing procedure is to decompose the noise
signal into a baseline B(λ, µ), which is equivalent to the short-term noise PSD
Φnn(λ, µ) and the remaining fast temporal fluctuations F(λ, µ) according to

B(λ, µ) = Φnn(λ, µ) ≈ Φ̂nn(λ, µ) (3.47)
|N (λ, µ)|2 = B(λ, µ) + F(λ, µ). (3.48)

In practice, B(λ, µ) can be approximated by the above mentioned smoothed version
of the noise signal power Φ̂nn(λ, µ) described by Eq. (3.45). In Fig. 3.5 an example
of pure noise |N (λ, µ)|2 its baseline B(λ, µ) and the remaining fast variations F(λ, µ)
is depicted as a function of time for a single frequency bin µ = 101 (fs = 16 kHz,
NDFT = 512).

A common aim of statistical noise PSD estimators is the determination of the
smoothed short-term noise PSD estimate Φ̂nn(λ, µ) given only the noisy observation
Y(λ, µ) = S(λ, µ) +N (λ, µ). In the context of slowly varying noise, the presented
baseline B(λ, µ) as a function of time and frequency provides the desired smoothed
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Figure 3.5: Definition of the baseline. The orange line represents the magni-
tude of pure noise periodogram for a single frequency bin µ = 101
over frames λ. The noise can be decomposed into its slow varying
baseline B(λ, µ) and the remaining fast variations F(λ, µ).

short-term noise PSD estimate. In order to obtain the baseline B(λ, µ), the signal
model is now given by

Y(λ, µ) = |S(λ, µ)| · eiϑS(λ,µ) +
√
B(λ, µ) + F(λ, µ) · eiϑN (λ,µ), (3.49)

where ϑS and ϑN denote the phase of speech and noise, respectively. Hence, the
short-term noise PSD estimation problem is expressed by the periodogram of the
noisy observation. For the sake of brevity the time-frequency index (λ, µ) is omitted
in the following equation, yielding the noisy periodogram

|Y|2 = |S|2 + 2 |S|
√
B + F cos(ϑS − ϑN ) + F︸ ︷︷ ︸

removed by smoothing and post-processing

+B. (3.50)

Since speech is modeled as highly non-stationary and F(λ, µ) is by definition the
rapidly changing proportion of the noise signal, the baseline B(λ, µ) of the underlying
noise signal can be obtained by smoothing and post-processing of |Y(λ, µ)|2.

In the presence of speech, a short-term noise PSD estimate can either be obtained
during speech pauses or by continuously tracking the magnitude in the short-term
Fourier domain and apply further speech aware post-processing. Usually, statistical
noise PSD estimators such as [Doblinger 1995; Gerkmann & Hendriks 2011; Martin
2006] apply temporal nonlinear and recursive smoothing of either the noisy input
periodogram or the noise estimate itself in order to compute the noise signal baseline
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∣∣2

linear amplitude domain logarithmic amplitude domain

Figure 3.6: Equivalent block diagram of proposed noise estimator

B(λ, µ). An alternative approach for the determination of baseline B(λ, µ) is to
limit the magnitude change between successive time frames by a fixed or adaptive
step size. This concept will be explained in the next sections.

3.5.3 Concept of Baseline Tracing
The noise estimation problem is formulated in the logarithmic amplitude domain,
while the actual implementation is carried out with linear amplitudes. This proce-
dure is beneficial for the following reasons:

• the linear domain processing is computationally less complex than in the
logarithmic domain,

• the logarithmic domain estimator is inherently unbiased, as shown below,
and does not need correction terms like, e. g., Minimum Statistics [Martin
2001, 2006],

• the logarithmic domain formulation of the proposed estimator does not need
explicit amplitude normalization,

• the logarithmic domain corresponds to the perception of the human auditory
system.

The equivalent logarithmic domain block diagram of the proposed short-term noise
PSD estimator is depicted in Fig. 3.6. The estimator can be explained in terms
of delta modulation with an adaptive step size ∆(λ, µ). For each fixed frequency
bin µ, the variable step size ∆(λ, µ) is deliberately adjusted such that the estimate
ln
∣∣∣N̂ (λ, µ)

∣∣∣
2
follows the baseline of the logarithmic noisy sub-band, which is called

Baseline Tracing. The noise estimate as depicted in Fig. 3.6 is obtained in the
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Figure 3.7: Insights into Baseline Tracing of a stationary noise component for
one specific frequency bin over frames. The upper part depicts
the stationary noise component and its estimate while in the lower
part the corresponding signum series d(λ) is plotted.

logarithmic domain by

ln
∣∣∣N̂ (λ, µ)

∣∣∣
2

= ln
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2

+ ∆(λ, µ) · d(λ, µ) (3.51)

d(λ, µ) = sign
(

ln |Y(λ, µ)|2 − ln
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
)
, (3.52)

where sign(·) denotes the signum function.
In a first order delta modulator, the input signal is traced by an estimate which

increases or decreases with a linear slope, which is determined by the step size ∆ and
the sign of the error between the input and the estimate. By adaptive control of the
step size, the delta modulator is operated here in the slope overload mode [Jayant
& Noll 1984] such that the estimate follows the baseline, which is determined by
the short-term noise PSD Φnn(λ, µ). Due to the additive noise, the magnitudes of
the speech component frequently decay to the level of the noise component. This
is also exploited by SPP [Gerkmann & Hendriks 2011] and Minimum Statistics
[Martin 2001, 2006].

In the upper part of Fig. 3.7 a stationary noise component is depicted as
a function of time for a fixed frequency bin as bold orange curve ( ). The
derived noise estimate employing ∆(λ, µ) = 0.1 dB is indicated in red ( ). The
corresponding signum series d(λ) is plotted in the lower part of the figure. By
means of this stationary noise component it can be seen, that the signum series
d(λ) ∈ {−1, 0, 1} alternates with each time step λ and is zero mean on average,
i. e., E {d(λ)} = 0. Thus, the proposed estimator is unbiased in the logarithmic
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3.5 Noise Estimation by Logarithmic Baseline Tracing

domain except of the granular noise known from delta modulation. In contrast to
delta modulation d(λ) = 0 is allowed, which is favorable as the noise estimation
may exactly match the, e. g., constant input.

For complexity reasons, the logarithmic short-term noise PSD estimator is
implemented in the linear amplitude domain. The resulting equations (3.54)
and (3.55) are in parts similar to [Baasch et al. 2014]. However, the adaptation
mechanism proposed in this thesis is speech dependent and the control is effective
in the logarithmic amplitude domain.

Given a noise estimate
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
from the last frame, the current estimate

∣∣∣N̂ (λ, µ)
∣∣∣
2
is calculated by stretching or compressing the last estimate with the

tracing factor β(µ) in each frequency bin. The tracing factor β is equivalent to

β(λ, µ) = e∆(λ,µ), (3.53)

and can be realized frequency dependent or independent. A further option is to
use a time varying β(λ, µ) in analogy to the adaptive step size control in delta
modulation [Jayant & Noll 1984; Proakis & Salehi 2001]. As criterion for stretching
or compressing, the signum function is used. If the difference between the current
noisy observation Y(λ, µ) and the last estimate N̂ (λ− 1, µ) is greater than zero,
N̂ (λ− 1, µ) will be stretched by β and compressed by 1/β in the other case. The
estimation step, which is equivalent to the “Delta Modulation Algorithm” in the
logarithmic amplitude domain of Fig. 3.6, is described by the following equations
in the linear amplitude

∣∣∣N̂ (λ, µ)
∣∣∣
2

=
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
· β(λ, µ)D(λ,µ), (3.54)

D(λ, µ) = sign
(

ln |Y(λ, µ)|2 − ln
∣∣∣N̂ (λ− 1, µ)

∣∣∣
2
)
, (3.55)

= sign
(
|Y(λ, µ)|2 −

∣∣∣N̂ (λ− 1, µ)
∣∣∣
2
)
, (3.56)

with the initialization of the first estimate
∣∣∣N̂ (1, µ)

∣∣∣
2
= |Y(1, µ)|2.

A proof of concept example for a single frequency bin µ = 59 corresponding
to a frequency of 1816Hz is depicted in Fig. 3.8 as a function of time. Here, a
noisy signal consisting of factory1 noise [Varga et al. 1992] and a female speaker
randomly taken from the NTT database [NTT-Corporation 1994] at 5 dB input
SNR was processed with a frequency independent tracing factor

β(λ, µ) = 1.05 ≈ 0.4 dB, (3.57)

which corresponds to approximately 5% change in
∣∣∣N̂ (λ, µ)

∣∣∣
2
from frame to frame

in this example. In the upper plot the clean speech ( ) and noise signal ( )
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Figure 3.8: Baseline Tracing proof of concept example. As reference, the
upper plot presents the magnitude of pure noise and clean speech
depicted over frames λ and for a single frequency bin µ = 59
(1816Hz, fs = 16 kHz). The corresponding noisy mixture and the
noise estimate are shown in the lower plot.

can be seen, while in the lower plot the noisy mixture ( ) and the short-term
noise PSD estimate ( ) are depicted. It is visible that the simple concept of the
new estimator is able to track the short-term noise PSD.

3.5.4 Tracing Factor β
Although the choice of β = 1.05 in the previous example (Fig. 3.8) works properly,
it seems reasonable to define a frequency and time dependent scaling factor β
yielding

β(λ, µ) = e∆(λ,µ) = 1 + α(λ)φ(µ), (3.58)

where α represents the time and φ the frequency dependent component. Since
compression or stretching is realized by multiplication and division, β(λ, µ) has to
be greater than one. In addition, the choice of the tracing factor β(λ, µ) depends
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Figure 3.9: Long-term speech spectrum LTA(f) in the linear amplitude rep-
resentation, normalized for clarity to a maximum of one and its
inverse.

on the dynamic of the noise signal relative to the speech component. Facing a high
noise signal dynamic, β(λ, µ) should be high allowing fast noise tracking and vice
versa.

Speech Dependent Scaling φ(µ) over Frequency

If β is too large,
∣∣∣N̂ (λ, µ)

∣∣∣
2
follows unintentionally also the speech signal and

the noise PSD estimate thus contains parts of speech. In order to prevent that
speech contributes to the noise PSD estimate, the tracking speed for speech relevant
frequencies is decreased while allowing faster tracking at the remaining frequencies.

Therefore, α(λ) is chosen proportional to the inverse of the long-term speech
spectrum average (LTA) as shown in Fig. 3.9 with the definition of the LTA [ITU-T
Recommendation P.50 1999] given by

LTA(f)|dB =− 376.44 + 465.439 log10(f)
− 157.745 log2

10(f) + 16.7124 log3
10(f), (3.59)

where f is the frequency in Hz. A piece-wise approximation of the inverse long-term
speech spectrum average LTA−1(µ) is introduced

LTA−1(µ) =





(
10LTA

(
fs

NDFT
µHz
)
/20
)−1

if fs
NDFT

µ ≥ 230 Hz
(
10LTA(230 Hz)/20

)−1 if fs
NDFT

µ < 230 Hz,
(3.60)

which ensures a smooth transition at low frequencies. In the next step, the new
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speech aware and frequency dependent φ(µ) is specified as:

φ(µ) = NDFT · LTA−1(µ)∑NDFT−1
i=0 LTA−1(i)

. (3.61)

Note φ(µ) is thus normalized to a mean of one. Both, the normalized long-term
speech spectrum ( ) and its normalized inverse φ(µ) ( ) are depicted in
Fig. 3.9.

Fixed Scaling Parameter α with the Time

As mentioned above, a large β leads to an erroneous noise PSD estimate including
also speech. As φ(µ) is one on average, β(λ, µ) may be too large in many cases
and

∣∣∣N̂ (λ, µ)
∣∣∣
2
changes excessively in successive frames, which can be solved by an

appropriate choice of α(λ). According to Fig. 3.9 the main part of speech energy
is distributed up to approx. 3.4 kHz. Allowing a change of p% on average every
10ms at this frequency range yields to a fixed α(λ) of:

α(λ) =
p · LA

(⌊ 3.4 kHz·NDFT
fs

⌋
+ 1
)

fs ·
∑⌊ 3.4 kHz·NDFT

fs

⌋
i=0 φ(i)

, (3.62)

where LA is the frame advance in samples. Setting p, e. g., to 5% as in the presented
example in Fig. 3.8 yields α(λ) ≈ 0.13 ≈̂ 0.4 dB/10 ms.

Adaptive Scaling α(λ) with the Time

A further option is an adaptive α(λ) as a function of the frame a posteriori
SNR. If the a posteriori SNR is extremely high, the adaptive α(λ) should be very
small, resulting in small changes of

∣∣∣N̂ (λ, µ)
∣∣∣
2
in successive frames. Whereas with

decreasing SNR, α(λ) should grow, allowing a faster tracking of the noise. In order
to prevent error propagation, the adaptive α(λ) is chosen as a function of the
segmental mean SNR with an upper limit of γmax defined as

γseg(λ) = min


 1
NDFT

NDFT−1∑

µ=0

|Y(λ− 1, µ)|2∣∣∣N̂ (λ− 1, µ)
∣∣∣
2 , γmax


 , (3.63)

controlled by a second independent a posteriori SNR estimate

γ2nd(λ) =
∑NDFT−1

µ=0 |Y(λ, µ)|2
∑NDFT−1

µ=0

∣∣∣N̂2nd(λ, µ)
∣∣∣
2 , (3.64)

where N̂2nd(λ, µ) is provided by a second Baseline Tracer with a large fixed α2nd
according to Eq. (3.62), resulting in a fast but rough noise tracking. The reason
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Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20ms)
FFT length NDFT 512 (including zero-padding)
Frame overlap 50% (LA = 160 =̂ 20ms)
Window function

√
Hann− window

SNR estimation Decision-directed approach

Table 3.1: Simulation system settings

behind γ2nd is to reduce the tracking speed in case of sudden increase of the speech
component. Combining both SNR estimates, the adaptive α(λ) is now specified as

α(λ) =
1− γseg(λ)/γmax

γ2nd(λ) , (3.65)

where the denominator provides fast and robust scaling of α(λ) which is refined by
the nominator and γmax defines the upper limit for noise tracking.

3.5.5 Evaluation
The evaluation is carried out in three steps. At first the noise estimation performance
itself is rated. Afterwards the new estimator is applied to a clean speech signal as
boundary experiment for infinity input SNR. In a third step the new estimator
is evaluated embedded in a standard noise reduction system. Different objective
speech enhancement scores serve as indirect performance measures. In the following,
a standard speech enhancement system which is depicted in Fig. 3.4 serves as
benchmark platform. The corresponding simulation parameters are summarized in
Tab. 3.1.

The proposed noise PSD estimator Baseline Tracing is compared in two different
configurations for β(λ, µ) with three state-of-the-art methods: Minimum Tracking
[Doblinger 1995], Minimum Statistics [Martin 2006] and the SPP noise tracker
[Gerkmann & Hendriks 2011].

The first configuration of the new baseline tracing algorithm employs a fre-
quency dependent φ(µ) according to the inverse long-term speech average spec-
trum (Sec. 3.5.4) and a fixed α(λ) = 0.4 dB/10 ms, while in the second config-
uration α(λ) is a posteriori SNR dependent (Sec. 3.5.4) with γmax=̂15 dB and
α2nd = 1.6 dB/10 ms. The parameters of the Minimum Tracking, Minimum Statis-
tics and SPP algorithm are chosen as suggested in [Doblinger 1995; Martin 2006;
Gerkmann & Hendriks 2011], respectively.

The comparison is performed for all permutations of the following parameters:

• the input SNR varies from −10 to 35 dB in 5 dB steps5 and
5The mixing procedure is detailed in Sec. C.1. Note that for the calculation of the scaling
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Figure 3.10: Noise power estimations for pure modulated white Gaussian
noise (no speech present). The presented results are averaged
across frequency and over 15 modulation periods.

• 15 male and 15 female english speakers (randomly taken from the NTT
database) are mixed with

• seven different stationary and non-stationary noise types (f16, factory1,
babble, buccaneer1 [Varga et al. 1992], modulated Gaussian noise, vacuum
cleaner, passing cars).

The Gaussian noise is modulated with fmod = 0.5 Hz according to

f(k) = 1 + 1
2 sin

(
2πk fmod

fs

)
. (3.66)

Noise PSD Estimation Performance

The evaluation is carried out by the logarithmic noise PSD estimation errors:
LogErrOver, LogErrUnder, and LogErr which are related among each other according
to

LogErr = LogErrOver + LogErrUnder. (3.67)

Lower values of the respective measure indicate a better performance. The errors
describe the mismatch between the estimated and the real noise short-term PSD
and are defined in Appendix C.3. In applications such as speech enhancement an

factor to adjust the input SNR only speech and noise signal sections with speech presence are
considered.
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Estimator LogErr LogErrUnder LogErrOver

Baseline Tracing (adaptive α) 2.94 dB 1.19 dB 1.76 dB
Baseline Tracing (fixed α) 4.11 dB 1.65 dB 2.46 dB
SPP 3.93 dB 1.45 dB 2.48 dB
Minimum Statistics 5.09 dB 2.55 dB 2.54 dB
Minima Tracker 5.35 dB 4.00 dB 1.35 dB

Table 3.2: Noise PSD logarithmic error measures for different short-term noise
PSD estimators. The input signal consists exclusively of modulated
white Gaussian noise.

overestimation of the true noise power, as indicated by LogErrOver, likely results in
an attenuation of the speech and thus in speech distortions. On the other hand,
a noise power underestimation, pointed out by the LogErrUnder causes probable
lower noise attenuation.

In a first boundary experiment the noise estimators are analyzed applying them
to a non-stationary noise signal, i. e., without the influence of speech. The syntheti-
cally composed noise sequence consists of 62 s of a modulated white Gaussian noise
signal (fmod = 0.5 Hz, Eq. (3.66)). The first 2 seconds, i. e., the first modulation
period, of the noise estimate results are discarded due to initialization operations.
The remaining 60 s are subdivided into 15 periods of 4 seconds length and averaged.
In addition the results are also averaged across frequency in order to reduce the
variance and to provide a compact representation. The short-term noise PSD
estimates as indicated by the colored curves and the true noise power marked
by the black color of averaged noise signal periods are depicted in Fig. 3.10. It
is obvious that all noise estimation algorithms are not able to follow closely the
true noise power ( ) in this example. The Minima Tracker ( ) consequently
underestimates the true noise power. In contrast, the Minimum Statistics method
( ) underestimates only the rising edge of the noise signal and is able to follow
more closely the falling edge. This behavior can be expected due to the length of the
sliding minimum window of approx. 1.5 s. The remaining noise estimators perform
similar. Analyzing the Baseline Tracing estimator utilizing a fixed α ( ) it is
apparent that it has a slightly worse performance and a tendency to overestimate
the noise power at the falling edges of the noise signal compared with the SPP
estimator. If the Baseline Tracing is using the adaptive α(λ) ( ), the algorithm
is able to follow the true noise power more precisely than the SPP approach. The
presented results are confirmed by the objective LogErr measures applied to the
whole noise signal sequence and are summarized in Tab. 3.2.

In the following, the noise estimation performance is evaluated in a more realistic
scenario under the influence of speech, different noise types and various SNRs as
described above. The averaged results in terms of the LogErr are presented in
Fig. 3.11. As in the previous example the Minimum Tracker ( ) marks the
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Figure 3.11: Logarithmic error measure of different short-term noise PSD esti-
mators. The error is depicted over the input SNR and averaged
over 30 speakers and 7 noise types.

lower bound of the noise estimation performance over the complete SNR range,
especially for SNR values greater than 15 dB. In contrast, the Minimum Statistics
algorithm ( ) performs almost constant over the complete SNR range and
provides scores around 5 dB LogErr. In low SNR conditions the SPP algorithm
( ) is able to provide significantly better scores compared to Minimum Statistics.
However, with increasing SNR the distance becomes smaller. Up to 10 dB SNR the
proposed Baseline Tracing with fixed α ( ) performs similar to SPP. Beyond,
a performance loss is visible. This can be explained due to the fixed operating
point of the algorithm, i. e., the frequency dependent but fixed magnitude change in
successive frames of the short-term noise PSD estimate. With increasing SNR the
magnitude change is significantly larger than the dynamic of the true noise floor,
which leads to an alternating under- and over- estimation of the noise. The proposed
Baseline Tracing utilizing the adaptive α(λ) ( ) performs best over the complete
SNR range with a distinct distance to all competitors. By incorporating the frame
a posteriori SNR, it is possible to adapt the magnitude change in successive frames
to match the dynamic of the underlying noise signal. Hence, the alternating under-
and over- estimation of the noise floor is significantly reduced for high SNR values.

In Fig. 3.12 the averaged results are summarized for selected noise types at
various SNRs. Comparing the proposed Baseline Tracing with fixed α ( ) to the
best state-of-the-art algorithm, i. e., SPP ( ), the performance is quite similar
for all noise types and SNR conditions, except for babble noise at 10 and 15 dB,
where SPP performs slightly better. Also the relation between under and over
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Figure 3.12: Logarithmic error measure averaged over 30 speakers taken from
the NTT database at various SNRs for selected noise types. The
lower part of the bars indicate the LogErrOver, while the upper
part represents LogErrUnder. The total height corresponds to
LogErr.
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estimation is similar. The Minimum Statistics ( ) and Minimum Tracking ( )
have a comparable performance regarding the total LogErr measure and perform
0.59 dB worse on average compared to SPP and the proposed estimator with fixed
α. In contrast to Minimum Statistics, the LogErr analysis of Minimum Tracking
confirmed a dominant underestimation of the short-term noise PSD, indicating
lower performance in terms of noise reduction. For all noises and SNR conditions,
the proposed estimator Baseline Tracing with adaptive α(λ) ( ) holds the best
performance in all error measures with an advance up to 1.1 dB and 0.71 dB on
average.

Short-term Noise PSD Estimation on a Clean Speech Signal

In this experiment the noise estimators are applied to the randomly chosen clean
speech signals, i. e., without noise. This reflects on the one hand the border case of
infinite input SNR. On the other hand, the tendency of the respective estimator to
estimate erroneously speech as noise can be studied. If speech contributes to the
short-term noise PSD estimate, speech distortions in terms of speech attenuation
during the noise reduction process will likely occur. In addition, the performance
of the mentioned information combining, detailed in Sec. 5, of different noise
and speech short-term PSD estimates is significantly degraded if one of the noise
estimates contains speech.

The noise short-term PSD estimates of the four best approaches are depicted in
terms of spectrograms in Fig. 3.13 exemplarily for one speech signal and confirm
that the Minimum Statistics algorithm and the proposed Baseline Tracing noise
estimator in both configurations for α(λ) deliver an almost perfect noise estimate,
i. e., Φ̂nn(λ, µ) is very close to zero. However, the SPP approach shows isolated
significant contributions in the noise estimate. The LogErr measures normalized to
the best noise estimator, i. e., Baseline Tracing (adaptive), and averaged over all
30 speakers result in

• Baseline Tracing (adaptive): 0 dB ∆LogErr,

• Minimum Statistics: 2.22 dB ∆LogErr,

• Baseline Tracing (fixed): 3.93 dB ∆LogErr,

• SPP 6.37 dB ∆LogErr, and

• Minimum Tracker : 15.33 dB ∆LogErr.

Note that for the calculation of the LogErr the noise floor reference is set to -80 dB
which corresponds to the most silent part of the clean speech signals.

Noise Reduction Performance

In addition, the performance of the different noise estimators is also rated in terms
of objective speech enhancement scores. Therefore, the noise estimators are utilized
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Figure 3.13: Noise short-term PSD estimates from clean speech depicted as
spectrograms.
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Figure 3.14: Difference between SegNA and SegSA over the input SNR.

in a standard speech enhancement system as depicted in Sec. 3.4 by Fig. 3.4. The
estimates of the a priori SNR and a posteriori SNR are provided by the decision-
directed approach [Ephraim & Malah 1984]. For the spectral gains, the Wiener
filter is utilized which depends on the a priori SNR estimate. The enhanced time
domain signal ŝ(k) is obtained by applying an IDFT, windowing using a square-root
Hann window and overlap-add.

The employed objective scores6 are the segmental speech attenuation (SegSA),
segmental noise attenuation (SegNA) as well as the cepstral distance (CD) and
the perceptual evaluation of speech quality (PESQ). Regarding the CD, lower
values indicate a lower speech distortion. The difference between SegNA and SegSA
corresponds to the noise reduction performance. Hence, larger values indicate better
performance. The PESQ measure provides an objective measure of the perceived
audio quality that predicts the results of a subjective listening test. PESQ compares
the original clean speech signal s(k) with the enhanced speech signal ŝ(k) = ỹ(k).
The resulting PESQ values are analogous to the mean-opinion score (MOS) and
range from one (bad) to 4.5 (no distortion).

Fig. 3.14 shows the results for the SegNA – SegSA scores. As indicated in the
previous section by the consequent noise underestimation, the Minimum Tracking
( ) achieves the lowest SegNA – SegSA performance over the input SNR. Since
the noise is underestimated significantly, the resulting speech distortion should
be low, which is confirmed by the CD measure up to 10 dB depicted in Fig. 3.15.
While the Minimum Statistics ( ) and the proposed system with fixed ( )
and adaptive α ( ) perform in the SegNA – SegSA measure similar over the

6The objective scores are described in Appendix C.2
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Figure 3.15: The cepstral distance (CD) is depicted over the input SNR.

complete input SNR, the SPP method ( ) has a lower score of approx. 3.5 dB
at −10dB SNR reaching a similar performance starting with 10 dB SNR. Except
the Minimum Tracking for high SNR, the SPP has a slightly higher CD over the
input SNR, where the proposed estimator with adaptive α and Minimum Statistics
perform similar with the best scores on average. Up to 10 dB SNR, the Baseline
Tracing with fixed α performs also likewise.

The PESQ measure is presented in Fig. 3.16 and reflects the previously observed
objective scores. Again, the lower bound of the performance is defined by the
Minimum Tracker algorithm ( ). Minimum Statistics ( ) and SPP ( )
exhibit very similar PESQ scores over the complete input SNR range. Concerning
the Baseline tracing method with fixed α ( ) a turning point is visible. Up
to 15 dB the performance is slightly better compared to Minimum Statistics and
SPP. Again this behavior is explainable with the fixed α which causes a significant
alternating over- and under-estimation of the true noise power starting with 15–
20 dB input SNR. Utilizing the Baseline tracing algorithm with adaptive α ( )
the low cepstral distance as well as the property not to estimate speech as noise is
verified by the best PESQ scores over the complete input SNR. This confirms the
superior LogErr performance also in the noise reduction task for both new Baseline
Tracing estimators, as they provide a high noise attenuation at simultaneously low
speech distortion.

Computational complexity

The Baseline Tracing with fixed β consists only of four arithmetic operations
per frame and frequency bin: one (complex) magnitude operation, one difference
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Figure 3.16: PESQ over the input SNR.

operation, an “if else” statement, and an multiplication or division operation. It
only relies on the last short-term noise PSD estimate and the scaling factor β,
resulting in low memory consumption and low computational complexity. The
memory consumption consists of two times NDFT/2 + 1 values belonging to the
last short-term noise PSD estimate and the frequency dependent β(λ). Using
the adaptive Baseline Tracing, the complexity extends by a second non-adaptive
Baseline Tracing, the calculation of two frame a posteriori SNR values (NDFT/2 + 1
multiplications and summations, two times NDFT/2+1 summations, and one division
operation) and the final calculation of β(λ, µ) according to Eq. (3.58) and (3.65)
(one difference, two division, and one multiplication), which is still low.

3.6 Noise Reduction by Information Combining
Exploiting Spectral Dependencies

Most of the speech enhancement systems proposed in literature have been derived for
narrow band signals (50Hz – 4 kHz) using certain assumptions about the statistics
of the speech and noise signals, e. g., [Ephraim & Malah 1984, 1985; Gerkmann
& Hendriks 2012; Lim & Oppenheim 1979; Lotter & Vary 2005]. In case of noise
reduction for wideband signals (50Hz – 7 kHz), a common method is to double the
sampling rate and the transform length and to apply the low band algorithms also for
the wider frequency range. Thereby, neither the unequal spectral energy distribution
of speech and noise signals nor the properties of the human auditory system are
considered. In Fig. 3.17 the relative cumulative speech energy distribution over the
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Noise type Average ratio of low band SNR
to high band SNR

male speakers female speakers
Cockpit +15.39 dB +13.98 dB
Babble +0.55 dB −0.86 dB
Factory +12.55 dB +11.14 dB
Buccaneer +15.64 dB +14.23 dB
White Gaussian noise +26.81 dB +25.39 dB

Table 3.3: SNR deviation of the low band from the high band for different
noise types. For the measurement, six speech signals (three male
and three female speakers) obtained from the NTT database [NTT-
Corporation 1994] are used. The noise signals have been taken
from the NOISEX-92 database [Varga et al. 1992].

frequency is depicted for the LTA defined in [ITU-T Recommendation P.50 1999].
In addition, the relative cumulative speech energy distribution is measured for a
random set of speakers taken from the [NTT-Corporation 1994] database. It is
notable, that 99% of the speech energy is located in the base-band frequency range
between 50Hz and 3.4 kHz and only 1% of the energy belongs to the remaining
higher frequency range.

Mostly the energy of speech signals decays stronger than the energy of noise
signals beyond 3 kHz. Hence, the SNR in the low band is higher than in the high
band. Table 3.3 shows quantitative examples of how much the SNR in the low band
is better than in the high band, exemplarily for different speakers and different
noise environments.

In most cases the SNR significantly degrades in the high band which leads to
imprecise SNR estimation and thus fluctuating weighting gains. This results in
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Figure 3.17: Cumulative speech energy distribution.
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increasing occurrence of so called musical tones, especially at higher frequencies.
So far, only a limited number of proposals have been made which take into account
the aforementioned aspects when enhancing wideband speech signals, e. g., [Esch
et al. 2010a; Heese et al. 2010] and [Beaugeant et al. 2006].

From another field of speech enhancement it is known, that the spectral depen-
dencies of speech signals can be exploited to estimate missing high frequencies by
analyzing the low band speech signal. This technique is called artificial bandwidth
extension (BWE), e. g., [Geiser et al. 2007; Heese et al. 2012a; Jax & Vary 2006].
With respect to noise reduction, techniques from the BWE can be used to improve
the estimation of the weighting gains in the high band.

Additionally to conventional calculated weighting gains, an intermediate en-
hanced low band signal is used to provide a second set of high band weighting gains
utilizing techniques from BWE. The weighting gains are combined using an SNR
dependent information combining approach.

3.6.1 Wideband Noise Reduction System Overview
To counteract the mentioned problems when it comes to wideband noise reduction,
a joint noise reduction system [Esch et al. 2010a; Heese et al. 2010] is presented. It
uses different noise reduction schemes for the low and high band and makes use of
the spectral dependencies in speech signals similar to techniques known from BWE.
In the following the sub-index “LB” indicates the low frequency band and “HB”
the high band. The block diagram of the proposed system is depicted in Fig. 3.18.

The input signal y(k) is decomposed into its low band yLB and high band
yHB components applying a two-channel infinite impulse response (IIR) quadrature
mirror filter (QMF) with critical sampling and near perfect reconstruction [Löllmann
et al. 2009]. Subsequently, the filtered signals are down-sampled by a factor of 2,
where k′ represents the discrete time index in the sub-sampled domain. Individual
analysis – synthesis structures allow the re-use of existing low band noise reduction
systems7. The noise reduction is carried out in the frequency domain by spectral
weighting for both bands. For this purpose yLB(k′) and yHB(k′) are segmented into
overlapping frames and transformed to the spectral domain as stated in Sec. 3.2.1.
Thus, the spectral coefficients of the noisy input signal at frequency bin µ and
frame λ are given by:

YLB(λ, µ) = SLB(λ, µ) +NLB(λ, µ), (3.68)
YHB(λ, µ) = SHB(λ, µ) +NHB(λ, µ), (3.69)

where SLB(λ, µ), SHB(λ, µ) and NLB(λ, µ), NHB(λ, µ) represent the spectral coeffi-
cients of the speech and noise component of the low and high band, respectively.
While a conventional noise suppression, operating in the frequency domain, is used
in the low band (50Hz – 4 kHz), a joint noise suppression approach is applied
in the high band (4 kHz – 7 kHz). Using spectral features from the intermediate

7Note that the DFT length NDFT is defined for each band after downsampling.
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Figure 3.18: Wideband noise reduction system using different schemes in the
low and high band exploiting the spectral dependencies of speech.

enhanced low band signal S̃LB(λ, µ), the high band noise reduction is supported by
techniques known from BWE.

In general, limiting the weighting gains to a lower bound max {G(λ, µ), gmin}
allows to control the tradeoff between noise attenuation and speech distortion. The
favored tradeoff depends on the application. Since noise disturbs the application
of BWE techniques, a stronger noise attenuation for the intermediate enhanced
low band signal S̃LB(λ, µ) = GLB(λ, µ) · YLB(λ, µ) using a small gmin is desirable.
Whereas, a small amount of speech attenuation is favored in case of actual speech
enhancement utilizing a higher gmin.

Finally, both enhanced signals ŝLB(k′) and ŝHB(k′) are combined by a QMF
synthesis in order to obtain the enhanced wideband signal ŝ(k).

3.6.2 Joint Noise Reduction in the High Band
The principle of the combined high band noise reduction system is illustrated in
Fig. 3.19. Since the analysis – synthesis framework remains the same as for the
low band showed in Fig. 3.18, only the processing blocks in the spectral domain
are depicted. Two separate noise reduction schemes are performed in parallel
to the noisy high band spectrum YHB(λ, µ). The results are two gain estimates,
conventional gains Gconv and novel gains Gbwe which exploit spectral dependencies
between the low and high band. For the following reasons the frequency resolution
of the weighting gains in the high band is decreased:

• The properties of the human auditory system are taken into account, i.e.,
the frequency selectivity decreases with higher frequencies [Zwicker 1982].

• Due to the aforementioned imprecise SNR estimation in the high band the
resulting weighting gains exhibit a high variance over time and frequency,
which results likely in musical tones. Decreasing the frequency resolution by
combining neighboring frequency bins limits the temporal fluctuations of the
weighting gains and reduces their variance over time. This yields a better
suppression of musical tones.
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• Since the estimation accuracy of the BWE is limited to the spectral envelope
of the high band, the determination of Gbwe is bounded inherently to sub-
bands.

Hence, the frequency resolution is decreased from NDFT to N ′DFT by combining
adjacent frequency-bins using 50% overlapping Hann windows of the same lengths.
The decimated frequency index is denoted by µ′, where N ′DFT < NDFT.

The conventional approach consists of noise power estimation, SNR estima-
tion and the calculation of the weighting gain Gconv(µ) as described in Sec. 3.2.
The subsequent post-processing decreases the frequency resolution as described
above. The determination of the novel weighting gains Gbwe(µ′) will be detailed in
Section 3.6.2. The final weighting gain GHB(µ′) for the high band is obtained by
adaptive combining the two independent weighting gains:

GHB(λ, µ′) = αG(λ, µ′)Gbwe(λ, µ′) +
(
1− αG(λ, µ′)

)
Gconv(λ, µ′), (3.70)

where αG ∈ [0, 1] represents a reliability factor which is frame and frequency
dependent and will be explained later.

Finally, the frequency resolution of the resulting high band weighting gains
GHB(λ, µ′) is interpolated to its original resolution from N ′DFT to NDFT using
overlap-add of 50% overlapping scaled Hann windows. Spectral weighting of the
noisy high band coefficients according to

ŜHB(λ, µ) = YHB(λ, µ) · GHB(λ, µ) (3.71)
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Figure 3.19: Highband noise reduction scheme exploiting spectral dependen-
cies between low and high band (applied to each frame λ)
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yields an estimate of the clean high band coefficients ŜHB(λ, µ). The enhanced signal
ŝ(k′) in the time domain is obtained by applying an inverse DFT and overlap-add.

Noise Reduction Exploiting Spectral Dependencies

Statistical dependencies between the low band (50Hz – 4 kHz) and the high band
(4 kHz – 7 kHz) are exploited using techniques known from BWE. The method that
is used here is partly included in [Geiser et al. 2007]. The concept is to estimate
high band signal parameters based on meaningful features which are extracted only
from the intermediate enhanced low band signal applying a trained hidden markov
model (HMM).

Therefore, spectral features from the processed enhanced low band signal S̃LB(µ)
are calculated. Usually, representations of the spectral envelope of the low band
signal serve as features and are extracted on a frame-by-frame basis [Jax & Vary
2004]. In the classical BWE application the mel frequency cepstral coefficients
(MFCC) and the zero-crossing rate (ZCR) [Rabiner & Schafer 1978] have been
proven as suitable features. In a first approach those features are chosen for the
estimation of the clean speech high band parameters [Esch et al. 2010a]. Since
the enhanced low band signal still contains noise, more appropriate features allow
to improve the BWE estimation performance in this context. Hence, the feature
vector x derived from the low band consists of NC relative spectral transform -
perceptual linear prediction (RASTA-PLP) coefficients and the ZCR [Rabiner &
Schafer 1978] of the low band signal S̃LB. RASTA [Hermansky & Morgan 1994] is
a technique that applies a filter in each frequency sub-band in order to smooth over
short-term noise variations and to remove any constant offset resulting from static
spectral coloration in the speech channel. The PLP [Hermansky 1990] algorithm
preserves the important speech information by warping spectra to minimize the
differences between speakers.

As mentioned before and in contrast to a classical BWE application where
an undisturbed input signal is assumed and the HMM can be trained with clean
speech, the processed enhanced low band signal, which serves here as input for the
BWE, will still contain remaining background noise. This fact is taken into account
and incorporated into the training process of the HMM. White Gaussian noise
serves here as model for residual noise. Hence, the training data used to determine
the low band features is disturbed by white Gaussian noise with an SNR of 0 dB
to cope even with strongly impaired signals. Subsequently, a conventional noise
reduction, e. g., Sec. 3.2, is applied using a strong noise suppression with gmin close
to zero, e. g., -20 dB. Doing so, typical processing artifacts are integrated in the
training process.

As in [Geiser et al. 2007], a trained HMM is used to estimate the parameter
vector v representing µ′ clean speech sub-band energies of the high band. Let
X = {x(1), . . . , x(λ)} denote a sequence of feature vectors starting with frame one
to λ. The MMSE estimation of a parameter vector v of the current frame with
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given observations X can be formulated as

E
{
||v − v̂||2|X

} != min, (3.72)

where v̂ is the respective estimate. The solution to this optimization problem is
the conditional expectation vMMSE = E {v|X}. Given a pre-computed codebook
C = {v̂1, . . . , v̂MC

} for the vectors v this MMSE estimate can be approximated as

v̂MMSE =
∑

v̂
i
∈C
v̂i · P (v̂i|X), (3.73)

which is basically a weighted sum over the centroids of the codebook. The weights
P (v̂i|X) comprise a posteriori probabilities which can be determined using HMM
techniques [Geiser et al. 2007]. The codebook C is obtained creating a large amount
of training vectors which are then used for the training of a vector quantizer (VQ).
The result of the VQ training corresponds to the codebook. In this work the LBG
algorithm [Linde et al. 1980] with the MMSE distance measure is employed.

Once the clean speech energies v̂MMSE = {
∣∣ŜHB(0)

∣∣2 , · · · ,
∣∣ŜHB(N ′DFT − 1)

∣∣2} of
the µ′ sub-bands have been estimated, they are together with the noisy observation
used to estimate the noise power in the high band for each frame λ:

|N̂HB(µ′)|2 = max
(
|YHB(µ′)|2 − |ŜHB(µ′)|2, 0

)
. (3.74)

Finally, the a posteriori SNR γ(µ′) and a priori SNR ξ(µ′) can be estimated and
expressed according to:

γ̂HB(µ′) = |YHB(µ′)|2

|N̂HB(µ′)|2
and ξ̂HB(µ′) = |ŜHB(µ′)|2

|N̂HB(µ′)|2
. (3.75)

Based on the SNR estimates a Wiener filter or any state-of-the-art weighting rule
Gbwe can be calculated.

Information Combining by Cross-Fading

As mentioned before, the information of the two high band estimates, in terms
of the weighting gains Gconv(λ, µ′) and Gbwe(λ, µ′), is adaptively combined using
the cross-fading-factor αG(λ, µ′). Assuming optimal weighting gains Gopt, which
are derived from the ideal a posteriori SNR γ(µ′) and a priori SNR ξ(µ′) also
determined at the reduced frequency resolution by combining adjacent frequency
bins as before

γHB(µ′) = |YHB(µ′)|2
|NHB(µ′)|2 and ξHB(µ′) = |SHB(µ′)|2

|NHB(µ′)|2 , (3.76)

the oracle cross-fading factor αG,oracle(µ′) can be formulated as

αG,oracle(µ′) = (Gopt(µ′)− Gconv(µ′))2

(Gopt(µ′)− Gconv(µ′))2 + (Gopt(µ′)−Gbwe(µ′))2 , (3.77)
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Figure 3.20: Example of a look-up table for the determination of ᾱG (µ′ = 1).

and is normalized to one. This oracle cross-fading factor minimizes the distance
of Gconv to the optimal weighting gains Gopt. If the conventional noise suppres-
sion technique performs better than the BWE approach, i. e., (Gopt −Gconv)2 <

(Gopt −Gbwe)2, αref tends to smaller values leading to a stronger weighting of Gconv
and vice versa.

Since Gopt is not available in a realistic scenario the cross-fading factor of the
weighting gains, which is a reliability indicator for Gconv and Gbwe, has to be
estimated from given quantities. Utilizing the averaged low band and the sub-band
SNR of the respective high band, the cross-fading factor can be estimated which
is realized here by means of a look-up table. In a training process, where all
ideal quantities are available, αG,oracle(µ′) is recorded for every frame λ and every
sub-band µ′ together with the respective sub-band SNR ξHB

opt(µ′) of the high band
and the averaged SNR ξ̄LB

opt of the low band

ξ̄LB
opt = 1

NDFT

NDFT−1∑

µ=0

|SLB(µ)|2
|NLB(µ)|2 . (3.78)

Based on the training data, a look-up table for the estimation of αG(µ′) is generated
for every sub-band. Therefore, ξHB

opt(µ′) and ξ̄LB
opt are quantized (e. g., 1 dB step size)

and the corresponding values for αG,oracle(µ′) are averaged within the quantization
levels. An example of a look-up table for sub-band µ′ = 1 is depicted in Fig. 3.20.
At the end, the final look-up table provides one estimate ᾱG(µ′) for each quantized
combination of ξHB

opt(µ′) and ξ̄LB
opt. In a real application, ξHB

opt and ξ̄LB
opt are not

available. Here, the respective SNR estimates of the conventional noise suppression
techniques in the low band and high band are utilized to determine ᾱG(µ′) using
the pre-trained look-up table for each sub-band µ′.
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Parameter Settings
Sampling frequency fs 16 kHz
Frame length LF 160 (=̂ 20ms due to downsampling)
FFT length NDFT 256 (including zero-padding)
Frame overlap 50% (Hann window)
Input SNR −10 dB . . . 35 dB (step size: 5 dB)
Noise estimation Minimum Statistics [Martin 2006]
SNR estimation decision-directed (Sec. 3.4.2)
Number sub-bands µ′ 24
Number RASTA-PLPs NC 13
Codebook size MC 128 (training based on 1.5 h speech)
Gain limitation (gmin / g̃min) (0.2857 / 0.01)

Table 3.4: System settings.

3.6.3 Experimental Results
Any conventional noise reduction system can be applied for the low band and to
estimate the conventional weighting gains Gconv in the high band. Since the focus
of the evaluation is on the joint noise reduction in the high band, the choice of
the used conventional noise estimator plays a minor role. For better comparability
with other conventional noise reduction systems the noise is estimated by Minimum
Statistics [Martin 2006], the SNR is estimated by the decision-directed approach
[Ephraim & Malah 1984] and the well-known Wiener filter [Lim & Oppenheim
1979] is utilized as weighting gain rule for Gconv and Gbwe.

The proposed joint noise suppression technique employing different configura-
tions is compared with the conventional case, where only the Wiener filter weighting
gains are applied to both the low band and the high band. In the first configuration

• the features consists of MFCCs and the ZCR with the use of αG,oracle [Esch
et al. 2010a]. The HMM training is based only on clean speech.

• The second configuration comprises RASTA-PLP and the ZCR as features
with the use of αG,oracle and ᾱG . In addition, the HMM is trained based on
enhanced S̃LB speech which has been disturbed by additive white Gaussian
noise in advance with an SNR of 0 dB and employing an aggressive weighting
gain utilizing g̃min.

For the objective evaluation of the different noise reduction systems the sim-
ulation setup as described in Appendix C is utilized. The simulation parameters
which are used for evaluation are listed in Tab. 3.4. The N ′DFT look-up tables
which are required for the estimation of αG,oracle are generated based on 10min of
clean speech from the NTT database [NTT-Corporation 1994] disturbed by white
Gaussian noise at different input SNR values varying from −10dB to 35 dB in
5 dB steps. White Gaussian noise is utilized as background noise model for the
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Figure 3.21: The segmental speech SNR (SegSpSNR) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as
variable parameter.

training of the cross-fading factor in order to prevent memorization or fitting to
specific background noise types. For the comparison, seven different speech signals
(four male, three female) from the NTT speech database are each degraded by
four different noise types (cockpit, babble, factory1, buccaneer), taken from the
NOISEX-92 database [Varga et al. 1992] at different input SNRs varying from
−10 to 35 dB in 5 dB steps8. Note that the speech signals used for the evaluation
are not included in the training data for the HMM and the look-up tables. The
performance of the rated systems is evaluated in terms of the SegNA, the SegSA
and the segmental speech SNR (SegSpSNR).

Figure 3.21 depicts the averaged results for SegSpSNR plotted over SegNA with
the input SNR as variable parameter. Hence, a fair comparison with respect to
the tradeoff noise attenuation versus speech distortion is possible. The points of
best performance would be placed as much as possible in the upper right corner of
the figure. The objective measurements (Fig. 3.21) show that the additional use
of the artificial BWE in the high band ( , , ) outperforms the results
of conventional noise suppression techniques ( ) consistently. In the employed
simulation framework the oracle cross-fading factor αG,oracle is available which
allows the best combination of the weighting gains in the high-band. Hence, the
influence of the used features and the improved HMM training can be investigated

8The mixing procedure is detailed in Sec. C.1. Note that for the calculation of the scaling
factor to adjust the input SNR only speech and noise signal sections with speech presence are
considered.
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Figure 3.22: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as
variable parameter.

insulated. Comparing the MFCC ( ) to the matched RASTA-PLP ( )
features employing the new HMM training, it is obvious that new features and
training further improves the performance over the complete range. In the realistic
case using the estimated ᾱG factor ( ) it can be seen that the performance is
very similar to the oracle experiment. At low SNR values the proposed method
benefits from the enhanced noisy training process, while the used RASTA-PLP
features improve the SegSpSNR at higher SNR values. The results are confirmed
by the averaged results presented in Fig. 3.22 which depict the objective measures
SegSA over SegNA. Here, best performance would be in the upper left corner of the
plot. In addition, informal listening tests confirmed the instrumental measurements
and showed that the occurrence of musical tones is reduced by the joint noise
reduction in the high band.

3.7 Summary
Besides the basic principles of statistical noise reduction utilizing the short-term
Fourier domain (STFD), the novel short-term noise PSD estimator Baseline Tracing
is presented. The basic idea consists of a constrained logarithmic magnitude tracing
of the noisy observation separately for each frequency bin µ. This constraint
magnitude change causes slow evolution (inertia) of the noise estimate over time
which models the different temporal statistics of speech and noise. In addition
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3.7 Summary

the inertia performs implicit smoothing. Hence, no further smoothing of the noisy
observation or the noise estimate itself is necessary, which simplifies the computation
and reduces the number of algorithm parameters to only one parameter β. The
estimator can be explained in terms of delta modulation with an adaptive step
size, operated in the slope overload mode. In the linear domain, the noise PSD
of the current frame is calculated by a simple scaling of the last noise estimate
with a certain frequency and time dependent β. Stretching or compressing is
decided according to the sign of the difference between the last short-term noise
PSD estimate and the current noisy frame. Doing so, the estimator aims to follow
the noisy observation. Since speech onsets are assumed as sudden rises in the
noisy observation, β has to be selected to only follow the noise. A fixed as well as
an adaptive β(λ, µ) are presented which consider the long-term speech spectrum
average and frame SNR. The new short-term noise PSD estimator is an inherently
unbiased estimator in the logarithmic domain and does not need correction terms.
This is also valid for the linear amplitude domain except of granular noise known
from delta modulation. Compared to state-of-the-art systems, the new Baseline
Tracing algorithm with adaptive β(λ, µ) has a superior performance with respect
to the noise PSD error measure while performing similar to the SPP using a fixed
β(µ). The noise reduction performance is characterized by a low cepstral distance,
i. e., low speech distortion and high SegNA – SegSA measures resulting in a high
noise attenuation.

In addition, an approach to wideband speech enhancement is presented that
exploits spectral dependencies between the low band (50Hz – 4 kHz) and the high
band (4 kHz – 7 kHz) of speech signals in order to improve the noise reduction in
the high band. While a conventional noise suppression takes place in the low band,
a joint noise suppression approach is applied in the high band. Features from the
processed and enhanced low band signal are extracted and used to estimate sub-
band energies of the high band using techniques known from artificial bandwidth
extension. The utilized RASTA-PLP features for the HMM are more robust
against short-term noise variations compared to MFCC features and minimize the
speaker difference. The weighting gains determined from these energy estimates are
adaptively combined with conventional gains obtained in addition for the high band.
This information combining in the high band is possible employing a pre-trained
look-up table which is dependent on the average low band and the respective high
band SNR. In order to increase the perceived speech quality if only a noisy low band
signal has been received, a slightly modified version of the system can additionally
be used to perform a joint noise reduction and artificial bandwidth extension.
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Chapter 4

Codebook Based Noise Suppression

Single microphone noise reduction systems usually rely on different statistical
properties of speech and noise [Boll 1979; Ephraim & Malah 1984, 1985; Lotter
& Vary 2005]. In addition, it is assumed that the ambient background noise
is stationary or only slightly time-varying [Martin 2001; Hendriks et al. 2010;
Gerkmann & Hendriks 2011; Heese & Vary 2015] which is usually not fulfilled
in practice. In consequence, statistical state-of-the-art noise estimators provide
an estimate for the short-term noise power spectral density (PSD) in the best
case. If the underlying noise signal exhibits a reasonable variance, the spectral
fine-structure over frequency and time is estimated inadequately. Hence, statistical
noise reduction systems are only able to remove the short-term mean of the noise
which likely results in unpleasant artifacts that are called musical tones.

In contrast, the class of codebook based speech enhancement systems [Sreenivas
& Kirnapure 1996; Srinivasan et al. 2006, 2007; Rosenkranz 2010; Rosenkranz
& Puder 2012a; Sigg et al. 2012; Hao & Bao 2015; Deng & Bao 2016] faces
the aforementioned constraints by using a priori knowledge about speech and/or
noise and also allows to model and thus cope with highly non-stationary noise
environments. Hence, the aim is to estimate short-term power spectra (STPSs)
instead of short-term PSD quantities. Additionally, the codebook driven noise
reduction systems have the potential to reduce the occurrence of musical tones,
since the instantaneous speech and noise is estimated jointly over frequency and
time.

One of the first proposals for codebook based noise reduction consists of an
iterative Wiener Filter which relies on spectral constraints given by a priori speech
knowledge [Sreenivas & Kirnapure 1996]. The block diagram of the basic concept
is depicted in Fig. 4.1. A Wiener filter G(λ, µ) is applied to the noisy input Y(λ, µ)
yielding a clean speech estimate Ŝ(λ, µ). This speech estimate is converted to
linear prediction coefficients (LPCs) and refined using the best matching entry of
a pre-trained speech codebook. The Wiener Filter in the next iteration utilizes
the refined speech estimate. For the first iteration, the Wiener Filter G(λ, µ) is
initialized with G0(λ, µ) = 1. The iteration process will be finished if the same
codebook entry is chosen in two consecutive iterations.

Recent approaches employ a priori knowledge about both speech and noise.
Spectral speech and noise estimates are obtained on a frame-by-frame basis in the
frequency domain by a linear combination or a weighted sum of entries from pre-
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Wiener Filter G(λ, µ)Y(λ, µ)

Codebook
matching

Speech codebook

LPC analysis

Ŝ(λ, µ)

Iteration

Initial weights G(λ, µ) = G0(λ, µ) = 1

Figure 4.1: Block diagram of iterative codebook constrained Wiener filtering
approach [Sreenivas & Kirnapure 1996].

trained gain-normalized codebooks. Since no closed-form solution for the optimal
gain calculation of the codebook entries exists, the gains have to be approximated.
The concept is illustrated in Fig. 4.2. The proposed algorithms [Srinivasan et al.
2006, 2007; Rosenkranz 2010; Rosenkranz & Puder 2012a] mainly differ in the
methods of gain estimation and in the features which are stored in the codebooks.
Since the employed features describe only the spectral envelope of a frame, the
speech

∣∣∣Ŝ(λ, µ)
∣∣∣
2
and noise

∣∣∣N̂ (λ, µ)
∣∣∣
2
estimates exhibit a limited spectral resolution.

Hence, the weighting gain rule which is derived from these estimates is also spectrally
smoothed. This leads to severe speech distortion especially in voiced speech parts
since the harmonic structure of speech is not modeled by spectral envelopes. By
using an adaptive comb-filter as in [Rosenkranz 2010; Yoshioka et al. 2010], the
spectral fine-structure can be recreated. However, this filter requires an accurate
estimate of the fundamental frequency which is challenging. Since current pitch
estimators are only able to reliably estimate the fundamental frequency in signal-to-
noise ratio (SNR) ranges above approximately 10 dB [Shahnaz et al. 2005; Gonzalez
& Brookes 2014], this solution is restricted to few realistic scenarios. In [Rosenkranz
& Puder 2012a], the authors propose a more accurate gain estimation based on
Newton’s method [Bronstein et al. 1999] and use an envelope model which is based
on the real-valued cepstrum for the codebook entries. In addition, a new weighting
gain rule is proposed which depends only on the noise estimate, obtained by the
codebook processing, and the noisy input. Doing so, the spectral fine structure
is implicitly somewhat modeled by the noisy input. Due to the codebook-based
spectrally smooth noise estimate, sharp spectral peaks of the noise are not accurately
modeled. In turn, this generates an increased occurrence of musical tones.

However, the performance of codebook matching is mainly limited either by
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∣∣Ŝ(λ, µ)
∣∣2

∣∣N̂ (λ, µ)
∣∣2

Figure 4.2: Basic concept of codebook driven noise reduction [Srinivasan et al.
2006, 2007; Rosenkranz 2010; Rosenkranz & Puder 2012a].

missing a priori knowledge, especially with respect to noise, or deviations due
to the signal transmission path, i. e., changing acoustic and electrical (recording
equipment, microphone) path. In [Rosenkranz 2010] the speech and noise codebook
entries are adjusted (equalized) to compensate the influence of the transmission
path similar to cepstral mean subtraction [Westphal 1997; Veth & Boves 1998]
while in [Rosenkranz & Puder 2012b] fixed delta codebooks between the actual
noise and a conventional noise estimate (e. g., [Martin 2006; Hendriks et al. 2010;
Gerkmann & Hendriks 2011]) are employed to reduce the effect of missing a priori
noise knowledge.

In summary, the main issues of codebook based speech and noise estimation are
the limited spectral resolution of the codebooks and missing or unknown a priori
knowledge regarding noise.

In the following, a novel codebook based speech and noise estimation system is
presented which tackles the aforementioned problems. The basic concept of the
proposed codebook speech enhancement system is the superposition of a scaled
speech and noise codebook entry on a frame-by-frame basis. While the speech
codebook is pre-trained offline using a representative data basis, the noise codebook
is adapted quickly to new noise types online. Thus, the system is independent
of a priori noise knowledge. Training vectors for noise codebook updates are
identified using a voice activity detector (VAD) and a codebook mismatch measure.
The VAD is realized as part of the codebook matching but utilizes only a priori
knowledge on speech. A Wiener filter or any state-of-the-art weighting rule can be
applied subsequently for speech enhancement, cf. Sec. 3.4.3. For the sake of speaker
independence, the speech codebook also comprises spectral envelopes, while the
noise codebook exhibits the full spectral resolution. Hence, the speech and noise
estimate after codebook matching exhibit different spectral resolutions. Since no
closed-form solution for optimal gain calculation exists, a brute force approach1

1The brute force approach enumerates all possible candidates for the noisy observation,
i. e., all possible combinations of speech and noise codebook entries scaled by all possible
gains, and evaluates which combination matches best the noisy observation.
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serves as reference codebook processing platform.
However, with respect to speech enhancement applications, e. g., for a mobile

phone scenario, a dramatic reduction of complexity is necessary. This is accom-
plished by replacing the brute force codebook matching with a cascade of gain shape
estimates. This reduces the complexity significantly but provides various speech
estimates and various noise estimates. Compared with the brute force search, these
estimates of speech and noise are somewhat inaccurate estimates. Furthermore,
the different estimates have to be merged in order to provide the final estimates
of speech and noise and to improve estimation quality. The adaptive combination
of different speech and noise estimates is subject to the next chapter (Chap. 5).
Moreover, the entire evaluation of codebook-based speech enhancement is also
presented in Chap. 5.

The remainder of this chapter is organized as follows. In Sec. 4.1 the signal
model is introduced and the basic codebook matching algorithm is presented. A
refined SNR estimation considering speech and noise estimates is presented in
Sec. 4.2. The speech and noise codebook training is detailed in Sec. 4.3 while in
Sec. 4.4 the speech codebook driven VAD including a comprehensive evaluation
is described. In Sec. 4.5 the online noise codebook adaptation is explained. A
summary and conclusion are presented in Sec. 4.6.

4.1 Speech and Noise Estimation
A simplified block diagram of the proposed codebook estimation system is given
in Fig. 4.3. As in the chapter about statistical noise reduction (Sec. 3.2), it is
assumed that the noisy input signal y(k) consists of a clean speech signal s(k)
degraded by an additive noise component n(k). Since the processing takes place in
the short-term Fourier domain (STFD), the noisy input signal y(k) is segmented
into overlapping frames, followed by windowing and subsequent transformation into
the frequency domain2. The spectral coefficients of the segmented and windowed

+s(k)

n(k)

Analysis
y(k) Codebook matching

&
VAD

Noise codebook Speech codebook

Y(λ, µ)

Nm(λ)(µ) Sl(λ)(µ)

∣∣ŜCB(λ, µ)
∣∣2

∣∣N̂CB(λ, µ)
∣∣2

Figure 4.3: Proposed codebook based speech and noise estimation system

2Refer to Sec. 3.2.1 for the detailed analysis procedure. Note that the frequency domain
representation of the respective signals already includes the effect of windowing.
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input signal yλ(κ) at frequency bin µ and frame λ are given by

yλ(κ) = sλ(κ) + nλ(κ)
DFTc s Y(λ, µ) = S(λ, µ) +N (λ, µ), (4.1)

where S(λ, µ) and N (λ, µ) correspond to the spectral coefficients of the clean
speech signal and the noise signal, respectively. Speech and noise are estimated
from the noisy observation by minimizing the difference between the noisy input
frame Y(λ, µ) and its estimate Ŷ(λ, µ). The estimation of the noisy input frame
Ŷ(λ, µ) is modeled by a scaled superposition of a speech Sl(µ) and a noise Nm(µ)
codebook entry according to

Ŷ(λ, µ) = σs(λ)Sl(λ)(µ)︸ ︷︷ ︸
ŜCB(λ,µ)

+σn(λ)Nm(λ)(µ)︸ ︷︷ ︸
N̂CB(λ,µ)

(4.2)

where l ∈ {1, . . . , L}, m ∈ {1, . . . ,M} denote the codebook indices and σs, σn the
gain factors of speech and noise, respectively. The codebook entries Sl(µ) and
Nm(µ) are normalized to one with respect to their power.

With regard to speech enhancement, most of the algorithms are derived based
on power spectral density (PSD), short-term PSD or power signal quantities. The
computation of power quantities should be normalized to the frame-size for a
correct physical definition, but will be neglected as it is usually done in literature.
This is possible as within a specific speech enhancement system the frame-size and
frame advance are fixed and therefore no normalization is necessary. Moreover,
power quantities are almost always used in relation to each other, e. g., for SNR
computation. Hence, the dependency on the frame-size is canceled out.

4.1.1 Codebook Matching by Distance Minimization
With regard to the minimization procedure, Eq. (4.2) exhibits too many degrees
of freedom and should therefore be simplified. Because most of the algorithms in
speech enhancement are derived on short-term power spectrum (STPS) quantities,
it is sufficient to provide estimates for the STPS of speech and noise. Therefore,
the minimization will be carried out on the STPS |Y(λ, µ)|2, which will be derived
in the following. According to the additive signal model, the STPS of the noisy
observation Y(µ) of the current frame λ can be expressed as

|Y(µ)|2 =
∣∣(|S(µ)|eiϑS(µ) + |N (µ)|eiϑN (µ))∣∣2

= |S(µ)|2 + |N (µ)|2 + 2|S(µ)||N (µ)| cos (ϑS(µ)− ϑN (µ)) ,
(4.3)

where ϑS and ϑN denote the phase of speech and noise, respectively. In terms of
the speech and noise codebooks, the STPS estimate

∣∣∣Ŷ(µ)
∣∣∣
2
for the current frame

λ is thus formulated by,
∣∣∣Ŷl,m,σs,σn(µ)

∣∣∣
2

= σ2
s |Sl(µ)|2 + σ2

n |Nm(µ)|2 (4.4)

+ 2σsσn|Sl||Nm| cos (ϑS(µ)− ϑN (µ)) .
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Equation (4.4) describes a mapping between the set of parameters [l,m, σs, σn] and
the estimate

∣∣∣Ŷ(µ)
∣∣∣
2
, where

∣∣∣Ŷl,m,σs,σn(µ)
∣∣∣
2
forms a set of all possible estimations.

Given an accurate estimate for the true STPS |Y(µ)|2, speech and noise are
implicitly estimated due to the frequency independent gains σs and σn. To obtain
a precisely estimate for the true STPS |Y(µ)|2 from the set

∣∣∣Ŷl,m,σs,σn(µ)
∣∣∣
2
, the

optimal parameters lopt,mopt, σs,opt, σn,opt can be found by minimizing:

arg min
l,m,σs,σn

dist
(
|Y(µ)|2 ,

∣∣∣Ŷl,m,σs,σn(µ)
∣∣∣
2
)
. (4.5)

Equation 4.5 describes the very general approach for the codebook matching. In
the following simplifications will be presented in order to reduce the computational
complexity.

4.1.2 Model Assumptions and Simplifications
The phase difference ϑ(µ) = ϑS(µ) − ϑN (µ) is unknown a priori. According to
measurements with plain speech and noise, ϑ(µ) is considered to be an equally
uniformly distributed random variable on the interval [0, 2π). Since E {cos(ϑ(µ))} =
0 due to averaging over time as, e. g., in the SNR estimation stage, the cross-term
in Eq. (4.4) is omitted in the following. Experiments have confirmed that the
additional estimation error of speech and noise introduced by omitting the cross-
term is orders of magnitude below the true estimation error. Additional experiments
have confirmed that the influence by omitting the cross-term on the performance
of noise reduction is negligible (see Appendix D for further details). With this
assumption Eq. (4.4) simplifies to

∣∣∣Ŷl,m,σs,σn(µ)
∣∣∣
2

= σ2
s |Sl(µ)|2 + σ2

n |Nm(µ)|2 (4.6)

=
∣∣∣ŜCB(µ)

∣∣∣
2

+
∣∣∣N̂CB(µ)

∣∣∣
2
. (4.7)

The codebook entries Sl(µ), Nm(µ) are normalized to one with respect to their
power. Thus, the gain factors σ2

s and σ2
n represent the short-term power of speech

and noise. Applying the constraint that the power of the noisy observation is equal
to the power of the optimal estimate,

∑

µ

∣∣∣Ŷl,m,σs,σn(µ)
∣∣∣
2
≈
∑

µ

|Y(µ)|2 =: σ2
y, (4.8)

and further exploiting that the codebook entries are normalized, the speech gain
σ2
s can be substituted and Eq. (4.6) simplifies to

∣∣∣Ŷl,m,σn(µ)
∣∣∣
2

=
(
σ2
y − σ2

n

)
|Sl(µ)|2 + σ2

n |Nm(µ)|2 , (4.9)
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which reduces the number of parameters to be optimized and thus the computational
expense. Techniques known from gain shape vector quantizer (VQ) to determine
the codebook entries and the gain σ2

n independently are not applicable here. The
optimization of the gain σ2

n for a fixed but arbitrary combination of speech and
noise codebook entries, carried out in the minimum mean-square error (MMSE)
sense, shows that σ2

n ≥ 0 is not guaranteed (cf. Appendix E for derivation) and in
case of σ2

n < 0 the model assumption is violated, i. e., σ2
n represents the short-term

power of noise. Hence, all permutations of the parameters l, m, and σn must be
taken into account, which can be realized by a quantization of σn according to:

σn = i

Nq − 1σy, i = 0, ..., Nq − 1. (4.10)

Finally, the optimal parameters lopt,mopt, σn,opt can be found by minimizing:

arg min
l,m,σn

dist
(
|Y(µ)|2 ,

∣∣∣Ŷl,m,σn(µ)
∣∣∣
2
)
, (4.11)

where dist(·, ·) represents an arbitrary distance measure. Hence, the codebook
estimate of |Y(µ)|2 for any frame λ yields,

∣∣∣Ŷ(µ)
∣∣∣
2

=
∣∣∣Ŷlopt,mopt,σn,opt (µ)

∣∣∣
2

(4.12)

=
(
σ2
y − σ2

n,opt
) ∣∣Slopt (µ)

∣∣2
︸ ︷︷ ︸∣∣ŜCB(µ)

∣∣2
+σ2

n,opt
∣∣Nmopt (µ)

∣∣2
︸ ︷︷ ︸∣∣N̂CB(µ)

∣∣2
. (4.13)

In the following, the subscript “opt” will be omitted for the sake of brevity. In order
to reduce the speaker dependence, only spectral envelopes are stored as speech
codebook entries.

4.1.3 Distance Measures
For the implementation of Eq. (4.11) a suitable distance measure is necessary. In
this section possible distance measures are presented. The notation of the distance
operator dist | is illustrated by,

dist
∣∣∣P,P̂Algorithm = f

(
P(µ), P̂(µ)

)
. (4.14)

While the operands from which the distance is calculated are denoted at the top of
the vertical bar symbol, the actual distance algorithm is indicated at the bottom.
If no algorithm is specified, the dist operator serves as place holder for an arbitrary
distance measure. Note that in the expression the operands P and P̂ are assumed
to be power quantities. The distance measures express the difference between an
original spectrum P(µ) and the estimation or approximation P̂(µ) of that spectrum
as a function f , describing the employed algorithm.
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Mean-Square Error difference

dist
∣∣∣P,P̂MSE = 1

NDFT

NDFT−1∑

µ=0

(√
P(µ)−

√
P̂(µ)

)2

. (4.15)

Relative Power difference

dist
∣∣∣P,P̂REL = 1∑NDFT−1

µ=0 P(µ)

NDFT−1∑

µ=0

∣∣∣P(µ)− P̂(µ)
∣∣∣ . (4.16)

Itakura-Saito distance

The Itakura–Saito distance [Itakura & Saito 1968] is often used for speech coding
and speech quality assessment. It is not designed as perceptual measure, but it
reflects subjective meaningful distortion for the spectral shape of speech. Due to its
asymmetric nature the Itakura–Saito distance is more sensitive to spectral peaks
than spectral valleys [Wei & Gibson 2000] and is defined as

dist
∣∣∣P(µ),P̂(µ)
IS = 1

NDFT

NDFT−1∑

µ=0

[
P
P̂(µ)

− log P
P̂(µ)

− 1
]
. (4.17)

4.2 Modified Decision-Directed SNR Estimation
In case of statistical speech enhancement, the a priori SNR estimation is usually
carried out by the decision-directed approach [Ephraim & Malah 1984] which is
detailed in Sec. 3.4.2. The decision-directed SNR ξ̂Stat(λ, µ) only depends on a
noise estimate and the previous enhanced frame from the output of the speech
enhancement system. The a priori SNR estimate is formulated by a linear com-
bination of speech and noise estimates from the last frame and an instantaneous
realization of the a posteriori SNR γ(λ, µ),

γ(λ, µ) = |Y(λ, µ)|2

EK
{
|N (λ, µ)|2

} ≈ |S(λ, µ)|2

EK
{
|N (λ, µ)|2

}+ |N (λ, µ)|2

EK
{
|N (λ, µ)|2

} , (4.18)

ξ̂Stat(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)
∣∣∣
2

EK
{
|N (λ− 1, µ)|2

}
︸ ︷︷ ︸

SNRDD(λ−1,µ)

+(1− αξ) max (γ(λ, µ)− 1, 0)︸ ︷︷ ︸
SNRi(λ,µ)

. (4.19)

Conceptually, the decision-directed SNR can be interpreted as a weighted sum of
two a priori SNR estimates, the decision-directed SNRDD and instantaneous SNRi.
The SNRDD estimate is a refined version of the a priori SNR of the previous frame
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incorporating the decision of the speech enhancement system. The SNRi is an
a priori SNR estimate utilizing the instantaneous realization of the a posteriori
SNR γ(λ, µ) which only depends on a noise estimate. Since EK

{
|N (λ, µ)|2

}
may

differ significantly from |N (λ, µ)|2 the simplification EK
{
|N (λ, µ)|2

}
= |N (λ, µ)|2

does not hold and results in an imprecise a priori SNR γ(λ, µ)−1. As a workaround,
the estimate γ(λ, µ)− 1 is limited to values greater or equal to zero applying the
max operator.

In contrast to statistical speech enhancement, the codebook driven approach
can additionally exploit a speech estimate in the current frame. Hence, the a priori
SNR estimate SNRi in Eq. (4.19) is replaced by SNRCB which exploits both, the
speech ŜCB(λ, µ) and noise N̂CB(λ, µ) estimate. Considering the high temporal
resolution of the codebook matching, the a priori SNR estimate according to the
decicison-directed approach is now given in terms of STPS by,

ξ̂CB(λ, µ) = αξ

∣∣∣Ŝ(λ− 1, µ)
∣∣∣
2

∣∣∣N̂CB(λ− 1, µ)
∣∣∣
2

︸ ︷︷ ︸
SNRDD(λ−1,µ)

+(1− αξ)

∣∣∣ŜCB(λ, µ)
∣∣∣
2

∣∣∣N̂CB(λ, µ)
∣∣∣
2

︸ ︷︷ ︸
SNRCB(λ,µ)

. (4.20)

As mentioned before, the evaluation of the modified Decision-Directed SNR estima-
tion is presented in the next chapter in Sec. 5.8.3.

4.3 Codebook Training
A crucial point is the generation of suitable speech and noise codebook entries
which form the codebooks. As mentioned before, the noise codebook entries exhibit
the full spectral resolution while the speech codebook consists of spectral envelopes
in order to reduce the speaker dependence. Thus, the noise codebook entries
are stored as short-term power spectrum (STPS). There exist several compact
representations of the spectral envelope which are based on auto-regressive (AR)
modeling [Itakura 1975; Kleijn & Paliwal 1995; Murthi & Rao 2000; Soong & Juang
1984] like the linear prediction coefficients (LPCs), the line spectral frequencies
(LSF) or the minimum variance distortionless response (MVDR) representation.
For simplicity of the simulation framework, the speech codebook entries are also
stored as STPS. Hence, the codebook entry vectors for speech and noise are defined
in vector notation as

|Sl|2 =
(
|Sl(µ = 0)|2 , . . . , |Sl(µ = NDFT − 1)|2

)ᵀ
, (4.21)

|Nm|2 =
(
|Nm(µ = 0)|2 , . . . , |Nm(µ = NDFT − 1)|2

)ᵀ
, (4.22)

each containing a STPS. The respective speech and noise codebooks,

CS =
{
|S1|2 , . . . , |SL|2

}
, (4.23)

CN =
{
|N1|2 , . . . , |NM |2

}
, (4.24)
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Figure 4.4: Generation of speech (a) and noise (b) codebook entries

consist of collections of entry vectors. Since the noise codebook CN shall be adapted
online it is further necessary to divide the codebook into a fixed part consisting of
M� ∈ N base codebook entries and an adaptive part with a maximum number of
M◦ ∈ N0 entries, which are created and updated online.

In the following, the codebook training process is explained which is valid for
offline creation as well as online adaptation. Figure 4.4a depicts the block diagram
of the noise codebook training process while Fig. 4.4b presents the generation of
the speech codebook. Each training sequence as indicated by the subscript t is
normalized to −26 dBov according to ITU P.56 [ITU-T Recommendation P.56 1993]
standardization. Following, the sequence is segmented into overlapping frames,
windowed and transformed into the frequency domain according to Sec. 3.2.1. For
a compact representation, the spectral coefficients of the speech and noise training
frames are denoted by,

N λ = (N (λ, µ = 0), . . . ,N (λ, µ = NDFT − 1))ᵀ, (4.25)
Sλ = (S(λ, µ = 0), . . . ,S(λ, µ = NDFT − 1))ᵀ. (4.26)

After applying the magnitude square operation, all resulting STPS frames below a
certain power threshold are discarded. Since the input sequence is normalized, this
threshold can be adjusted independently of the training input. On the one hand,
doing so removes silent parts of the training data which may be over-represented
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4.3 Codebook Training

in the subsequent vector quantization. On the other hand, it prevents frames
with up-scaled recording noise (self noise of recording equipment, e. g., microphone,
amplifier, and analog-to-digital converter) after power normalization. As indicated
before, different training schemes are applied for the speech and noise training
sequences. In the following, the particularities of speech and noise are investigated.

4.3.1 Noise Codebook
The training sequence nt(k) consists of plain noise. Applying the aforementioned
procedure, a large number of K STPS input vectors TN =

{
|N 1|2 , . . . , |NK |2

}
exist which are used for the training of a VQ. The result of the VQ training is
used as codebook. For the fixed part of the noise codebook the VQ is configured to
return M� codebook entries while the adaptive part of size M◦ is constructed by
sub-codebooks consisting ofM∆ entries with r ·M∆ ≤M◦ and r ∈ N0 is the number
of sub-codebooks. In this work, the LBG algorithm [Linde et al. 1980] is employed
together with the Itakura Saito distance (Eqn. 4.17) as distance measure. As it
is not assured that the output of the VQ training is still normalized, subsequent
normalization to one with respect to the power is applied again.

To obtain a fixed noise codebook which contains several noise types, it has
been proven useful, to concatenate individual sub-codebooks each trained with
meaningful prototype sequences of the particular noise type.

4.3.2 Speech Codebook
To keep the speech codebook as generic as possible, the speaker dependence of
the speech codebook entries is reduced in order to contain mainly information
about the spoken phonemes. According to the source-filter model of human speech
production [Vary & Martin 2006], speech is created by an excitation signal which
has a flat spectral shape and a subsequent vocal tract filter which forms the spectral
shape of the specific phoneme. The excitation signal’s counterpart in the human
speech production system consists of the lungs and larynx, while the vocal tract
filter models the neck, nasal cavity, and the mouth. From the areas of low bitrate
speech coding and speech recognition it is known, that the excitation signal is
significantly speaker dependent while the vocal tract filter is rather similar among
different speakers. Voiced sounds are constructed by an excitation signal consisting
of periodic pulses caused by the larynx. The frequency of these pulses is called
fundamental pitch frequency fp and is very specific among various humans. In
particular, the pitch of men is in the range of 50 – 250Hz and typically lower than
for women with a pitch of 120 – 500Hz. In contrast, unvoiced sounds like “s” or “ch”
are caused by a white noise excitation signal whereas plosives like “p” and “k” are
created by sudden pressure-rises in the vocal tract. Thus, voiced sounds are more
critical with respect to speaker-dependence. The spectrum of a voiced excitation
signal is characterized by a harmonic structure with the fundamental pitch frequency
as distance between the spectral peaks. In order to significantly reduce the speaker
dependency, the speaker-dependent excitation signal is removed, i. e., the spectral
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envelope has to be calculated. Doing so, a training set TS =
{∣∣S̃1

∣∣2 , . . . ,
∣∣S̃J
∣∣2} of

STPSs consisting of the speaker-independent spectral envelopes emerges. Different
methods for obtaining the spectral envelope are known from literature [Rosenkranz
2012]. Popular ones are based on AR modeling and linear prediction or the cepstral
smoothing. The AR model has a pitch dependency since with significant higher
model order also the pitch harmonics are included in the envelope estimate. In
turn, the cepstral model separates the spectral envelope and pitch strictly and thus
a more accurate estimate of the spectral envelope is possible [Rosenkranz 2012].
Therefore, the cepstral smoothing is preferred and will be used in the following.

Cepstral Processing

The speaker-dependent pitch frequency fp of the excitation is assumed to be in
the range between 50Hz and 500Hz [Vary & Martin 2006]. As mentioned before,
a cepstral approach, like in [Rosenkranz 2010], is applied to separate the spectral
envelope and the excitation. Therefore, the clean speech STPSs

∣∣Sj
∣∣2 of the training

data are frame-wise transformed to the cepstral domain:

C|Sj |2 (q) = 1
2

NDFT−1∑

µ=0

log
(
|Sj(µ)|2

)
ei2π µq

NDFT , q = 0, . . . , NDFT − 1, (4.27)

where q represents the cepstral bin index (quefrency). A pitch frequency fp is
represented in the cepstrum as a peak in the cepstral bin qp =

⌊
fs
fp

⌋
, where

b·c denotes the floor rounding operator [Martin et al. 2008; Rosenkranz 2010].
Assuming that the pitch frequencies are bounded to be lower than 500Hz and
considering the symmetry of the cepstral coefficients, the range qp < q < NDFT−qp
is called the excitation part in the following.

The speaker-dependent excitation is removed from the training sequence TS by
setting the corresponding cepstral coefficients of the excitation part to zero:

C|S̃j |2 (q) =

{
0 if qp < q < M − qp

C|Sj |2 (q) else. (4.28)

Afterwards, the modified cepstrum C|S̃j |2(q) is transformed back to the spectral
domain:

∣∣S̃j(µ)
∣∣2 = exp

(
2 ·

NDFT−1∑

q=0

C|S̃j |2 (q)e−i2π µq
NDFT

)
. (4.29)

A subsequent normalization of
∣∣S̃j(µ)

∣∣2 to one with respect to the power is applied

to obtain the training set TS =
{∣∣S̃1

∣∣2 , . . . ,
∣∣S̃J
∣∣2
}
consisting of J spectral envelope

STPSs,
∣∣S̃j
∣∣2 =

(∣∣S̃j(µ = 0)
∣∣2 , . . . ,

∣∣S̃j(µ = NDFT − 1)
∣∣2
)ᵀ
. (4.30)
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The same VQ configuration as for the noise codebook is used for the speech
codebook creation. After VQ training of TS , finally, a codebook CS with L entries
is created. Each codebook entry STPS is normalized to a power of one since the
output vectors of VQ process are not ensured to be normalized.

4.3.3 Codebook Training Quality Measure
In order to obtain new training sequences for the online adaptation of the noise
codebook, a suitable mismatch measure Q |M and a threshold Q |C are required. The
mismatch measure describes the ability to approximate the current noisy observation
Y(λ, µ) by means of the speech and noise codebooks during the codebook matching
process. The computation of the threshold Q |C will be formulated in terms of the
speech codebook training quality Q |CS and the noise codebook training quality
Q |CN . Both the mismatch measure and the threshold are derived in Sec. 4.5. In
addition, the speech codebook training quality Q |CS serves also as indicator for an
adequate speech codebook training.

The codebook training quality is defined as the ability of the respective codebook
to represent its training data. Hence, the training quality measure is calculated for
each codebook according to,

Q |CS = dist
∣∣CS ,TS , (4.31)

dist
∣∣CS ,TS = 1

J

∑

|S̃i|2∈TS
min
l

{
dist

(
|Sl|2 ,

∣∣S̃i
∣∣2
) ∣∣∣ l ∈ (1, . . . , L)

}
, (4.32)

Q |CN = dist
∣∣CN ,TN , (4.33)

dist
∣∣CN ,TN = 1

K

∑

|N i|2∈TN
min
l

{
dist

(
|Nm|2, |N i|2

)∣∣∣ m ∈ (1, . . . ,M)
}
. (4.34)

The codebook training quality is basically the mean of the distance between each
training input vector to the closest codebook entry vector, where dist is the same
distance measure which is employed during the codebook matching process.

4.3.4 Evaluation of Speech Codebook Training Quality
Since the speech codebook consists of a priori speech knowledge, it is created in
advance and therefore needs to be dimensioned appropriately. For the generation of
the speech codebook two degrees of freedom are available, the training length, i. e.,
the number of training frames J and the number of speech codebook entries L.

While the LBG algorithm, which is used for the generation of the speech
codebook entries, uses the Itakura Saito distance as distance measure, different
distance measures can be applied during the application of the speech codebook.
Hence, the speech codebook training is analyzed with respect to the employed
distance measures, i. e., the Itakura Saito distance or the relative power distance.
As detailed in Sec. 4.3.3, the speech codebook training quality Q |CS is defined as
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Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20 ms)
Frame advance LA 160 (=̂ 10 ms)
FFT length NDFT 512 (including zero-padding)
Frame overlap 50% (

√
Hann-window)

Maximum pitch frequency fp 500Hz

Table 4.1: Speech codebook training parameters

the ability of the respective codebook to represent its training data utilizing the
chosen distance measure.

The parameters for the speech codebook training are summarized in Table 4.1.
The training data consists of a randomly chosen subset from the test set of the
TIMIT database [Garofolo & Consortium 1993]. The speech codebook training is
carried out according to Sec. 4.3.2. The results in terms of Q |CS are calculated
according to Sec. 4.3.3 and depicted regarding the relative power distance in
Fig. 4.5a and for the Itakura Saito distance in Fig. 4.5b. The color of the respective
plot denotes the codebook quality Q |CS from blue (good) to red (bad).

In general, a greater codebook size ensures a better performance. Both distance
measures perform very similar with respect to the gradation for both, the codebook
size and the training length, as indicated by the color. In addition, both configura-
tions exhibit a slight quality degradation with increasing training length given a
fixed but arbitrary codebook size. This is caused due to the higher variance of the
training data for a increasing number of training data. Since the TIMIT database
consists of 42 phonemes a saturation of the quality measures can be expected for
L >= 42. This is confirmed as with a codebook size of L = 64 entries both quality
measures start to saturate.

If not stated otherwise, the speech codebook is created from a 3073 s training
sequence from the test set of the TIMIT database and exhibits L = 128 codebook
entries. This choice states a good compromise between numerical complexity during
the application of the codebook and the codebook quality Q |CS for both used
distance measures.
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Figure 4.5: The speech codebook training quality Q |CS is depicted for various
codebook entry sizes L, different training data lengths and distance
metrics. The quality measure Q |CS describes the ability of the
codebook to represent its training data and can be calculated for
different distance metrics. Hence, small values indicate a better
performance.

4.4 Speech Codebook based VAD

The objective of a voice activity detector (VAD) is to detect the presence or
absence of human speech in, e. g., a microphone signal which might be degraded
by background noise. As mentioned before, a robust VAD with respect to highly
non-stationary background noise is required for online noise codebook adaptation.

Early VAD systems extract simple energy features such as SNR estimations,
that respond while speech is present, and compare the quantified values to a fixed
or adaptive threshold for a VAD decision, e. g., [McAulay & Malpass 1980; Van
Compernolle 1989; Vary & Martin 2006]. In the GSM cellular radio system the VAD
[ETSI Recommendation GSM 06.32 1996] is basically an energy detector whose
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accuracy is improved by adaptive filtering to increase the speech-to-noise ratio.
Since the encountered noise in mobile environments may be constantly changing
with time and frequency, the adaptive filter is only updated when three conditions
are fulfilled: speech is absent, the signal seems stationary, and does not include a
pitch component which is inherent in voiced speech.

However, energy based techniques do not work reliably under adverse acoustic
conditions, e.g., at signal-to-noise ratios of 0 dB or below. Recent systems mainly
employ statistical models, also including additional features like the zero crossing
rate, pitch, tone, complex-signal correlation, and the energy levels of frequency bands
[Cho & Kondoz 2001; Ghosh et al. 2011; Sohn et al. 1999; Vähätalo & Johansson
1999]. By adding more microphones, the voice activity detection accuracy can be
improved, e. g., [Rosca et al. 2002; Taghizadeh et al. 2011]. All these approaches
cope with moderate, mainly stationary noise. However, for many applications, they
are not sufficiently robust with respect to highly non-stationary noise.

Sohn [Sohn et al. 1999] proposes a likelihood ratio test, combined with a Markov
process, that models speech occurrences in order to obtain a VAD. Cho [Cho &
Kondoz 2001] analyzes this method and improves some fundamental problems at
speech offset regions using a smoothed likelihood ratio for the adaptation of the
noise variance, resulting in an improved decision of voice activity. Tan [Tan et al.
2010] employs a likelihood ratio test and modifies the handling of voiced frames
by selecting exclusively the harmonic components for computing. Ghosh [Ghosh
et al. 2011] introduces a “long-term signal variability measure” which represents
the degree of non-stationarity. Combined with the assumption that speech is
significantly less stationary than noise, this measure discriminates between noise
and noisy speech, resulting in a more robust VAD performance.

Here, a new approach is presented that is operating in the short-time discrete
Fourier transform (DFT) domain and provides soft VAD decisions. The proposed
algorithm is a continued development of [Heese et al. 2015]. Acoustically degraded
speech signals are frame-wise compared with a speech codebook. Doing so, a
similarity measure between the input signal and typical spectral speech compositions
is determined and further processed to obtain a soft speech presence indicator.
This new technique is robust to highly non-stationary noise types and reliably
detects speech also in adverse SNR conditions of -5 dB. Since the speech codebook
is designed speaker-independently and the algorithm does not rely on a noise
codebook, the algorithm is not restricted to known speakers and independent to
different noise types.

4.4.1 Codebook VAD Overview
The VAD algorithm is carried out using a speech codebook as a-priori knowledge.
An overview of the algorithm is depicted in Fig. 4.6. A possibly degraded speech
signal Y(λ, µ) is frame-wise compared with a speech codebook by utilizing gain
shape vector quantization. A modified version of the speech codebook is adapted in
every frame to the current speaker by combining in the cepstral domain the current
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Figure 4.6: Speech codebook based VAD

noisy speech frame with the codebook entries as explained in the next section
(Sec. 4.4.2). Soft VAD values vsoft(λ) ranging from zero to one are calculated by
post-processing of the speech gain σvad(λ). If desired, a binary VAD vbin(λ) can
be calculated from the soft VAD values vsoft(λ), e. g., by applying a threshold.

4.4.2 Gain Shape Codebook Matching
In contrast to a joint codebook matching of speech and noise as in Sec. 4.1.1, the
concept of codebook driven VAD employs only a speech codebook. Thus, gain
shape codebook matching is possible, i. e., the determination of the spectral shape
using gain normalized codebooks in a first step and subsequently the calculation of
the speech gain in a second step.

In contradiction to the noisy input frames, the speaker-independent codebook
CS contains only entries with spectral envelopes |Sl|2. The envelopes |Sl|2 have to
be modified according to Eq. (4.35), as detailed below, in order to re-established
their harmonic structure caused by the excitation of the source-filter model (cf.
Sec. 4.3.2). This improves the determination of the spectral shape during the gain
shape matching process. The fundamental principle is to compare the noisy speech
signal |Y(λ, µ)|2 frame-wise with modified speech codebook entries

∣∣Šl(µ)
∣∣2 in order

to find the entry
∣∣Šlopt(µ)

∣∣2 which fits best the current noisy frame.
The adapted codebook entries

∣∣Šl
∣∣2 have a comb-like structure whose pitch

frequency fp equals the one of the current input speech frame. In the cepstral
domain the comb-like harmonic structure is mapped into one pitch specific cepstral
bin. Thus, the power of this cepstral bin is assumed to be significantly above
the noise floor of neighboring bins. Hence, the codebook adaptation is realized
by means of a cepstral approach, i. e., the excitation part from the noisy STPS
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|Y(λ, µ)|2 is extracted and incorporated into each codebook entry |Sl(µ)|2. This
procedure is repeated for each input frame.

The cepstral representation CSl(q) of the codebook entries |Sl|2 is calculated
analogously to Eq. (4.27) and C|Y(λ,µ)|2 (q) is the cepstrum of the noisy speech signal.
The envelope of CSl(q) and the pitch from C|Y(λ,µ)|2 (q) are combined according to:

C|Šl(λ,µ)|2 (q) =
{

C|Y(λ,µ)|2 (q) qp < q < NDFT − qp
C|Sl(µ)|2 (q) else, (4.35)

where qp < q < NDFT − qp represents the excitation part and qp =
⌊
fs
fp

⌋
is the

cepstral bin corresponding to a pitch frequency of fp. Afterwards C|Šl(λ,µ)|2 (q) is
transformed to the spectral representation analogously to Eq. (4.29) and normalized
to a power of one. The result

∣∣Šl(λ, µ)
∣∣2 is a codebook entry which is adapted to

the current speaker with a corresponding harmonic frequency structure.
Finally, the optimal speech codebook entry lopt for the current frame λ can be

found by minimizing:

arg min
l

dist
(

1
σ2
y(λ) |Y(λ, µ)|2 ,

∣∣Šl(λ, µ)
∣∣2
)
, (4.36)

with σ2
y(λ) =

∑NDFT−1
µ=0 |Y(λ, µ)|2. Since the speech codebook entries are normal-

ized, a distance measure is required whose mapping and order is only dependent
on the spectral shape and independent to a scaling of

∣∣Šl(λ, µ)
∣∣2. Thus in contrast

to the joint speech and noise codebook matching, the Itakura Saito distance is not
applicable here. The relative power distance dist

∣∣∣P,P̂REL is used as distance measure
which turned out to be the best of the proposed metrics.

After determining the optimal codebook entry
∣∣Šlopt (λ, µ)

∣∣2, the speech gain
σvad which represents the speech power is calculated. The speech gain scales the
found codebook entry

∣∣Šlopt (λ, µ)
∣∣2 to the correct power resulting in the speech

estimate
∣∣∣Ŝ(λ, µ)

∣∣∣ = σvad(λ) ·
∣∣Šlopt (λ, µ)

∣∣. From speech coding it is known that
the optimal gain σvad(λ) can be found by minimizing the distance between the
speech estimate Ŝ(λ, µ) and the true speech S(λ, µ) for the current frame λ. Since
noisy speech is explicitly assumed as input to the algorithm, the gain derivation
is, in contrast, carried out based on the distance between Ŝ(λ, µ) and the noisy
observation Y(λ, µ). The relation of σvad to the true speech power is analyzed
afterwards. Hence, the optimization is calculated in the MMSE sense for the current
frame λ according to3:

dist
∣∣∣Y,ŜMSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σvadŠlopt (µ)

)2 != min . (4.37)

3Since the codebook entries are real-valued and positiv (cf. Sec. 4.3), the absolute value
operator of Šlopt is omitted in the following for the sake of clarity.
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Building the partial derivation of dist
∣∣∣Y,ŜMSE with respect to σvad and setting to zero

yields the extremum of the distance given by

∂

∂σvad

(
dist

∣∣∣Y,ŜMSE

)
=
NDFT−1∑

µ=0

∂

∂σvad

(
|Y(µ)| − σvadŠlopt (µ)

)2 != 0 (4.38)

=
NDFT−1∑

µ=0

2 ·
(
|Y(µ)| − σvadŠlopt (µ)

) (
−Šlopt (µ)

)
(4.39)

= −2·
NDFT−1∑

µ=0

|Y(µ)| Šlopt (µ) + 2·σvad

NDFT−1∑

µ=0

Š2
lopt (µ) (4.40)

Hence, Eq. (4.40) can be transformed and σvad is expressed as:

σvad =

NDFT−1∑
µ=0

|Y(µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)
=

NDFT−1∑
µ=0

|S(µ) +N (µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)
. (4.41)

Since the second partial derivation of Eq. (4.40) with respect to σvad yields

∂2

∂2σvad

(
dist

∣∣∣Y(µ),Ŝ(µ)
MSE

)
= 2 ·

NDFT−1∑

µ=0

Š2
lopt (µ) > 0, (4.42)

and is greater than zero, the found extremum is in fact a minimum of dist
∣∣∣Y,ŜMSE .

In the following it is analyzed to what extend σvad is related to the speech
power of a frame although the minimization is carried out on the noisy observation
|Y(µ)|2 = |S(µ) +N (µ)|2. Since the denominator of Eq. (4.41) is independent of
the noisy observation, the gain σvad is mainly determined by the numerator. A
further evaluation of the numerator of Eq. (4.41) leads to an expression describing
the gain σvad separated into a speech, a noise and a speech-noise (cross-term)
dependent contribution of σvad according to,

|S(µ) +N (µ)| Šlopt (µ) =
√
|S(µ)|2 Š2

lopt
(µ) + |N (µ)|2 Š2

lopt
(µ) (4.43)

+ 2 |S(µ)| |N (µ)| Š2
lopt

(µ) cos(ϑS(µ)− ϑN (µ)),

where ϑS(µ) and ϑN (µ) denote the phase of speech and noise, respectively. First,
two special cases with respect to the noisy input signal Y(µ) are considered:

Speech only In the case where the input signal Y(µ) consists only of speech, i. e.,
Y(µ) = S(µ), a codebook entry Šlopt (µ) with an excellent matching spectral
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shape can be found and the gain σvad yields

σvad,S =

NDFT−1∑
µ=0

|S(µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)
. (4.44)

The gain σvad,S represents the correct frame speech power σs in a very good
approximation since |S(µ)| and Šlopt (µ) are highly correlated over frequency.

Noise only In the opposite case where the input signal consists of noise only, i. e.,
Y(µ) = N (µ), no suitable codebook entry is available in general. Thus, the
spectral envelopes of the speech codebook and the observed noise frame differ
significantly and the gain σvad is expressed by

σvad,N =

NDFT−1∑
µ=0

|N (µ)| Šlopt (µ)

NDFT−1∑
µ=0

Š2
lopt

(µ)
. (4.45)

If the noise N (µ) and the selected speech codebook entry Šlopt have no
significant spectral overlap (low correlation) σvad,N � σvad,S .

Combining the boundary cases described above models a realistic scenario including
speech pauses as well as occurring background noise, i. e., Y(µ) = S(µ) +N (µ). In
this case the gain σvad is determined by Eq. (4.43). Again, the noise component
N (µ) and the selected speech codebook entry Šlopt as well as the noise component
and the current speech component S(µ) are assumed to be (almost) uncorrelated.
Thus, Eq. (4.43) is dominated by the addend |S(µ)|2 Š2

lopt (µ) and the gain results
in σvad ≈ σvad,S . Hence, the speech gain σvad is used as speech presence indicator.

However, in practical scenarios spectral overlaps between |N (µ)|, Šlopt (µ) and
|N (µ)|, |S(µ)| occur, i. e., speech and noise are not strictly uncorrelated. Thus,
a noise floor in the gain σvad depending on the noise signal is observed since
|N (µ)|2 Š2

lopt(µ) > 0 and |S(µ)| |N (µ)| Š2
lopt(µ) cos(ϑS(µ)− ϑN (µ)) 6= 0. Further

post-processing is necessary to obtain a reliable VAD measure.

4.4.3 Speech Gain Post-Processing
Due to remaining noise and sudden outliers the speech gain σvad(λ) fluctuates.
Thus, in a first step of the post-processing, recursive smoothing is applied to the
speech gain by:

σ2vad(λ) =
[
ασ

√
σ2vad(λ− 1) + (1− ασ)

√
σ2

vad(λ)
]2

. (4.46)
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Figure 4.7: Example of smoothed gain σ2vad, floor estimation b̂f and ceiling
estimation bc for male speech and jackhammer noise (SNR = 5dB).
A blue background indicates true speech activity.

The smoothing parameter 0 < ασ < 1 determines the smoothing intensity and
has to be chosen such that the system still adapts quickly to changes while larger
fluctuations are leveled out. In order to control the on- and offset behavior of the
voice activity individually, ασ is chosen differently for rising or falling values of
σ2vad(λ) according to:

ασ =

{
ασ↑ if σ2

vad(λ) ≥ σ2vad(λ− 1)
ασ↓ if σ2

vad(λ) < σ2vad(λ− 1).
(4.47)

The smoothed speech gain σ2vad(λ) is a reliable speech presence indicator with a
range of values in [0,∞). In Figure 4.7 an example of σ2vad(λ) is presented depicted
by the black curve ( ) for a male speech signal which is disturbed by highly
non-stationary jackhammer noise with an input SNR of 5 dB. The highlighted
background ( ) indicates true speech activity. It is obvious that the speech gain
σ2vad(λ) exhibits a noise floor during speech pauses and considerably higher values
while speech is present (blue background, ).

However, soft VAD values vsoft(λ) between zero and one are desired. This
requires further processing of σ2vad(λ) in order to remove the observed noise floor
on the one hand and to map σ2vad(λ) into the desired range of values on the other
hand. The principle is to provide the soft VAD by an interpolation between the
noise floor and an adaptive upper bound, called the gain ceiling, which will be
derived in the following.

The threshold between speech absence and arising speech presence is defined by
the noise floor bf(λ) of σ2vad(λ). Hence a noise floor estimation b̂f(λ) is necessary.
Methods known from speech enhancement can be utilized to obtain the noise floor
estimate b̂f(λ) by tracing the baseline of the speech gain σ2vad(λ). This is possible
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Chapter 4 – Codebook Based Noise Suppression

since the noise floor detection is similar to noise estimation in speech enhancement
as the speech gain can be decomposed into a slowly changing noise floor component
(the baseline of the speech gain) and the remaining strong fluctuations due to
speech activity. Thus, a baseline tracing of the noise floor bf(λ) similar to the noise
estimator presented in Sec. 3.5 is carried out according to

b̂f(λ) = b̂f(λ− 1) + sign
(
σ2vad(λ)− b̂f(λ− 1)

)
∆′(λ). (4.48)

In each frame, the noise floor b̂f(λ) is updated by shifting ±∆′(λ) in order to follow
σ2vad(λ) slowly.

Total speech presence, i. e., vsoft(λ) = 1, is assumed if the speech gain σ2vad(λ)
exceeds the speech gain ceiling bc(λ). The speech gain ceiling bc(λ) is derived from
the noise floor estimate b̂f(λ) and is defined with the adaptive factor η(λ) according
to

bc(λ) = max
(
η(λ) · b̂f(λ), bc,min

)
, (4.49)

where bc,min defines a minimum value for the ceiling bc(λ) if no substantial noise
floor is present. The factor η(λ) is dependent on the speech gain SNR and bounded
to ηmin ≤ η(λ) ≤ ηmax. Therefore, the local past of the speech gain and the noise
floor estimate b̂f(λ) are stored in a sliding time window of length Tw. The fraction
of the mean of the sliding time windows provides a speech gain SNR estimate. It is
only updated in phases where total speech presence is indicated, i. e., vsoft(λ) = 1.
In addition, the same recursive smoothing as for speech gain, c.f. Eq. (4.46), is
applied which yields the speech gain SNR estimate η(λ).

An example of the noise floor estimate b̂f(λ) and the ceiling bc(λ) is depicted in
Fig. 4.7 by the red ( ) and blue curve ( ), respectively. Finally, soft VAD
values for σ2vad between b̂f(λ) and bc(λ) are interpolated linearly according to

vsoft(λ) = max
(

min
(
σ2vad(λ)− b̂f(λ)
bc(λ)− b̂f(λ)

, 1
)
, 0
)
. (4.50)

Gains lower or equal to the noise floor are mapped to zero, whereas gains higher or
equal to the ceiling bc(λ) are clipped and mapped to one. The resulting soft values
are robust to different noise floor levels in the speech gain which may result from
low input SNR and varying noise types.

In order to be independent of system parameters like the sampling frequency fs
or the frame advance LA, a relative shift ∆ is introduced with dimension %

time
such

that LA
fs

∆ is the relative change per frame. Moreover, it is desirable to update the
noise floor mainly in cases of speech absence, yielding the absolute shift to

∆′(λ) =

{
LA
fs
·∆ · b̂f(λ− 1) for σ2vad(λ) ≤ bc(λ− 1)

LA
fs
·∆ · b̂f(λ− 1) · βsp for σ2vad(λ) > bc(λ− 1).

(4.51)

If the speech gain exceeds the ceiling bc, total speech presence is assumed and the
tracing speed is reduced by the factor 0 < βsp < 1. It is not set to zero to prevent
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4.4 Speech Codebook based VAD

Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20ms)
Frame advance LA 160 (=̂ 10ms)
FFT length NDFT 512 (including zero-padding)
Frame overlap 50% (

√
Hann-window)

Speech codebook entries L 128
Smoothing parameters ασ↑ | ασ↓ 0.8 | 0.91
Gain ceiling factor bounds ηmin|ηmax 3 dB | 15 dB
Ceiling minimum bc,min 3
Relative shift ∆ 0.2 s−1

Speech presence factor βsp
1
4

Speech gain SNR window length Tw 0.1 s
(
=̂
⌈
fs
LA
Tw
⌉

= 10 frames
)

Table 4.2: Simulation system settings

that the system gets stuck in case of a completely wrong floor and ceiling estimation.
Experiments confirmed that the relative shift over time ∆ should be in the range
between 0.2 %

20 ms and 0.8 %
20 ms , i. e., the noise floor changes by the given percentage during

20ms, a time period in which speech is considered to be stationary [Vary & Martin
2006].

If a binary VAD is desired, it can be calculated by a simple comparison with a
threshold 0 < thr < 1 according to

vbin(λ) =

{
0 if vsoft(λ) < thr

1 if vsoft(λ) ≥ thr .
(4.52)

4.4.4 Evaluation
The proposed speech codebook based VAD system is assessed in a benchmark with
four reference methods proposed by [Sohn et al. 1999], [Tan et al. 2010], [Ghosh
et al. 2011] and the GSM VAD [ETSI Recommendation GSM 06.32 1996]. All
algorithms except the GSM VAD provide soft VAD values. Since the objective
scores require a binary VAD, Eq. (4.52) is utilized applying different thresholds
varying between zero and one.

The parameters for the simulation are listed in Tab. 4.2. The speech codebook
is trained according to Sec. 4.3 with randomly chosen speech files from the training
set of the TIMIT database [Garofolo & Consortium 1993], resulting in a total
training sequence length of 3073 s, cf. 4.3.4. The configuration of the remaining
algorithms are chosen as suggested in [ETSI Recommendation GSM 06.32 1996;
Ghosh et al. 2011; Sohn et al. 1999; Tan et al. 2010].

The benchmark is performed for all permutations of the following parameters:
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Chapter 4 – Codebook Based Noise Suppression

• the input SNR ranges from from −5 dB to 20 dB in 5 dB steps4,

• 24 randomly chosen sentences belonging to 12 male and 12 female, randomly
chosen speakers from the test set of the TIMIT database [Garofolo & Con-
sortium 1993] are selected and concatenated. The test set is not included in
the training set. Three seconds of silence are inserted at the beginning and
the end of the sequence as well as between the sentences.

• The resulting 160 s of speech sequences are mixed with 11 types of noise
(pink, jackhammer, canteen, wind, outside traffic, midsize car, inside train,
train station, nature, pub noise, indoor soccer) from the ETSI database
[ETSI EG 202 396-1 2009] resulting in 66 different noisy signals, respectively
176minutes.

• The threshold for the binary VAD calculation varies for all tested soft VAD
algorithms in 39 steps from zero to one.

An objective evaluation is performed which is based on a numerical comparison
of the binary VAD vbin(λ) with a ground truth binary VAD vtrue(λ). As mentioned
before, vbin(λ) is provided by Eq. (4.52) applying different thresholds varying
between zero and one for each soft VAD value. In this simulation, the clean speech
and the scaled noise, from which the noisy signal is additively generated, are
separately available. The objective measurement of active speech level according to
ITU P.56 standardization [ITU-T Recommendation P.56 1993] provides a reliable
binary VAD based on clean speech signals. Hence, this measure is applied to the
clean speech signal in order to provide the ground truth reference VAD vtrue(λ).
The numerical evaluation is performed in terms of three VAD measures,

• Accuracy rate Pa: Percentage of speech frames with correct VAD estimation;

• Detection rate (or true positive rate) Pd: Fraction of active speech frames
that are detected correctly;

• False alarm rate (or false positive rate) Pf : Fraction of speech frames without
speech that are classified erroneously as speech.

The objective measures are detailed in Appendix C.4. Note the first 160 frames,
i. e., 1.6 s, are not included in the evaluation to ignore transient effects.

When applying a VAD, a compromise between detection-rate and false-alarm-
rate has to be made by choosing an appropriate threshold. This compromise can
be visualized, utilizing a ROC curve as a function of varying thresholds5. A fixed
but arbitrary threshold corresponds to a specific point on the ROC curve. In
Fig. 4.8 different aspects of the above mentioned compromise are detailed in terms
of ROC curves. Fig. 4.8a presents a ROC curve which is generated by averaging

4The mixing procedure is detailed in Appendix C.1. Note that for the calculation of the
scaling factor to adjust the input SNR only speech and noise signal sections with speech
presence are considered.

5For the sake of clarity, the thresholds thr ∈ {0, 1} are discarded in the presented figures.
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Figure 4.8: The upper part depicts the ROC curves for a varying threshold
thr. The ROC curve for four exemplary types of noise is shown
in the lower plot for the proposed and best reference algorithm
[Ghosh et al. 2011] ( ) at a varying threshold.
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the objective scores detection-rate and false-alarm-rate for all permutations of the
input SNR and noise types, separately for each threshold thr. Thus, it presents
the achievable combinations of detection-rate and false-alarm-rate that result from
varying the threshold. In addition, the binary GSM VAD [ETSI Recommendation
GSM 06.32 1996] is depicted as reference and marked by the cross sign. For the
proposed speech codebook VAD system ( ), it is obvious that it holds the
best relationship between the false-alarm-rate and the detection-rate. The false-
alarm-rate never exceeds 24% with a maximum detection-rate of 95%. In order
to achieve the same detection-rate, significantly higher false-alarm-rates of 32%
(Ghosh, ), 45% (Tan, ) or 70% (Sohn, ) must be tolerated. However,
the reference VAD systems ( , , ) achieve a higher maximum-detection-
rate compared to the proposed VAD ( ), but at the expense of a significantly
higher false-alarm-rate.

In Fig. 4.8b the averaged results are summarized for selected noise types: inside
train ( ), indoor soccer ( ), wind noise ( ), and babble noise ( ).
Hence, the influence of stationary and instationary noise can be analyzed. For
the sake of clarity, only the proposed VAD ( ) and the best reference method,
i. e., [Ghosh et al. 2011] ( ), are visualized. The superior performance of the
proposed codebook VAD is confirmed. For all noise types, the proposed method
( ) yields the best performance. Moreover, the proposed algorithm performs
well for stationary noise types, e. g., inside train ( ) as well as for instationary
noise types like indoor soccer ( ) and wind noise ( ). Comparing wind noise,
the proposed VAD ( ) achieves approximately 30% better false-alarm-rate than
[Ghosh et al. 2011] ( ) and similar detection-rate scores. However, a reliable
voice detection during babble noise ( ) is not possible because this sort of noise
is very similar to the speech codebook entries. Hence, babble noise is frequently
classified as speech, leading to a high false alarm rate, yet better than [Ghosh et al.
2011] ( ).

The VAD accuracy is analyzed in Fig. 4.9. In order to examine the influence
of the threshold, the results are averaged over the input SNR and noise types and
plotted as a function of the threshold in Fig. 4.9a. Also in this VAD measure, the
codebook based VAD ( ) clearly provides the best scores over the complete
threshold range, especially for thresholds up to 0.4. The advance to the second
best algorithm [Ghosh et al. 2011] ( ) for thr > 0.4 is approximately 10%
accuracy. One advantage of the proposed technique is the flatness of the accuracy
measure. Because of that, it is possible to set any desired working point on the
ROC curves depicted in Fig. 4.8 by adjusting the threshold without losing accuracy.
The accuracy of the reference VAD algorithms ( , , ) increases with the
threshold. [Tan et al. 2010] ( ) and [Ghosh et al. 2011] ( ) achieve similar
performance for thr > 0.5 while [Sohn et al. 1999] ( ) has the worst performace
over the complete threshold range, approximately 10% worse than [Ghosh et al.
2011] ( ).

To gain more insights into the behavior of the VAD algorithms at different
SNR conditions, the best thresholds for each algorithm are selected from Fig. 4.9a.
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Figure 4.9: In the upper plot, the average accuracies for varying thresholds
are depicted, while the lower plot shows the average accuracies
over the SNR. For each algorithm, the most favorable threshold
is chosen.
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Using those thresholds, the accuracy is averaged for all noise types and each VAD
algorithm. The results are depicted over the input SNR in Fig. 4.9b. As might be
expected, the performance of all algorithms gets better with increasing SNR. Again,
the proposed speech codebook based VAD ( ) provides the best performance,
starting with 80% accuracy at −5dB SNR and achieving nearly 100% at 20 dB
SNR. Comparing the reference VAD algorithms ( , , ), [Ghosh et
al. 2011] ( ) performs best at low SNR values, while [Tan et al. 2010] ( )
performs best for SNR values greater or equal than 5 dB. As indicated by the
previous results in Fig. 4.9a [Sohn et al. 1999] ( ) achieves the lowest accuracy
over the complete SNR range.

With respect to the online noise codebook training process as described in
Sec. 4.5, the new proposed speech codebook based VAD algorithm is well suited. It
achieves the best scores in all VAD measures. Especially in the critical SNR range
around 5 dB, the proposed VAD provides excellent accuracy rates in the range of
90% and is thus 10% better compared to the second best algorithm [Ghosh et al.
2011]. The new VAD does not rely on noise a-priori information, which makes
it robust also to highly non-stationary noise and adverse SNR conditions, e. g.,
down to -5 dB. The new algorithm is characterized by higher detection-rates at a
significantly lower false-alarm-rate compared to state-of-the-art systems [Ghosh
et al. 2011; Sohn et al. 1999; Tan et al. 2010]. In addition, it is possible to adjust
the compromise between a higher detection-rate versus a higher false-alarm-rate by
changing the threshold without increasing the total number of miss-detections.

4.5 Online Noise Codebook Adaptation
Since the noise environment is unknown a priori, an online training and adaptation
of the noise codebook is required. Hence, a training sequence acquired from the
noisy observation y(k) of the new and unknown noise type is necessary. Assuming
speech pauses in y(k) the training sequences can be found if speech is absent and
a mismatch Q |M (λ) during the codebook matching process is recognized. The
mismatch Q |M (λ) is defined between the noisy observation Y(µ) and its codebook
based approximation Ŷ(µ) and given for the current frame λ by

Q |M (λ) = dist
(
|Y(λ, µ)|2 ,

∣∣∣Ŷ(λ, µ)
∣∣∣
2
)
. (4.53)

Hence, the mismatch measure Q |M (λ) describes the ability to estimate the noisy
observation on the current state of the speech and noise codebooks.

Based on the training quality measures Q |CS and Q |CN of the respective
codebooks, a lower bound of the mismatch Q |M is estimated by

Q |C (λ) = σ2
s(λ)

σ2
s(λ) + σ2

n(λ) ·Q |CS (λ) + σ2
n(λ)

σ2
s(λ) + σ2

n(λ) ·Q |CN (λ), (4.54)

assuming that σ2
s and σ2

n are reliable also in the case of decent actual noise codebook
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4.5 Online Noise Codebook Adaptation

Parameter Settings

Training frames LT 40
VQ output size M∆ 4 codebook entries
Hangover VAD margin LH 60 frames
Adaption margin LM 40 frames
Hit rate T 80%
Speech codebook size L 128 entries
Histogram window LW 500 frames

Table 4.3: Codebook algorithm parameters

mismatch. Comparing Q |M with Q |C , the effective codebook mismatch can be
quantified incorporating the speech and noise codebook training quality.

In particular the following conditions must match in order to acquire new noise
training sequences:

• Training frames must not contain speech, which requires a robust VAD
measure. A robust speech codebook based VAD is presented in Sec. 4.4.
In addition, a hangover frame distance to the last VAD frame of LH is
introduced.

• A frame is classified as new noise type if the mismatch measure exceeds the
threshold, i. e., Q |M > Q |C .

• The distance measure evaluation of the last LT frames must have detected
an unknown noise sound, i. e., T percent of the last LT frames exceed the
distance threshold Q |M > Q |C .

• A safety margin between two adaptions of frame length LM has to be kept.

Given at least LT frames in the past which satisfy these conditions the same vector
training as in Sec. 4.3 is utilized to obtain M∆ new adaptive codebook entries
which are then combined with the noise codebook. If the maximum defined noise
codebook size M = M� +M◦ is exceeded where M◦ = r ·M∆ and r is the number
of codebook updates, the less used entries from the variable codebook part of the
last LW frames are discarded.

4.5.1 Performance Example
An example of the online noise codebook adaptation is illustrated in Fig. 4.10. A
noisy input signal is generated consisting of five, different six seconds long stationary
and non-stationary noise types mixed with five male and female english speakers
taken from the TIMIT database [Garofolo & Consortium 1993] at a SNR of 0 dB.
Since the noise codebook is initialized with a single white noise codebook entry,
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Figure 4.10: Example of online noise codebook adaption, learning five un-
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VAD performance where vbin is the computed VAD according to
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4.6 Summary and Conclusion

it has to be adapted every six seconds. The VAD measure is provided by the
proposed speech-codebook-based VAD algorithm detailed in the previous Sec. 4.4.
The parameters for the simulation and the VAD setup are presented in Tab. 4.2.
The codebook algorithm settings are summarized in Tab. 4.3, with a maximum
noise codebook size of M = 28. The upper plot of Fig. 4.10 depicts the waveform
of the noisy input signal to emphasize the performance of the VAD in terms of
vbin ( ) and the ground truth reference vtrue ( ). The ground truth reference
VAD is calculated according to ITU P.56 [ITU-T Recommendation P.56 1993]
standardization from the clean speech signal which is available in the simulation
system. Apart from “pub noise” (around 20 s) and “wind noise” (around 26 s), the
presented new VAD algorithm provides reliable decisions. Vertical red lines indicate
a codebook adaption which uses each time the past 40 frames as training sequence,
indicated by the light red background. The lower plot depicts the codebook
matching mismatch measure Q |M ( ) and the adaptive threshold Q |C ( ).
The spectrograms of the clean speech signal and the noise-only component are
depicted for reference. It is obvious that each noise change is detected and the
noise codebook is adapted accordingly. By means of the stationary noise types
“inside train” and “nature” it is demonstrated, that a single adaptation of the noise
codebook is sufficient while repeatedly adapting is necessary in the remaining cases,
which reflects the fast changing characteristic of the noise signals. This observation
is supported by the course of Q |M ( ). It is also apparent that adaptation takes
exclusively place in speech pauses while a certain safety distance to speech activity
frames is always maintained which avoids speech leaking into the noise codebook.

4.6 Summary and Conclusion
Most state-of-the-art noise reduction systems can be explained by means of noise
estimation, spectral SNR estimation, and spectral weighting. In contrast, the
codebook-based approach also incorporates a speech estimate. A priori knowledge
about speech and noise allows to model and cope with highly non-stationary noise
environments. A new modified decision-directed a priori SNR estimate ξ̂mod is
proposed incorporating the codebook driven speech estimate.

In a first step, the concept of the proposed codebook speech and noise estimation
is based on superposition of scaled speech and noise codebook entries. For the sake
of speaker independence, the speech codebook consists of spectral envelopes, while
the noise codebook comprises the full spectral resolution. Since no closed-form
solution for optimal gain calculation of the speech and noise codebook entries exists,
a brute force approach serves as reference codebook processing scheme. While
the speech codebook is pre-trained in advance, the noise codebook is adapted to
new noise types online. Thus, the system is independent of a priori knowledge on
noise. Training vectors for online noise codebook updates are identified using a
voice activity detector (VAD) and a codebook mismatch measure.

The VAD is realized as part of the codebook matching, but utilizes only a priori
knowledge on speech. A speech power gain is provided in each frame. This gain
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provides a reliable speech indicator and may contain a noise floor, especially at
low SNRs. By means of a baseline tracing algorithm, known from noise reduction,
the noise floor is removed and subsequently the gain is mapped to soft VAD
values between zero and one. Instrumental measurements confirmed a consistent
improvement in comparison to state-of-the-art systems [Ghosh et al. 2011; Sohn
et al. 1999; Tan et al. 2010], resulting in better detection rates at significant lower
false alarm rates, especially for low input SNR, e. g., −5 dB SNR.

Although the noise codebook is updated online, it is not guaranteed that an
appropriate codebook entry is available for each noisy observation. A noise codebook
update is prevented, for example, if the ambient noise changes while speech is still
present. In such cases, the noise estimation is restricted. Moreover, with respect
to feasible applications, e. g., mobile phones, a significant complexity reduction is
necessary which demands to replace the brute force codebook matching. This two
remaining restrictions of codebook based speech and noise estimation are tackled
in the next chapter.
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Information Combining

A major advantage of codebook driven speech and noise estimation is its ability to
model highly non-stationary speech and noise processes. However, the estimation
accuracy is limited by the a priori knowledge of the codebooks, especially with
respect to missing noise a priori knowledge. Although the noise codebook is
adaptive, it does not guarantee that an appropriate codebook entry is available for
the current noisy observation. For example, if speech is present during a sequence
where the noise type changes, a noise codebook update is not possible. Hence,
in phases of missing a priori noise knowledge an alternative independent noise
estimate, e. g., provided by a statistical noise estimator (cf., 3.4.1), should be
considered. Moreover an adaptive combination of both noise estimates is desirable,
resulting in a refined noise estimate.

In order to carry out this adaptive combination, a reliability measure is necessary.
Utilizing the codebook speech estimate, it is possible to create all permutations of
the speech estimate and the noise estimates which provide different estimates for
the noisy observation. The distance between the different estimates and the noisy
observation itself serves as reliability measure. Afterwards, the noise estimates are
combined by a weighted sum according to the obtained distances separately for
each frequency bin, which yields the refined final noise estimate. Given a second
speech estimate, e. g., from the last enhanced frame of the speech enhancement
system, the adaptive combining procedure can be generalized and provides in
addition a refined speech estimate. Doing so, it is possible to recreate the spectral
fine-structure in the final speech estimate. This adaptive combination procedure
is called information combining in the following. By information combining, the
speech and noise estimates are significantly improved.

As mentioned before, a substantial complexity reduction of the codebook match-
ing process is necessary for the application of codebook based speech enhancement.
Utilizing the information combining procedure, the codebook driven speech and
noise estimates can be replaced by somewhat inaccurate estimates. Hence, the
brute force search of the codebook matching is replaced by a cascade of gain shape
estimates, which provides various speech and noise estimates. Compared with the
brute force search, the cascade of gain shape estimates plus subsequent informa-
tion combining allows a huge complexity reduction without notable quality loss.
Thus, information combining improves estimation quality and provides complexity
reduction.
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The remainder of this chapter is organized as follows. The concept of information
combining is outlined in Sec. 5.1. In Sec. 5.2 the joint estimation problem of speech
and noise is formulated. While in Sec. 5.3 the constraints of combining speech
and noise are detailed, the resulting estimation error is derived in Sec. 5.4. The
minimization of the total estimation error is carried out in Sec. 5.5 and a closed-form
solution for the total estimation error power is given in Sec. 5.6. On the basis
of the developed information combining approach a complexity reduction of the
codebook matching is outlined utilizing gain shape techniques in Sec. 5.7. The
entire evaluation of codebook based speech enhancement is presented in Sec. 5.8
and conclusions are drawn in Sec. 4.6.

5.1 Concept of Information Combining
The term information combining is known from channel coding and information
theory [Huber & Huettinger 2003; Land et al. 2005; Land & Huber 2006]. If
the same data sequence is transmitted in parallel over independent channels or
several times sequentially over the same channel, the independent observations
can be combined at the receiver. The concept of information combining is to
merge different independent estimates of a quantity into one in order to improve
the overall estimation performance. The overall mutual information represents a
combination of the mutual information of the independent estimates. The simplest
realization of information combining would be the average of the different estimates.
In general, averaging does not necessarily ensure an enhancement of the estimation
performance. However, if reliability information related to the different estimates
is available, the estimation quality is improved by applying an automatic weighted
averaging of the estimates depending on their reliability yielding the refined final
estimate. A special application of information combining is known from mobile
radio transmission technology as maximum ratio diversity combining [Brennan
2003] and has been successfully used to improve the signal-to-noise ratio (SNR)
given several antenna receiver signals. To the best knowledge of the author, no
approach is known yet in the literature covering noise reduction that exploits the
concept of information combining using different speech and noise estimates.

5.2 Estimation Problem Formulation
In the addressed example of information combining in mobile radio transmission,
the noisy observations from the antenna receivers consist of the desired source
target signal and additive noise. Hence, knowledge about the noise, e. g., in terms of
the signal-to-noise ratio (SNR), enables to provide the required reliability measure
for information combining.

In contrast to radio transmission technology or channel coding, two different
estimation targets can be identified in speech enhancement, namely the speech and
the noise signal. Furthermore, both estimation targets are included in the noisy
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observation. Hence, it is more challenging to derive the estimation error, i. e., the
reliability measure of either the speech or the noise estimate separately.

With respect to speech enhancement, the relation between the desired target
quantity, its estimates and the associated estimation errors is given by

S(λ, µ) = Ŝs(λ, µ) + ESs (λ, µ) with 1 ≤ s ≤ Ns, (5.1)

N (λ, µ) = N̂n(λ, µ) + ENn (λ, µ) with 1 ≤ n ≤ Nn, (5.2)

for speech and noise, respectively. The number of speech estimates is given by Ns,
the number of noise estimates by Nn, and the particular subscripts s, n indicate
a specific estimate. The corresponding estimation errors are denoted by ESs (λ, µ)
and ENn (λ, µ). In the following it is assumed that at least two speech estimates
Ŝs(λ, µ) and two noise estimates N̂n(λ, µ) exist.

In general, only the noisy observation including speech and noise is available. In
consequence, two different estimation problems are included in the noisy observation.
Hence, it is not possible to obtain the estimation errors ESs (λ, µ) and ENn (λ, µ)
directly, associated with each of the different speech Ŝs(λ, µ) and noise N̂n(λ, µ)
estimates. However, combining the speech and noise estimates it is possible to
compute several estimates of the noisy observation which are denoted by Ŷi(λ, µ).
The subscript i corresponds to all permutations of the speech and noise estimates
and is detailed later. Employing the signal model

Y(λ, µ) = S(λ, µ) +N (λ, µ), (5.3)

the noisy observation can be written using Eq. (5.1) and (5.2) as combination of
the speech and noise estimates and their estimation errors according to

Y(λ, µ) = Ŝs(λ, µ) + N̂n(λ, µ)︸ ︷︷ ︸
Ŷi(λ,µ)

+ESs (λ, µ) + ENn (λ, µ)︸ ︷︷ ︸
EY
i

(λ,µ)

. (5.4)

Hence, the former desired target quantities speech and noise are combined and
mapped into one target quantity. The new target quantity is given by the noisy
observation Y(λ, µ) which is estimated by

Ŷi(λ, µ) = Ŝs(λ, µ) + N̂n(λ, µ), (5.5)

and the corresponding estimation error EYi (λ, µ) = Y(λ, µ)− Ŷi(λ, µ) yields

EYi (λ, µ) = ESs (λ, µ) + ENn (λ, µ). (5.6)

In contrast to ESs (λ, µ) and ENn (λ, µ), the estimation error EYi (λ, µ) can be com-
puted given the noisy observation Y(λ, µ) and its estimate Ŷi(λ, µ).

For a complete specification of Eq. (5.5), a mapping rule from the noisy ob-
servation estimate index i to the speech and noise estimate indices s and n is

99



Chapter 5 – Information Combining

necessary, which covers all permutations. Hence, the mapping is defined in terms
of the estimates subscripts according to

i ={1, . . . , Ns ·Nn}, (5.7)
s =((i− 1) mod Ns) + 1, (5.8)

n =
⌈
i

Ns

⌉
. (5.9)

To provide a more intuitive overview, the permutation of the speech and noise
estimates is visualized as matrix operation. With the noisy observation, the speech
and noise estimates in vector notation denoted by

Ŷ =
(
Ŷ1(λ, µ), . . . , ŶNs·Nn(λ, µ)

)ᵀ
, (5.10)

Ŝ =
(
Ŝ1(λ, µ), . . . , ŜNs(λ, µ)

)ᵀ
, (5.11)

N̂ =
(
N̂1(λ, µ), . . . , N̂Nn(λ, µ)

)ᵀ
, (5.12)

the permutation is written as







Ŷ

(Ns·Nn×1)

= ...







ŜNs×1

ŜNs×1

ŜNs×1

(Ns·Nn×1)

+

0Ns×1 . . . 0Ns×1

0Ns×1 . . . 0Ns×1

... 0Ns×1
. . .

...

0Ns×1 . . . 0Ns×1







1Ns×1

1Ns×1

1Ns×1

(Ns·Nn×Nn)

·







N̂

(Nn×1)

(5.13)

where 0Ns×1 and 1Ns×1 denote the zero and one matrix, respectively. An exam-
ple employing two speech and noise estimates results thus in four permutations
according to1







Ŷ1

Ŷ2

Ŷ3

Ŷ4

=







Ŝ1 + N̂1

Ŝ2 + N̂1

Ŝ1 + N̂2

Ŝ2 + N̂2

=







Ŝ1

Ŝ2

Ŝ1

Ŝ2

+

0
0

0
0







1
1

1
1

·





N̂1

N̂2

(5.14)

1The frame and frequency index (λ, µ) is omitted for the sake of brevity
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5.3 Constraint Combining of Speech and Noise
Estimates

Since only EYi (λ, µ) is measurable given the noisy observation Y(λ, µ), the infor-
mation combining of the estimates Ŝs(λ, µ) and N̂n(λ, µ) is carried out indirectly
in terms of Ŷi(λ, µ). Hence, the information combining of the different estimates
Ŷi(λ, µ) is performed by a weighted averaging, utilizing the weights ci(λ, µ),

Ŷ(λ, µ) =
Ns·Nn∑

i=1

ci(λ, µ) · Ŷi(λ, µ) (5.15)

=
Ns·Nn∑

i=1

ci(λ, µ) · Y(λ, µ)

︸ ︷︷ ︸
!
=Y(λ,µ)

−
Ns·Nn∑

i=1

ci(λ, µ) · EYi (λ, µ)

︸ ︷︷ ︸
EY (λ,µ)

, (5.16)

which yields the enhanced estimate Ŷ(λ, µ). In order to also model the enhanced
estimate Ŷ(λ, µ) in terms of the noisy observation and an estimation error EY(λ, µ),
the weights are constraint by

Ns·Nn∑

i=1

ci(λ, µ) = 1, (5.17)

which yields the relation Ŷ(λ, µ) = Y(λ, µ)−EY(λ, µ). Using Eq. (5.5) in Eq. (5.15),
the enhanced speech and noise estimates are finally given in terms of the weights by

Ŝ(λ, µ) =
Ns·Nn∑

i=1

ci(λ, µ) · Ŝs(λ, µ), with s =((i− 1) mod Ns) + 1, (5.18)

N̂ (λ, µ) =
Ns·Nn∑

i=1

ci(λ, µ) · N̂n(λ, µ), with n =
⌈
i

Ns

⌉
. (5.19)

In order to exploit the available information of the different estimates Ŝs(λ, µ)
and N̂n(λ, µ), the weights ci(λ, µ) should be dependent on the measurable estimation
error EYi (λ, µ). Moreover, the weights ci(λ, µ) should minimize the total estimation
error power

∣∣EY
∣∣2. Hence, an expression for the total estimation error power

dependent on the weights ci(λ, µ) is necessary.

5.4 Estimation Error

In this section an expression for the total estimation error power
∣∣EY

∣∣2 is derived
which depends on the weights ci(λ, µ). In addition it is analyzed to which extend
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the total estimation error power
∣∣EY

∣∣2 is related to the estimation error power of
the speech and noise estimates.

Assuming that EY(λ, µ) is an ergodic process, the estimation error power is
given by

∣∣EY
∣∣2 = E

{
NDFT−1∑

µ=0

∣∣∣Y(λ, µ)− Ŷ(λ, µ)
∣∣∣
2
}

= E
{∣∣EY(λ)

∣∣2
}
, (5.20)

where E {·} denotes the expectation operator with respect to time, i. e., the frame
index λ. Utilizing Eq. (5.15) and (5.17) the error power

∣∣EY(λ)
∣∣2 for each frame λ

is formulated by

∣∣EY(λ)
∣∣2 =

NDFT−1∑

µ=0

∣∣∣∣∣
Ns·Nn∑

i=1

ci(λ, µ) · EYi (λ, µ)

∣∣∣∣∣

2

(5.21)

and the total error power
∣∣EY

∣∣2 yields

∣∣EY
∣∣2 = E

{
NDFT−1∑

µ=0

∣∣∣∣∣
Ns·Nn∑

i=1

ci(λ, µ) · EYi (λ, µ)

∣∣∣∣∣

2}
(5.22)

=
NDFT−1∑

µ=0

E

{∣∣∣∣∣
Ns·Nn∑

i=1

ci(λ, µ) · EYi (λ, µ)

∣∣∣∣∣

2}
(5.23)

=
NDFT−1∑

µ=0

∣∣EY(µ)
∣∣2 (5.24)

With respect to the minimizing procedure of the total estimation error power, it
is sufficient to minimize the estimation error power with respect to the frequency
index

∣∣EY(µ)
∣∣2. Evaluating

∣∣EY(µ)
∣∣2 and separating the auto estimation error

terms from the double sum yields

∣∣EY(µ)
∣∣2 = E

{(
Ns·Nn∑

i=1

ci(λ, µ)EYi (λ, µ)

)(
Ns·Nn∑

j=1

cj(λ, µ)EYi (λ, µ)

)∗}
(5.25)

=
Ns·Nn∑

i=1

E
{
|ci(λ, µ)|2 ·

∣∣EYi (λ, µ)
∣∣2
}

+ (5.26)

Ns·Nn∑

i=1

Ns·Nn∑

j=1
j 6=i

E
{
ci(λ, µ)cj(λ, µ)∗ · EYi (λ, µ)EYj (λ, µ)∗

}
. (5.27)

Assuming that the estimation errors of speech and noise are uncorrelated from each
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other, i. e.,

0 = E
{
ESs (λ, µ)ESs̃ (λ, µ)∗

}
∀ s 6= s̃ (5.28)

0 = E
{
ENn (λ, µ)ENñ (λ, µ)∗

}
∀ n 6= ñ (5.29)

0 = E
{
ESs (λ, µ)ENn (λ, µ)∗

}
∀ s, n (5.30)

(5.31)

the estimation errors EYi (λ, µ) are also uncorrelated from each other, i. e.,

0 = E
{
EYi (λ, µ)EYj (λ, µ)∗

}
∀ j 6= i (5.32)

and Eq. (5.25) simplifies to

∣∣EY(µ)
∣∣2 =

Ns·Nn∑

i=1

c2i (µ) ·
∣∣EYi (µ)

∣∣2 . (5.33)

Hence, the total estimation error power is basically a weighted sum over the error
power of the different estimates Ŷi(λ, µ). A further evaluation of Eq. (5.33) utilizing
Eq. (5.6) yields

∣∣EYi (µ)
∣∣2 = E

{∣∣EYi (λ, µ)
∣∣2
}

= E
{∣∣ESs (λ, µ) + ENn (λ, µ)

∣∣2
}

(5.34)

= E
{∣∣ESs (λ, µ)

∣∣2 +
∣∣ENn (λ, µ)

∣∣2
}

+ (5.35)

E
{
ESs (λ, µ)ENn (λ, µ)∗ + ESs (λ, µ)∗ENn (λ, µ)

}

Since the estimation errors of speech and noise are assumed to be uncorrelated, the
previous equation simplifies to

∣∣EYi (µ)
∣∣2 =

∣∣ESs (µ)
∣∣2 +

∣∣ENn (µ)
∣∣2 . (5.36)

Finally, the total estimation error is expressed in terms of the speech and noise
estimation errors given by

∣∣EY
∣∣2 =

NDFT−1∑

µ=0

(
Ns·Nn∑

i=1

c2i (µ) ·
(∣∣ESs (µ)

∣∣2 +
∣∣ENn (µ)

∣∣2
))

, (5.37)

with the indices given by s = ((i− 1) mod Ns) + 1 and n =
⌈
i
Ns

⌉
.

5.5 Total Estimation Error Power Minimization

It was shown in the last section that the total estimation error power
∣∣EY

∣∣2 is
dependent on the weights ci(λ, µ) and the measurable estimation error EYi (λ, µ) of
the noisy observation estimates. Moreover, minimizing the total estimation error
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power
∣∣EY

∣∣2 also minimizes the estimation error power of the speech ESs (λ, µ) and
noise ENn (λ, µ) estimates as related by Eq. (5.24) and (5.37).

Hence, the information of the different estimates Ŝs(λ, µ) and N̂n(λ, µ) is
optimally combined by minimizing the estimation error power

∣∣EY
∣∣2 of the enhanced

estimate Ŷ(λ, µ) of the noisy observation. As mentioned before, it is sufficient to
minimize

∣∣EY(µ)
∣∣2 in Eq. (5.24). This yields a constrained optimization problem

of the estimation error power
∣∣EY(µ)

∣∣2, which can be solved by the Lagrange
multipliers method [Bertsekas 1996; Bronstein et al. 1999]. In the following the
frequency index (µ) will be omitted for the sake of brevity.

With Eq. (5.33) describing the estimation error power and the constraint given
by Eq. (5.17), the Lagrange function is defined by

Λ(c1, . . . , cNs·Nn , ψ) =
Ns·Nn∑

i=1

c2i
∣∣EYi

∣∣2 + ψ ·
(

1−
Ns·Nn∑

i=1

ci

)
. (5.38)

Building the partial derivation of Λ(c1, . . . , cNs·Nn , ψ) with respect to the weights
ci yields

∂Λc1, . . . , cNs·Nn , ψ
∂ci

= 2ci
∣∣EYi

∣∣2 − ψ, with 1 ≤ i ≤ Ns ·Nn, (5.39)

and the partial derivation with respect to the Lagrange multiplier ψ results in

∂Λc1, . . . , cNs·Nn , ψ
∂ψ

= 1−
Ns·Nn∑

i=1

ci. (5.40)

Setting the partial derivations Eq. (5.39) and Eq. (5.40) to zero and equating yields
the following system of equations,

ci = ψ

2
∣∣EYi

∣∣2 with 1 ≤ i ≤ Ns ·Nn. (5.41)

Using Eq. (5.41) in Eq. (5.40) and solving the equation with respect to ψ yields

ψ = 2
Ns·Nn∑
i=1

1
|EYi |2

. (5.42)

Substituting ψ in Eq. (5.41) yields the weights ci according to

ci = 1
∣∣EYi

∣∣2 Ns·Nn∑
j=1

1∣∣EY
j

∣∣2
. (5.43)
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Since the second partial derivations of Eq.(5.38) with respect to the weights ci

∂2Λc1, . . . , cNs·Nn , ψ
∂2ci

= 2
∣∣EYi

∣∣2 with 1 ≤ i ≤ Ns ·Nn (5.44)

and with respect to the Lagrange multiplier ψ

∂2Λc1, . . . , cNs·Nn , ψ
∂2ψ

= 0 (5.45)

are greater or equal to zero, the found extremum is in fact an absolute minimum.
Adding the frequency index again to Eq. (5.43), the weights are finally given by,

ci(µ) = 1
∣∣EYi (µ)

∣∣2 Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2

(5.46)

Hence, the determined weights according to Eq. (5.46) minimize the total error
power

∣∣EY
∣∣2 =

∑NDFT−1
µ=0

∣∣EY(µ)
∣∣2 and thereby also the total error power of the

speech and noise estimates.

5.6 Total Estimation Error Power

A closed solution for the total estimation error power
∣∣EY

∣∣2 is found by substituting
Eq. (5.46) in Eq. (5.33) which yields the resulting error power after weighted
averaging according to

∣∣EYmin(µ)
∣∣2 =

Ns·Nn∑

i=1




1
∣∣EYi (µ)

∣∣2 Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2




2
∣∣EYi (µ)

∣∣2 (5.47)

=
Ns·Nn∑

i=1

1

∣∣EYi (µ)
∣∣2



1
Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2






1
Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2




(5.48)

=
Ns·Nn∑

i=1

ci(µ) 1
Ns·Nn∑
j=1

1∣∣EY
j

(µ)
∣∣2

(5.49)

∣∣EYmin
∣∣2 =

NDFT−1∑

µ=0

∣∣EYmin(µ)
∣∣2 (5.50)

=
NDFT−1∑

µ=0

1
Ns·Nn∑
i=1

1
|EYi (µ)|2

= 1
Ns·Nn∑
i=1

1
|ESs (µ)|2+|ENn (µ)|2

, (5.51)
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with s = ((i− 1) mod Ns) + 1 and n =
⌈
i
Ns

⌉
. By a closer examination of Eq. (5.51)

it turns out that the equation describes a similar relation compared to the overall
resistance of a parallel circuit of resistors. Hence, the total estimation error power
after weighting

∣∣EYmin
∣∣2 is less than the minimum of the error power of the individual

estimates
∣∣EYi

∣∣2 =
∑NDFT−1

µ=0

∣∣EYi (µ)
∣∣2, i. e.,

∣∣EYmin
∣∣2 <

∣∣EYi
∣∣2 ∀ i.

Since the estimation error
∣∣EYi

∣∣2 varies in practice over the time, the weights
ci(µ) are thus calculated in each frame λ.

5.7 Complexity Reduction
With respect to speech enhancement applications, e. g., for a mobile phones scenario,
a dramatic complexity reduction of the codebook matching process is necessary.
According to Sec. 4.1.2 Eq. (4.11) the brute force search, considering a speech and
a noise codebook, consists of all combinations of the three parameters l,m, σn.
Hence the computational effort grows exponentially with any of the parameters.
Techniques known from gain shape vector quantizer (VQ) to determine the codebook
entries and the gains independently are not applicable here. The optimization of
the gains for a fixed but arbitrary combination of speech and noise codebook entries
does not guarantee positive gains which violates the model assumption, i. e., the
gains represents the short-term power of noise and speech (cf. Appendix E).

However, utilizing a voice activity detector (VAD) and the information combining
as explained in Chap. 5, it is possible to replace the brute force codebook matching
partly by a gain shape VQ or a cascade of gain shape VQs. The concept of gain
shape VQ is the determination of the spectral shape using a gain normalized
codebook in a first step and subsequently the calculation of the corresponding gain
in a second step. The employed VQ is similar to the one introduced in Sec. 4.4.2.
The optimal codebook entry for the current frame λ of either speech lopt or noise
mopt can be found by minimizing

arg min
m

dist
(

1
σ2
y(λ) |Y(λ, µ)|2 , |Nm(λ, µ)|2

)
, (5.52)

arg min
l

dist
(

1
σ2
y(λ) |Y(λ, µ)|2 , |Sl(λ, µ)|2

)
, (5.53)

with σ2
y(λ) =

∑NDFT−1
µ=0 |Y(λ, µ)|2. Since the codebook entries are gain normalized,

a distance measure is required whose mapping and order is only dependent on the
spectral shape and is independent to a scaling of |Sl(λ, µ)|2 or |Nm(λ, µ)|2. Thus,
the Itakura Saito distance is not applicable here in contrast to the joint brute force
speech and noise codebook matching. The relative power distance dist

∣∣∣P,P̂REL is used
as distance measure instead which turned out to be the best metric.

After determining the optimal codebook entry of either
∣∣Nmopt (λ, µ)

∣∣2 or∣∣Slopt (λ, µ)
∣∣2, the corresponding gain σn or σs which represents the noise or
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speech power is calculated. The gain scales the found codebook entry to the
correct power, resulting in the estimate

∣∣∣N̂ (λ, µ)
∣∣∣ = σn(λ) ·

∣∣Nmopt (λ, µ)
∣∣ or

∣∣∣Ŝ(λ, µ)
∣∣∣ = σs(λ) ·

∣∣Slopt (λ, µ)
∣∣. The optimal gain can be found by minimizing the

distance between the selected codebook entry and the noisy observation Y(λ, µ).
Hence, the optimization is calculated in the minimum mean-square error (MMSE)
sense for the current frame λ according to:

dist
∣∣∣Y,N̂MSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σnNmopt (µ)

)2 != min , (5.54)

dist
∣∣∣Y,ŜMSE =

NDFT−1∑

µ=0

(
|Y(µ)| − σsSlopt (µ)

)2 != min . (5.55)

and results in

σn =

NDFT−1∑
µ=0

|Y(µ)|Nmopt (µ)

NDFT−1∑
µ=0

∣∣Nmopt (µ)
∣∣2

, (5.56)

σs =

NDFT−1∑
µ=0

|Y(µ)| Slopt (µ)

NDFT−1∑
µ=0

∣∣Slopt (µ)
∣∣2

. (5.57)

Further details of the derivation and an analysis to what extend σs, σn are related
to the true speech or noise power are included in Sec. 4.4.2.

5.7.1 Using VAD
In a first step the computational complexity is reduced in phases of speech absence.
Utilizing a binary VAD vbin(λ), the brute force search according to Sec. 4.1.2
employing a speech and a noise codebook can be replaced by a gain shape VQ
employing a noise codebook. The corresponding block diagram is depicted in Fig. 5.1
using configuration a in the codebook matching block. While speech is present,
the brute force codebook matching block is selected, i. e., ŜCB(λ, µ) = ŜBF(λ, µ)
and N̂CB(λ, µ) = N̂BF(λ, µ). In the opposite case, a noise codebook gain shape
approach is utilized to determine the noise estimate, N̂CB(λ, µ) = N̂GS(λ, µ). Since
speech is absent, the speech estimate is set to zero, i. e., ŜCB(λ, µ) = 0.

5.7.2 Employing Information Combining
Using the information from the VAD, the brute force search, using a speech
and a noise codebook, is only necessary in phases of speech activity. Hence, a
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VAD

Codebook matching
aO Brute force: ŜBF, N̂BF

bO Fig. 5.2: ŜGSC, N̂GSC

Gain shape noise
codebook matching

Y(λ, µ)

ŜBF|GSC(λ, µ)

N̂BF|GSC(λ, µ)

ŜGS(λ, µ)=0

N̂GS(λ, µ)

vbin(λ) ∈ {0, 1} ŜCB(λ, µ)

N̂CB(λ, µ)

Speech present vbin(λ) = 1

Speech absent vbin(λ) = 0

Figure 5.1: Complexity reduction based on VAD

further complexity reduction is necessary during speech activity, i. e., the codebook
matching block utilizing the brute force search in Fig. 5.1 (configuration a ) yielding
N̂BF(λ, µ) and ŜBF(λ, µ) has to be replaced.

With respect to gain shape VQ, two scenarios exist which allow to replace the
brute force codebook matching. Given a very high SNR, i. e., N (λ, µ) very close to
zero, the brute force search can be replaced by gain shape VQ utilizing a speech
codebook and setting the noise estimate to zero. In the opposite case, where the
SNR is very low, a gain shape VQ employing a noise codebook is utilized and the
speech estimate is set to zero. Assuming the theoretical special case of orthogonal
speech and noise shapes (no spectral overlap) in each frame |Y(λ, µ)|2, two gain
shape VQ units, employing a speech and a noise codebook, can be used to estimate
a reliable speech and noise estimate.

Concerning realistic scenarios, neither orthogonal speech and noise shapes nor
infinite high or low SNR can be expected. However, depending on the SNR two
different cascades of gain shape VQ as depicted in Fig. 5.2 provide suitable speech
and noise estimates depending on the SNR. The upper cascade GS1 is subject to
a gain shape VQ unit utilizing a noise codebook. Subsequently, the determined
noise estimate N̂GS1(λ, µ) is subtracted from the noisy observation and bounded
to be greater or equal to zero. Afterwards, a gain shape VQ employing a speech
codebook is applied to determine the speech estimate ŜGS1(λ, µ). In the cascade
GS2 the codebooks are interchanged.

Doing so, a sequential optimization of first the noise estimate and following the
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Gain shape cascade GS1

Gain shape cascade GS2

Figure 5.2: Complexity reduction employing sequential optimization and in-
formation combining

speech estimate is carried out in GS1 and with respect to first the speech estimate
followed by the noise estimate in GS2, respectively. Note that the determined
speech as well as the noise estimates exhibit different reliability. Compared with the
brute force search, a sub-optimal solution is thereby provided in general. However,
cascade GS1 is expected to provide a reliable noise estimate N̂GS1(λ, µ) given a low
SNR, while cascade GS2 provides a reliable speech estimate ŜGS2(λ, µ) for high
SNR. Finally, the different speech ŜGS1(λ, µ), ŜGS2(λ, µ) and noise N̂GS1(λ, µ),
N̂GS2(λ, µ) estimates are merged independently for each frequency bin utilizing
the information combining approach introduced in Chap. 5. The final estimate of
speech is denoted by ŜGSC(λ, µ) and the noise estimate is given by N̂GSC(λ, µ).

Applying the sequential optimization with subsequent information combining
(Fig. 5.2) instead of the brute force approach (Sec. 4.1.2) reduces the complexity
from O(M · L) to O(M + L).

In order to obtain the complete complexity reduction, the codebook matching
block in Fig. 5.1 is set to configuration b . Hence, the speech ŜGSC(λ, µ) and noise
N̂GSC(λ, µ) estimates employing sequential optimization and information combining
are used instead of the joint brute force estimates ŜBF(λ, µ) and N̂BF(λ, µ).
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5.8 Evaluation
The codebook driven speech and noise estimation is evaluated in different configura-
tions by means of a noise reduction system. Different objective speech enhancement
scores serve as performance measures. Since the performance of the speech enhance-
ment system may strongly depend on the individual performance of the respective
sub systems, at first, a reference codebook system employing the brute force search
as explained in Sec. 4.1.2 and fixed speech and noise codebooks is defined. Using
this reference platform,

• the new modified decision-directed SNR (cf., Sec. 4.2) as well as

• the information combining method (cf., Chap. 5, Sec. 5.5)

are analyzed. In the second part of the evaluation, the reference system is com-
pared with the proposed system, comprising all features, i. e., the new modified
decision-directed SNR, the adaptive online noise codebook learning, the information
combining, and the complexity reduction.

The benchmarks are performed for all noisy input signals which are obtained
from the permutation of the following parameters:

• The input SNR varies from −10 dB to 35 dB in 5 dB steps2.

• 30 randomly chosen sentences, spoken by 15 male and 15 female speakers,
are selected from the test set of the TIMIT database [Garofolo & Consortium
1993]. Note the test set is not included in the training set for the speech
codebook. Three seconds of silence are inserted at the beginning of each
sequence.

• The resulting speech sequences are mixed with 12 different stationary and
non-stationary types of noise (F16, living room, train station, inside train,
highway inside car, outside traffic road, wind, jackhammer, forest, pub noise,
indoor soccer, modulated Gaussian noise). The Gaussian noise is modulated
with fmod = 0.5 Hz and generated according to Eq. (3.66). This results in 3600
different noisy speech data permutations, respectively 6 hours, 38minutes
and 40 seconds.

The performance of the rated systems is evaluated by the objective scores3

segmental noise attenuation (SegNA), segmental speech attenuation (SegSA), as
well as the cepstral distance (CD). Regarding the CD, lower values indicate a lower
speech distortion. A high SegNA is desired while at the same time a low SegSA is
favored.

For the purpose of evaluation, a modular noise reduction system is created,
covering the different configurations, including the complexity reduction of the
codebook matching process and the information combining procedure.

2The mixing procedure is detailed in Appendix C.1. Note that for the adjustment of the
input SNR only speech and noise signal sections with speech presence are considered.

3The objective scores are described in detail in Appendix C.2.
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5.8.1 Overview of Evaluation System
The evaluation system is based on a standard noise reduction system as depicted
in Fig. 3.4 consisting of analysis, spectral weighting for speech enhancement and
synthesis. The block diagram of the proposed codebook driven noise reduction
system is illustrated in Fig. 5.3. The analysis and synthesis is carried out as
presented in Sec. 3.2.1. After analysis, the processing of the noisy input signal
Y(λ, µ) takes place in the frequency domain. The codebook matching block provides
estimates for the short-term power spectrum (STPS) of speech

∣∣∣ŜCB(λ, µ)
∣∣∣
2
and

noise
∣∣∣N̂CB(λ, µ)

∣∣∣
2
. The codebook matching is implemented as depicted in Fig. 5.1.

The VAD is estimated as introduced in Sec. 4.4 and the corresponding VAD
algorithm parameters are summarized in Tab. 5.3. Using configuration a , the
joint brute force search (cf. Sec. 4.1.2) is employed while speech is active to obtain∣∣∣ŜCB(λ, µ)

∣∣∣
2
and

∣∣∣N̂CB(λ, µ)
∣∣∣
2
, whereas the sequential optimization using a cascade

of gain shape VQs with subsequent information combining (cf. Sec. 5.5, Sec. 5.7.2)
is carried out using configuration b . In the following configuration a is referred
to as brute force and configuration b is referred to as GSC in the legend of the
respective plots. By setting vbin(λ) = 1 in Fig. 5.1 the VAD can be disabled.

In parallel, a second STPS noise estimate is computed by a statistical noise
estimator, indicated by

∣∣∣N̂Stat(λ, µ)
∣∣∣
2
, e. g., SPP [Gerkmann & Hendriks 2011],

Minimum Statistics [Martin 2006] or Baseline Tracing, cf. Sec. 3.4.1. Furthermore,
a second estimate for the STPS of speech

∣∣∣ŜDD(λ− 1, µ)
∣∣∣
2
is provided which is

detailed later. All speech and noise estimates are fed into the information combining
block which merges the respective estimates according to Sec. 5.5, to provide
enhanced estimates for the STPS of speech

∣∣∣ŜIC(λ, µ)
∣∣∣
2
and noise

∣∣∣N̂IC(λ, µ)
∣∣∣
2
,

respectively4. If the information combining block is disabled, the speech and
noise estimates yield

∣∣∣ŜIC(λ, µ)
∣∣∣
2

=
∣∣∣ŜCB(λ, µ)

∣∣∣
2
and

∣∣∣N̂IC(λ, µ)
∣∣∣
2

=
∣∣∣N̂CB(λ, µ)

∣∣∣
2
,

respectively. The expression information combining indicates in the legend of
related plots the enabled operation of the information combining block.

Subsequently, different SNR estimates are computed from the refined speech
and noise estimates. The estimate γ̂(λ, µ) of the a posteriori SNR is calculated
according to Eq. (3.29). Two different a priori SNR estimates are calculated: the
estimate ξ̂(λ, µ) is computed by the decision-directed approach [Ephraim & Malah
1984] and the new estimate ξ̂mod(λ, µ) is determined as introduced in Sec. 4.2. Note
ξ̂(λ, µ) is a function of

∣∣∣N̂IC(λ, µ)
∣∣∣
2
,
∣∣∣N̂IC(λ− 1, µ)

∣∣∣
2
and

∣∣∣ŜDD(λ− 1, µ)
∣∣∣
2
, while

4Note that in case of operating the codebook matching block in configuration b the
information combining algorithm is applied twice. First, while codebook matching using the
estimates provided by the cascade of gain shape VQs and second in the information combining
block employing

∣∣ŜCB(λ, µ)
∣∣2,
∣∣N̂CB(λ, µ)

∣∣2,
∣∣N̂Stat(λ, µ)

∣∣2,
∣∣ŜDD(λ− 1, µ)

∣∣2.
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Codebook matching & VAD
according to Fig. 5.1
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Figure 5.3: Block diagram of codebook based noise reduction system working
in the frequency domain including information combining
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Parameter Settings

Sampling frequency fs 16 kHz
Frame length LF 320 (=̂ 20ms)
Frame advance LA 160 (=̂ 10ms)
FFT length NDFT 512 (including zero-padding)
Frame overlap 50% (

√
Hann-window)

Speech codebook entries L 128 (training sequence 3073 s, cf. Sec. 4.3.4)
Decision-directed SNR factor αξ = 0.98
Spectral weights G(λ, µ) Wiener Filter (cf. Sec. 3.4.3)
Spectral weights GDD(λ, µ) Wiener Filter (cf. Sec. 3.4.3)

Table 5.1: Simulation system settings

ξ̂mod(λ, µ) uses
∣∣∣N̂IC(λ, µ)

∣∣∣
2
,
∣∣∣N̂IC(λ− 1, µ)

∣∣∣
2
,
∣∣∣Ŝ(λ− 1, µ)

∣∣∣
2
and additionally takes

the speech estimate
∣∣∣ŜIC(λ, µ)

∣∣∣
2
into account. Based on the SNR estimates, two

different weighting gains are calculated. As mentioned before, the speech estimate∣∣∣ŜDD(λ, µ)
∣∣∣
2
is utilized by the information combining block and is provided by

multiplying the spectral weighting gain GDD(λ, µ) with Y(λ, µ). Due to causality,
only the previous frame

∣∣∣ŜDD(λ− 1, µ)
∣∣∣
2
can be used in the information combining

block. Hence, it is called decision-directed speech estimate. Since the chain of
information combining, SNR estimation and speech estimation ŜDD forms a loop,
the chance of error propagation with respect to the speech estimate

∣∣∣ŜIC(λ, µ)
∣∣∣
2

exists. This can be prevented, if the SNR estimate from which the weighting gain
GDD(λ, µ) is calculated is independent of the speech estimate

∣∣∣ŜIC(λ, µ)
∣∣∣
2
. Hence,

GDD(λ, µ) is calculated from the a priori SNR estimate ξ̂(λ, µ). For the actual
speech enhancement, another spectral weighting G(λ, µ) is utilized which depends
on the new a priori SNR estimate ξ̂mod(λ, µ). The enhanced time domain signal
ŝ(k) is obtained by applying an inverse DFT (IDFT), windowing using a square
root Hann-window and overlap-add. The common parameters of the simulation
system are detailed in Tab. 5.1. Note that the employed speech codebook is pre-
trained as detailed in Sec. 4.3.2 and evaluated in Sec. 4.3.4. The selected fixed
speech codebook comprises spectral envelopes and is used for all codebook driven
algorithms in this section.

Additionally, a representative of a conventional statistical based noise reduction
system is included in the benchmark and serves as anchor. Therefore, the noise
reduction system as depicted in Fig. 3.4 is utilized. The noise estimate is provided by
the speech presence probability (SPP) algorithm which is parameterized as suggested
in [Gerkmann & Hendriks 2011]. The estimate of the a priori SNR and a posteriori
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SNR is provided by the decision-directed approach [Ephraim & Malah 1984]. The
speech enhancement is carried out by spectral weighting which depends on the
a priori SNR estimate and is also implemented as Wiener Filter (cf. Sec. 3.4.3).
The enhanced time domain signal ŝ(k) is obtained by the same procedure as in the
proposed evaluation system. This system is referred to as SPP in the following.

5.8.2 Reference Codebook Implementation
The reference codebook matching system is based on fixed speech and noise code-
books. It utilizes a brute force search for the determination of the optimal parame-
ters lopt,mopt, σn,opt as explained in Sec. 4.1.2 using Nq = 16 quantization levels
for σn,opt, i. e., configuration a in Fig. 5.3. Since no VAD information is available,
i. e., vbin(λ) = 1, the brute force search is performed in each frame λ resulting
in the speech estimate

∣∣∣ŜCB(λ, µ)
∣∣∣
2
and in the noise estimate

∣∣∣N̂CB(λ, µ)
∣∣∣
2
. Two

different reference codebook matching systems are defined, representing different
degrees of a priori knowledge with respect to noise.

A This configuration exhibits a pre-trained large noise codebook, consisting of
four entries for each of the 11 noise types. Sub-codebooks for each type of
noise are trained as described in Sec. 4.3.1. The final noise codebook consists
of a concatenation of the respective sub-codebooks. In total, M = 44 entries
are created from 10 s training sequence for each noise type. Since “pub noise”
is very similar to speech, it is excluded from the noise codebook. Hence,
the noise codebook exists of 11 types of noise. Since all noise types (except
“pub noise”) to be evaluated are included in the training this configuration is
referred to as: A large fixed ref. CB (M=44)5.

B In contrast to configuration A, the training sequences for each noise type are
concatenated and a codebook with only M = 4 entries as representative for
a small fixed codebook is created. This is equivalent to strongly averaged
and imprecise a priori knowledge. This configuration is named: B small
fixed ref. CB (M=4).

5.8.3 Modified Decision-Directed SNR Estimation

The new decision-directed SNR estimate ξ̂mod(λ, µ) is compared to the conventional
decision-directed approach ξ̂(λ, µ) using the reference codebook implementation in
both configurations and the standard noise reduction system utilizing the SPP noise
estimator. This is achieved by selecting either ξ̂mod(λ, µ) or ξ̂(λ, µ) in Fig. 5.3 for the
calculation of the weighting gain G(λ, µ). The performance is evaluated by means of
the objective scores. Since the information combining block in Fig. 5.3 is disabled

5This choice is a tradeoff between the accuracy of a priori knowledge on noise and
numerical complexity. With respect to the employed computer cluster of 150 nodes and the
processing time, M is set to 44, yielding L ·M ·Nq = 90112 distance calculations per frame.
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Figure 5.4: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as vari-
able parameter (Setup: Fig. 5.3 configuration a , i. e., brute force
codebook search, disabled information combining block)
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Figure 5.5: The cepstral distance (CD) is depicted over the input SNR (Setup:
Fig. 5.3 configuration a , i. e., brute force codebook search, dis-
abled information combining block).
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in this investigation, the speech and noise estimates yield ŜIC(λ, µ) = ŜCB(λ, µ)
and N̂IC(λ, µ) = N̂CB(λ, µ), respectively.

Figure 5.4 depicts the averaged results for SegSA plotted over SegNA with the
input SNR as variable parameter. Hence, a fair comparison with respect to the
tradeoff SegNA versus SegSA is possible. The points of best performance would be
placed in the lower right corner of that figure. At first, the results based on the
conventional SNR estimates ( , , ) are analyzed amongst each other,
allowing a fair comparison of the codebook based noise reduction systems ( ,

) with the statistical based one ( ). As expected by the very condensed
a priori knowledge on noise, the codebook based system using configuration B
( ) marks the lower bound of the performance. Compared with SPP ( ), a
lower SegSA is observed over the complete input SNR range, but at the expense
of a significantly lower SegNA. The good SegSA performance is confirmed by the
best performance of the CD measure ( ) presented in Fig. 5.5. Comparing the
codebook enhancement system using configuration A ( ) with the SPP based
conventional system ( ), a reduced performance regarding the SegNA measure
is visible, yet significantly better than the codebook approach using configuration
B ( ). This is plausible since the noise codebook exhibits four codebook entries
of each occurring noise type. Regarding the SegSA scores, the good performance
of approach B is reflected, achieving the best scores for low input SNR.

In general, the use of the speech estimate ŜIC(λ, µ)= ŜCB(λ, µ) for the calculation
of the new SNR estimate ξ̂mod(λ, µ) is beneficial over the complete input SNR range
( , vs. , ). The noise attenuation performance increases while
the speech attenuation holds approximately the same, except from an outlier at
−10 dB input SNR for both configurations. Moreover, the codebook approach using
configuration A ( ) utilizing ξ̂mod(λ, µ) exhibits a similar SegNA performance
compared with the SPP based system ( ). The performance gain from the new
SNR estimate ξ̂mod(λ, µ) is also reflected in the CD measure, cf. Fig. 5.5. Over the
complete input SNR range a lower CD is observed. It is notable that although the
SegNA is increased the speech distortion is reduced at the same time.

5.8.4 Information Combining
In this section the information combining procedure is analyzed by means of the
reference codebook implementations, i. e., configuration a in Fig. 5.3 with enabled
information combining block. Since no VAD information is available, the brute force
codebook search is performed in each frame λ. Several speech and noise estimates are
merged to obtain a refined speech estimate ŜIC(λ, µ) and noise estimate N̂IC(λ, µ).
As depicted in Fig. 5.3, the speech estimates are provided by the codebook matching
unit ŜCB(λ, µ) and the decision-directed speech estimate ŜDD(λ − 1, µ) of the
last frame. Note that the determination of ŜDD(λ − 1, µ) is independent of the
refined speech estimate ŜIC(λ, µ) in order to prevent error propagation. The noise
estimates comprise the estimate N̂CB(λ, µ) from the codebook matching as well as
an independent statistically based noise estimate N̂Stat(λ, µ), e. g., Sec. 3.4.1.
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Example of Information Combining

A noisy input signal is generated consisting of ten different, six seconds long
stationary and non-stationary noise types mixed with five male and female English
speakers taken from the TIMIT database [Garofolo & Consortium 1993] at 0 dB
SNR. In order to increase the contrast between the statistical N̂Stat(λ, µ) and the
codebook based N̂CB(λ, µ) noise estimate, N̂Stat(λ, µ) is provided by Minimum
Statistics [Martin 2006] and parameterized as suggested by the author. The
parameters for the simulation remain the same as for the benchmark (cf., Tab. 5.1).

The result of the information combining procedure is summarized in terms of
spectrograms in Fig. 5.6 for noise and in Fig. 5.7 for speech, respectively. For each
plot, the most meaningful time section of the 60 s example is depicted. The two
spectrograms placed in the middle of each figure depict the two input estimates
which yield the refined estimate depicted in the lower spectrogram after information
combining. In the upper plot either the noise or clean speech signal is presented as
reference and marks the upper bound for the estimates N̂IC(λ, µ) and ŜIC(λ, µ).

While the codebook driven noise estimate N̂CB(λ, µ) in Fig. 5.6 exhibits a
reasonable performance with respect to the temporal structure, the statistical based
estimate N̂Stat(λ, µ) is reliable regarding the stationary noise components. However,
significant estimation errors occur occasionally in N̂CB(λ, µ), e. g., at position 45.4 s,
46.5 s and while “wind” noise is present for frequencies greater than 2 kHz. Due
to the sliding time window of Minimum Statistics, a significant underestimation
of the noise is often caused by the transition of noise types, e. g., from “wind”
to “jackhammer” noise at 54 s. The spectrogram of N̂IC(λ, µ), demonstrates that
the information combining procedure is able to combine the best of both noise
estimates, yielding a refined noise estimate which exhibits a precise spectral and
temporal structure. Moreover, dominant estimation errors are compensated by the
respective other noise estimate.

Since the speech codebooks exhibit spectral envelopes, the speech estimate
ŜCB(λ, µ) is spectrally smooth as illustrated in the second spectrogram of Fig. 5.7.
While this yields a sub-optimal estimate for voiced sounds, unvoiced sounds are
in contrast estimated reliably, e. g., at position 4.9 s or 15.7 s. On the other hand,
the decision-directed estimate ŜDD(λ, µ) is a rather aggressive estimate of speech
which tends to especially underestimate unvoiced sounds. However, voiced sounds
are precisely estimated including the spectral fine-structure caused by the speaker
dependent pitch, e. g., at 3.5 s or 9.5 s. Similar to the information combining of the
noise estimates, the speech estimate after information combining merges the best
of both speech estimates as shown in the corresponding spectrogram in Fig. 5.7.
More insights into the combining behavior are gained by analyzing the respective
information combining weights, which are visualized by means of spectrograms in
Fig. 5.8. Blue areas indicate a weight close to zero, while red areas denote weights
close to one. In general, it is observed that the magnitudes minima between the
pitch harmonics of voiced sounds are canceled out preferring the speech estimate
ŜDD(λ, µ). Whereas at the pitch lines either ŜCB(λ, µ) or ŜDD(λ, µ) is selected,
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Figure 5.6: Example of information combining depicted as spectrograms. Two
different noise estimates N̂CB and N̂Stat are combined yielding the
enhanced estimate N̂IC. The true noise N is depicted as reference
in the upper spectrogram.
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Figure 5.7: Example of information combining depicted as spectrograms. Two
different speech estimates ŜCB and ŜDD are combined yielding the
enhanced estimate ŜIC. The true speech S is depicted as reference
in the upper spectrogram.
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0

1

0 6 12 18
0

2

4

6

8

4.9 9.5 15.7

Time / s

Fr
eq

ue
nc

y
/

kH
z

Weights c2(λ, µ) + c4(λ, µ) of ŜDD(λ, µ)
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Figure 5.8: Example of information combining weights of the speech
estimates ŜCB and ŜDD corresponding to Fig. 5.7 are
depicted as spectrograms. According to Eq. (5.18) the
speech estimate ŜIC(λ, µ) after information combining yields
[c1(λ, µ) + c3(λ, µ)] · ŜCB(λ, µ) + [c2(λ, µ) + c4(λ, µ)] · ŜDD(λ, µ)
with Ŝ1 = ŜCB and Ŝ2 = ŜDD.

e. g., at 9.5 s. This indicates that the spectral envelope of voice sounds is in general
estimated reliably by ŜCB(λ, µ). Moreover, voiced sounds are more frequently
selected from the codebook driven estimate ŜCB(λ, µ) as demonstrated at, e. g.,
position 4.9 s, 15.2 s or 15.7 s.

Noise Reduction Performance

The performance is also rated in terms of objective speech enhancement scores.
For the calculation of the weighting gain G(λ, µ) the conventional decision-directed
approach ξ̂(λ, µ) is used. The statistical noise estimate N̂Stat(λ, µ) for information
combining is provided by Baseline Tracing, cf. Sec. 3.5. The parameters for the
simulation and the VAD setup remain the same as detailed in Sec. 5.8.1.

It should be noted that the focus of this section is to emphasize the performance
gain by applying information combining to the codebook driven enhancement
systems and to create a reference for the evaluation of the online noise codebook
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Figure 5.9: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as vari-
able parameter (Setup: Fig. 5.3 configuration a , i. e., brute force
codebook search).

adaptation detailed later in Sec. 5.8.5. It is not intended as an unfair comparison
with the conventional SPP based enhancement system.

In Fig. 5.9 the averaged results are presented for SegSA plotted over SegNA
with the input SNR as variable parameter. Dashed lines ( ) indicate the noise
reduction systems utilizing the information combining block in Fig. 5.3, while solid
lines ( ) depict the regular approach known from Sec. 5.8.3 without information
combining. Again, the SPP based enhancement system ( ) is depicted as
representative for conventional speech enhancement. As indicated by the previous
examples, the use of information combining ( , vs. , ) yields a
tremendous performance gain. This is also reflected in the objective scores where
a considerable enhancement is observed for both configurations of the codebook
matching. Evaluating configuration B, employing the condensed noise codebook,
the use of information combining ( vs. ) provides a significant improvement
regarding SegNA, with a lead up to 3.7 dB. While for low input SNR (−10dB to
0 dB) the SegSA measure performs slightly worse, a better performance in SegSA
is observed for the remaining SNR range. Hence, for SNRs greater than 0 dB both
measures are improved by information combining simultaneously. Consulting the
results from the CD measures depicted in Fig. 5.10, this observation is confirmed.
Utilizing information combining ( ), the speech distortion, as indicated by CD,
performs better starting with 0 dB SNR.

A similar behavior is noticeable for configuration A ( vs. ), using the
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Figure 5.10: The cepstral distance (CD) is depicted over the input SNR (Setup:
Fig. 5.3 configuration a , i. e., brute force codebook search).

large noise codebook. Since the a priori knowledge on noise is better, this approach
performs inherently better compared with configuration B ( , ). While the
performance gain regarding SegNA is likewise utilizing information combining, the
improvement of SegSA for high input SNR is more pronounced. This is reflected in
terms of speech distortion as the CD enhancement utilizing information combining
is prominent over the complete input SNR range and exhibits a more distinct
improvement.

In comparison with the conventional system ( ), both codebook driven
enhancement systems ( , ) are clearly superior utilizing information com-
bining. While the SegNA is greater (except for very high input SNR), the SegSA
and CD are simultaneously lower.

Analysis of the Estimation Errors

From the benchmark of the previous section, the estimation errors of the respective
speech and noise estimates are investigated. At first, a lower bound for the
estimation errors of speech and noise is defined. Given the true speech S(λ, µ)
and noise N (λ, µ) signals, which are available in the simulation environment, it is
possible to calculate the true power of the estimation errors regarding the different
speech

∣∣ESs (µ)
∣∣2 and noise

∣∣ENn (µ)
∣∣2 estimates, respectively. Optimal information

combining depending on the true error powers is carried out independently for
the speech and noise estimates by applying Eq. (5.15) and Eq. (5.46) likewise.
The estimates obtained from this procedure are denoted by ŜIC,opt(λ, µ) and
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N̂IC,opt(λ, µ) and are considered as the best possible estimates. These estimates are
compared to the regularly computed estimates ŜIC(λ, µ), N̂IC(λ, µ), the individual
estimates ŜCB, ŜDD, N̂CB, N̂Stat, as well as a representative of a simple information
combining by averaging the individual estimates given by

Ŝmean(λ, µ) = 1
Ns

Ns∑

s=1

Ŝs(λ, µ), N̂mean(λ, µ) = 1
Nn

Nn∑

i=1

N̂n(λ, µ). (5.58)

The estimation errors of speech: ESIC, ESCB, ESDD, ESmean, and noise: ENIC, ENCB,
ENStat, ENmean are calculated in the MSE sense for each frame of the benchmark. For
the sake of clarity, a normalization with respect to the maximum occurred error
from the optimal estimates ESIC,opt or ENIC,opt is carried out, respectively. For a
clear presentation, the delta errors, given by

∆ESs = ESs − ESIC,opt, s ∈ {IC,DD,mean}, (5.59)
∆ENn = ENn − ENIC,opt, n ∈ {IC, Stat,mean}, (5.60)

are computed and summarized in Fig. 5.11 separately for speech and noise. The
respective delta errors (∆ESs , ∆ENn ) are depicted over the normalized estimation
error of the optimal estimate (ESIC,opt, ENIC,opt). Hence, the abscissa of the plots
range from zero to one. Ordinate values greater than zero indicate an additional
error compared to the optimal estimate, which is considered as lower bound of the
estimation errors. The ordinate intercept is chosen from zero to three and presents
the most meaningful section.

In Fig. 5.11a the estimation errors of speech are outlined. The upper plot depicts
the delta estimation errors of the individual estimates, i. e., ∆ESCB and ∆ESDD. Since
the codebook based speech estimate ŜCB provides only spectral envelopes, which
are sub-optimal estimates, the largest delta errors ∆ESCB among all methods are
observed. In contrast, the delta estimation errors of the decision-directed speech
estimates ∆ESDD performs significantly better. In the lower plot, the performance of
the combined speech estimates is shown. While the simple information combining
method by averaging ∆ESmean is able to outperform the codebook driven speech
estimate, a rather similar performance is observed regarding ∆ESDD, yet yielding a
smaller variance. The proposed information combining methods clearly performs
best. In addition, the mean and the variance of the delta errors of each method
are summarized in Tab. 5.2. It is notable that the mean and variance of the delta
estimation error ∆ESIC for the proposed method is close to zero.

The estimation errors regarding the noise estimates are depicted in Fig. 5.11b.
As the statistical based noise estimate N̂Stat(λ, µ) is not able to follow non-stationary
noise, the worst performance is expected and confirmed by ∆ENStat. In turn, the
codebook based noise estimate ∆ENCB is also able to follow non-stationary noise
and thus clearly outperforms the statistically based estimate. The difference
between both methods is considerably pronounced compared to the individual
speech estimation methods. For this reason, the simple information combining
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Figure 5.11: Insights into the estimation error of indirect information com-
bining. The delta mean-square error (MSE) ∆ES,NIC is depicted
over the normalized reference MSE ES,NIC,opt, which is obtained
from information combining utilizing the true estimation error
powers of speech and noise.
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delta error ∆ESs of speech delta error ∆ENn of noise

ŜCB ŜDD Ŝmean ŜIC N̂CB N̂Stat N̂mean N̂IC

mean 0.67 0.35 0.29 0.07 0.31 3.38 0.98 0.03
variance 0.86 1.12 0.15 0.10 2.18 127.48 9.56 0.02

Table 5.2: Mean and variance of the delta estimation errors ∆ESs and ∆ENn
of the different speech and noise estimates.

method by averaging ∆ENmean performs worse compared to the codebook based
noise estimate ∆ENCB. Again, the proposed method ∆ENIC clearly achieves the best
scores, with a delta error very close to zero. The results are confirmed by Tab. 5.2.

Although the information combining of the proposed method is carried out
indirectly, the performance is virtually unaffected compared to the information
combining method exhibiting perfect knowledge on the estimation errors of speech
and noise. In case of noise estimation, the proposed method performs even better
compared to speech estimation.

5.8.5 Online Noise Codebook Adaptation
The investigations of the previous sections were based on the reference codebook
system which employs a pre-trained noise codebook. Since the noise codebook
training includes all considered noise types, the system covers unrealistic use cases
in general. In this section the online noise codebook adaptation as explained
in Sec. 4.5 is evaluated. The corresponding parameters for the VAD and online
learning are summarized in Tab. 5.3. Since the information about speech activity
is inherently available, the brute force codebook search is only applied in phases
of speech activity. Hence, the codebook matching and VAD block of Fig. 5.3 is
setup with configuration a as depicted in Fig. 5.1. The fixed part of the noise
codebook uses the very condensed noise codebook (M� = 4) from configuration B
of the reference system and the maximum number of codebook entries is defined
as M = 12, i. e., M◦ = 8 adaptive codebook entries. Hence, after r = 2 online
codebook updates the less used entries of the last LW frames are replaced in the
adaptive part of the codebook.

Figure 5.12 presents the averaged results for SegSA plotted over SegNA with the
input SNR as variable parameter. For reference, the SPP based enhancement system
( ) is depicted as well as the reference codebook system with configuration A
(M = 44, , ). Utilizing the online noise codebook adaptation ( , )
improves the SegNA enormously over the complete input SNR compared with all
reference systems ( , , ), e. g., up to 5.8 dB comparing with
at 0 dB input SNR. Utilizing the modified decision-directed SNR estimate ξ̂mod
( ) is advantageous again.

If the input SNR is very low, the occurrence of false positives during VAD
is increased (cf. Sec. 4.4.4). Hence, speech contributes occasionally to the noise
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Parameter Settings

Training frames LT 40
VQ output size M∆ 4 codebook entries
Hangover VAD margin LH 60 frames
Adaption margin LM 40 frames
Hit rate T 80%
Speech codebook size L 128 entries
Histogram window LW 500 frames
Smoothing parameters ασ↑ | ασ↓ 0.8 | 0.91
Gain ceiling factor bounds ηmin|ηmax 3 dB | 15 dB
Ceiling minimum bc,min 3
Relative shift ∆ 0.2 s−1

Speech presence factor βsp 1/4

Speech gain SNR window length Tw 0.1 s
(
=̂
⌈
fs
LA
Tw
⌉

= 10 frames
)

Binary VAD threshold thr 0.5
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Table 5.3: Algorithm specific parameters
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Figure 5.12: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as
variable parameter (IC: information combining, Setup: Fig. 5.3
configuration a , i. e., brute force codebook search).
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Figure 5.13: The cepstral distance (CD) is depicted over the input SNR (Setup:
Fig. 5.3 configuration a , i. e., brute force codebook search).

codebook and results eventually in an unfavorable a priori SNR estimate. In
consequence, speech is wrongly attenuated which is visible in the SegSA measure
for low input SNR up to 0 dB. Starting with 0 dB input SNR both proposed methods
( , ) perform likewise compared with SPP ( ) regarding SegSA. For
high input SNR the SegSA performance is comparable with the reference codebook
system ( , vs. , ) achieving the best scores.

With respect to speech distortion the CD is depicted in Fig. 5.13. Again the
use of the modified decision-directed SNR estimate ξ̂mod ( ) performs superior
over the complete input SNR range, converging for very high input SNR. Both
proposed systems ( , ) outperform SPP ( ) over the complete input
SNR range. The objective scores of the reference codebook system using ξ̂mod
( ) are already achieved by the proposed system utilizing ξ̂ ( ) while the
proposed system using ξ̂mod ( ) clearly scores best.

Although the reference codebook system with configuration A exhibits four
noise codebook entries per noise type, the proposed online noise codebook learning
method scores significantly better. Hence, specific noise learning in the local past
is beneficial and allows to provide a very precise estimate of the underlying noise
signal.

However, a local maximum regarding CD is observed at 0 dB input SNR for
the proposed system utilizing ξ̂mod ( ). Since in Eq. (4.4) the cross-term,
2σsσn |Sl| |Nm| cos(ϑS(µ)− ϑN (µ)), is neglected for the codebook matching proce-
dure, the strongest inherent estimation error can be expected for 0 dB SNR. See
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Appendix D for further details. Moreover, as the input SNR increases or decreases,
the estimation error decreases which results in decreased speech distortion and is
confirmed by the course of the CD curve ( ). Since the speech estimate ŜIC is not
used for the a priori SNR estimate ξ̂, the error resulting from max (γ(λ, µ)− 1, 0)
in Eq. (4.19) appears to dominate. Hence, the effect of the local maximum is not
visible in the CD curve ( ) of the proposed system utilizing ξ̂. The same applies
for the reference codebook system . Although the new SNR estimate ξ̂mod is
used, the imprecise a priori knowledge on noise causes the dominant error in the
SNR estimation.

5.8.6 Complexity Reduction
The previous section confirmed a superior performance of the proposed enhancement
system utilizing online noise codebook learning. This is due to the very precise
estimate of the underlying noise signal. With respect to speech enhancement
applications, a dramatic complexity reduction of the codebook matching process
is necessary. Utilizing the VAD and information combining algorithm, the brute
force codebook search is replaced by a cascade of gain shape VQs as suggested in
Sec. 5.7.2. Hence, the codebook matching and VAD block of Fig. 5.3 is setup with
configuration b which is detailed in Fig. 5.1. The online noise codebook learning
remains. This configuration is referred as gain shape cascade (GSC) in the legend
of the respective plots. Note that the legend entry IC belongs to the activated
information combining block depicted in Fig. 5.36.

At first, the number of distance calculations which are necessary for either of the
methods are investigated. While for the brute force codebook search the number of
distance calculations is given by

ND,BF = p · (L ·M ·Nq)︸ ︷︷ ︸
brute force

+(1− p) · (M + L+ 2)︸ ︷︷ ︸
gain shape + VAD

, (5.61)

the gain shape VQ based approaches7 need

ND,GSC = p · (2 · (L+M + 2))︸ ︷︷ ︸
gain shape cascade

+(1− p) · (L+M + 2)︸ ︷︷ ︸
gain shape + VAD

, (5.62)

distance calculations. Hence, the reference codebook system with configuration
A comprising the large noise codebook without VAD knowledge (p = 1), needs
ND,BF,refFixedA = 90112 distance calculations per frame. Assuming 50% speech
presence (p = 0.5), the proposed codebook system utilizing online noise codebook
adaptation and the brute force search requires only up to ND,BF,adaptive = 12359

6Combining GSC and IC, the information combining algorithm is applied twice. First,
while codebook matching using the estimates provided by the cascade of gain shape VQs and
second in the information combining block.

7Note that the gain calculation is taken into account by adding +2 inside the brackets as
the gain calculation is similarly computational complex to the distance calculation.

128



5.8 Evaluation

16 18 20 22 24 26 28 30 32
0

5

10

15
Prop. adaptive CB (M=M�+M◦ ≤12)
A large fixed ref. CB (M=44)
SPP [Gerkmann & Hendriks 2011]

SNR ξ̂

SNR ξ̂mod

IC + brute force
IC + GSC

35 dB SNR

0dB SNR

-10 dB SNR

20 dB SNR

good

SegNA / dB

Se
gS

A
/

dB

Figure 5.14: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as
variable parameter (IC: information combining block, GSC: gain
shape cascade).

distance calculations on average due to the significantly reduced codebook size and
the use of the VAD. In contrast, the proposed codebook system utilizing information
combining and the full complexity reduction requires merely ND,GSC,adaptive = 213
distance calculations per frame on average, which is a tremendous complexity
reduction.

In Fig. 5.14 the averaged results for SegSA plotted over SegNA with the input
SNR as variable parameter are depicted. Again, the SPP based enhancement
system ( ) as well as the reference codebook system with the large noise
codebook ( ) are depicted for reference. For low input SNRs of up to 0 dB,
the proposed system utilizing gain shape VQ cascade and the system employing
the brute force search ( , and , ) perform likewise independently
of the SNR estimation method. However, with increasing SNR the performance
diverges. For the proposed systems comprising the gain shape VQ cascade ( ,

) the SegNA increases but at the expense of SegSA. This is observed for both
a priori SNR estimates. Consulting the results from the CD measure depicted in
Fig. 5.15, the increased SegSA is reflected as increased speech distortion.

The unsteady course of the curve ( ) in Fig. 5.14 around 20 dB input SNR
caused by the method utilizing the gain shape VQ cascade and the modified
decision-directed SNR estimate is noted and further investigated. Hence, the
averaged results are divided into four classes of noise types: stationary (F16,
highway inside car), transient fast (jackhammer, wind, indoor soccer), transient
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Figure 5.15: The cepstral distance (CD) is depicted over the input SNR
(IC: information combining block, GSC: gain shape cascade).
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Figure 5.16: The segmental speech attenuation (SegSA) is depicted over the
segmental noise attenuation (SegNA) with the input SNR as
variable parameter for different noise types (IC: information
combining, GSC: gain shape cascade).
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slow (outside traffic road, living-room, train station, forest, modulated Gaussian
noise), and transient babble (pub noise, inside train). The results of each noise
class are depicted in Fig. 5.16. For the sake of clarity, the results from the transient
babble noise class are presented transparent. From Fig. 5.16 it is obvious that the
observed unsteady course is caused by babble noise ( ). Due to the inherent
problem with speech-like noise types this behavior can be expected. Since speech
seems to be present all the time, as wrongly indicated by the VAD, the noise
codebook does not exhibit suitable noise knowledge. Hence, the noise estimate after
codebook matching is underestimated. This is true for both codebook matching
approaches, but more distinctive for the gain shape VQ cascade driven approach.
Starting with 15 dB input SNR, babble noise is detected reliably as noise by the
proposed VAD. Thus, the observed performance leap in the SegNA measure is the
result at 20 dB input SNR.

The remaining noise type classes ( , , ) describe a steady course over
the input SNR. However, a slightly increased SegSA of approx. 1 dB is observed
for very high input SNR and for very low input SNR the SegSA is also increased.

In addition, Fig. 5.16 allows to compare the proposed noise reduction system
utilizing the full complexity reduction ( ) with a conventional state-of-the-art
system utilizing the SPP noise estimator ( ). With the exception of babble
noise, a tremendous performance gain is achieved by the proposed noise reduction
system, especially for the noise type class “transient fast”, e. g., with up to 12 dB
SegNA improvement.

In order to analyze the occurrence of musical tone artifacts, a noisy input
signal is generated consisting of ten different, six seconds long stationary and
non-stationary noise types mixed with five male and female English speakers taken
from the TIMIT database at 0 dB SNR. The variance of the spectral gains G(λ, µ) is
depicted in Fig. 5.17 over the frequency for the conventional state-of-the-art ( )
system and the proposed system ( ). Although the proposed system achieves
best scores regarding noise attenuation (26.7 dB vs. 18.6 dB SegNA) and speech
distortion (6.2 dB vs. 6.5 dB CD) in this example, the variance of the spectral
weighting gains is decreased. This is an indicator for strongly reduced musical
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tones, which is confirmed by informal listening test. In contrast to the conventional
noise reduction, musical tones are almost removed.

5.9 Summary
A generic solution is formulated for the joint speech and noise estimation problem
given the noisy observation. The solution considers several speech and noise
estimates and provides optimal mixing coefficients with respect to minimized
estimation error power regarding the noisy observation. At first, various estimates
of the noisy observation are computed by permuting all different speech and noise
estimates. Based on a distance measure between these estimates and the noisy
observation optimal mixing coefficients for each frequency bin of the individual
speech and noise estimates are determined. Applying the optimal mixing coefficients
to the individual speech and noise estimates yields the final refined speech and
noise estimate. This procedure is called Information Combining.

Although the proposed noise codebook online adaptation minimizes the probabil-
ity of missing a priori knowledge on noise, it is not guaranteed that an appropriate
codebook entry is available for each noisy observation Y, e. g., due to changing
noise while speech is present. In such cases, a second noise estimate N̂Stat, e. g.,
provided by the newly proposed statistical noise estimator Baseline Tracing, is
additionally considered. Utilizing the codebook driven speech estimate ŜCB and
the two different noise estimates N̂CB, N̂Stat, two estimations Ŷ1,2(λ, µ) for the
noisy observation Y are computed. For both permutations Ŷ1,2(λ, µ) a distance
to the noisy observation is calculated. Based on these distances, optimal mixing
coefficients for each frequency bin are calculated which minimize the estimation
error power regarding the noisy observation. Subsequently, both estimates are
merged resulting in the refined noise estimate N̂IC. Given a second speech estimate,
e. g., from the last enhanced frame of the speech enhancement system, the Infor-
mation Combining is likewise extended to also provide a refined speech estimate
ŜIC. The evaluation verified a tremendous improvement of noise attenuation, while
the speech distortion is reduced simultaneously.

With respect to feasible applications, e. g., mobile phones, a significant com-
plexity reduction is necessary which is accomplished by replacing the brute force
codebook matching. In a first step of the complexity reduction, the brute force
search is only applied in phases of speech activity exploiting the information from
VAD. During speech absence a gain shape VQ is utilized, i. e., the spectral shape
is determined using the noise codebook in a first step and the calculation of the
associated gain in a second step. With respect to gain shape VQ two scenarios
exist which allow the substitution of the brute force codebook matching. Given a
very high SNR, the brute force search can be replaced by gain shape VQ utilizing a
speech codebook and setting the noise estimate to zero. In the opposed case, a noise
codebook can be utilized and the speech estimate yields zero. With these considera-
tions, two cascades of gain shape VQs are constructed. The first cascade consists of
gain shape VQ utilizing a noise codebook which provides the estimate N̂GS1(λ, µ).
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Hereafter, a second VQ utilizing a speech codebook processes max(Y−N̂GS1, 0) and
yields the speech estimate ŜGS1(λ, µ). The second cascade is structured vice versa.
While the first cascade provides a reliable noise estimate for low SNR, the second
cascade provides a robust speech estimate for high SNR. Utilizing the Information
Combining procedure again, the best of all estimates is combined yielding the final
estimates of speech and noise. Hence, the brute force search is replaced by four
VQs and subsequent Information Combining. The proposed complexity reduction
decreases the number of distance calculations by a factor of approximately 60 from
12359 to 213. The proposed codebook matching exhibiting the full complexity
reduction is characterized by almost the same performance regarding noise and
speech attenuation, but at the expense of moderately increased speech distortion
compared with the brute force search. Hence, Information Combining can be used
for both, improving the estimation quality and reducing the complexity.

The proposed codebook based noise reduction system clearly outperforms
conventional state-of-the art noise reduction systems. The evaluation of the new
modified decision-directed a priori SNR estimate ξ̂mod, incorporating also the
speech estimate, confirmed a superior performance. While the noise attenuation
is improved, the speech distortion is reduced at the same time. A tremendous
performance gain is achieved, especially for transient and fast types of noise, e. g.,
of up to 12 dB improved noise attenuation compared with state-of-the art systems.
Although the proposed system achieves best scores regarding noise attenuation
and speech distortion, the variance of the spectral weighting gains is decreased
compared with conventional systems. This is an indicator for strongly reduced
musical tone artifacts, which is confirmed by informal listening tests. Musical tones
are almost removed.
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Chapter 6

Real-Time Implementation

6.1 High Quality Video Conferencing

A multimodal signal processing concept is proposed [CoVR 2013; Schlien et al. 2013]
which is suitable for flexible high-quality multi-point video conferencing. In contrast
to other, commercially available high quality solutions, e. g., from Cisco, Tandberg,
and Polycom, this system has been intentionally designed for off-the-shelf consumer
electronics at low cost. The desired high-quality communication is achieved by a
novel integration of dedicated algorithms for signal analysis and signal enhancement,
combined with state-of-the-art coding and transmission techniques. The proposed
multimodal signal processing concept enables a new audio-video scene composition
as a key feature, where the most active participants are placed side by side in a
virtual conference at the receiver (see Fig. 6.1). The gained information is further
employed to control the media encoders for improved compression efficiency. The
identification and extraction of the talkers – and their audio and video signals –
represents the major challenge, especially with multiple participants at the clients.

The technical focus regarding video analysis is on face detection and tracking.
For audio analysis, near field beamforming has been identified as the most important
aspect. The results of the video analysis are input to the audio analysis. Besides
the classical task of attenuating competing sound sources and background noise,
the beamformer outputs are further used for speaker activity estimation. Metadata
generated from these analyses is further exchanged and exploited in the network
side processing and the receivers.

Concepts of joint processing or multimodal fusion for improved multimedia
signal analysis have been a long-term research topic. In [Bub et al. 1995] an early
scheme for visually guided beamforming has been proposed. A system with a
video camera and two microphones has been discussed, e. g., in [Zhou et al. 2008].
Recently, [Minotto et al. 2014] used an eight-microphone-array and a video camera
for multimodal voice activity detection and sound source localization. Related work
on participant detection, localization and composition of audio-visual signals has
been presented, e. g., in [Jansen et al. 2011; Q. Liu et al. 2014; Zhang et al. 2008].
A general survey on multimodal fusion can be found in [Atrey et al. 2010]. [Strobel
et al. 2001] provide a good overview on joint audio-video object localization.

For evaluation and demonstration of the proposed concept, a real-time prototype
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(a) Demonstrator (b) Scene composition

Figure 6.1: Real-time demonstrator setup and illustration of a scene composi-
tion of most active talkers in a video conference

was developed. This prototype enables experiments and evaluations of the proposed
algorithms in real environments and conditions. The real-time prototype video
conferencing system is IP Multimedia Subsystem (IMS) compliant. It consists
of consumer electronics, namely stereo loudspeakers, eight microphones, a video
camera, and two LCD-TVs. A single quadcore PC is able to perform all audio and
video signal processing and all IMS-related services of the client. The setup of the
real-time demonstrator is shown in Fig. 6.1a.

The first presentation of the demonstrator was on the International Workshop
on Acoustic Signal Enhancement (IWAENC 2012) [Hamm et al. 2012]. Here, the
individual audio and video parts were showcased. These were the beamformer,
the audio rendering, the artificial bandwidth extension (BWE), and the person
detection and tracking. Techniques for BWE [Jax & Vary 2003] extend the limited
audio bandwidth of current narrowband telephone systems (0.3 – 3.4 kHz) towards
the wideband frequency range (0.05 – 7 kHz). The BWE is applied to the narrow-
band signal, e. g., from telephone dial-in, to align the speech quality in terms of
the acoustic bandwidth. This improves the speech intelligibility as well as the
listening comfort in heterogeneous communication scenarios [Heese et al. 2012a].
For the demonstrations at the CeBIT 2013 and the Workshop Audiosignal- und
Sprachverarbeitung (WASP) at the INFORMATIK 2013 [Schlien et al. 2013], the
complete demonstrator was showcased. Live conferences between the demo location
and two clients at RWTH Aachen University were established. Thereby, the final
scene composition output as well as the effect of the BWE for telephone dial-in
were successfully demonstrated in a real-life scenario.
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Figure 6.2: Experimental setup: video conferencing scenario

6.1.1 Evaluation of Speaker Activity Estimation
The identification and separation of the most active talkers is the task of the pro-
posed multimodal signal analysis. The resulting activity indices jointly comprise the
information from the audio and video analysis. For their evaluation an assessment
of the spatial information from video as well as the activity estimation from audio
is needed. This section focuses on the evaluation of the audio analysis and the
impact of the spatial information provided by the video analysis. The stability of
the tracking algorithm and the possible bitrate savings due to region of interest
(ROI) encoding have been evaluated in [Hosten et al. 2013] and [Bulla et al. 2013].

A typical video conference scenario was arranged in a room, as depicted in
Fig. 6.2. The room has a reverberation time of 0.32 s and the eight sensors of
the microphone array have a spacing of 4 cm with a gap of 30 cm for the camera
mounting in the center. The sampling frequency is set to fs = 48 kHz. Audio
and video signals of three participants were recorded with a duration of about
5min comprising single- and multi-talk sequences in different variations. The three
participants were placed in front of the microphone array at a distance of 2.5m at
0◦, −17◦, and 17◦ azimuth in the horizontal plane.

The performance of the proposed audio analysis, i. e., beamforming and soft
voice activity detection (VAD), is evaluated in comparison to a conventional
beamformer and two other soft VAD systems, respectively. All possible combinations
of beamforming and soft VAD are applied to the test signals such that six different
combinations are tested in total. The configurations of the two beamformers are:

• Near Field Beamformer (NFB) - as proposed, cf. Sec. 2.1
The NFB is configured with N=6 non-uniform sub-bands. The corresponding
frequency range of each sub-band is given in Table F.1. The degree of the
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FIR sub-band beamformer filters hmn was set to L= 4. In advance, seven
individual filter sets for the near field beamformers were pre-computed for
seven talker positions in front of the array with an azimuthal resolution
of 9◦. During runtime, the video analysis unit first detects the number
and the positions of participants. With respect to these positions the most
appropriate filter sets for the near field beamformers are chosen for each
detected participant.

• Delay-and-Sum Beamformer (DSB) according to [Laakso et al. 1996]
Usually, this conventional beamformer operates under the assumption that
the target is far away from the microphone array. This allows the usage of
simple geometric rules for the determination of the parameters. Because
the far-field assumption does not hold in this application, the delay from
each participant to the eight microphones was calculated using the correct
distances on the basis of the provided angle from the video analysis assuming a
distance of 2.5m. This represents the best-case scenario for this beamformer.

For the soft VAD the following approaches are compared:
• Activity Index (AI) - as proposed, cf. Sec. F.1

The activity index calculation was configured with an audio frame length
of TF = 30 ms and a maximum statistics buffer V Buffer(λ) which contains
frames of the past 30 s. The initial energy normalization parameters were set
to LN = 30, γ = 0.8, and V min = 0.08,

• Ghosh according to [Ghosh et al. 2011],
• Sohn according to [Sohn et al. 1999].

Both conventional soft VAD (Ghosh, Sohn) systems are parameterized as suggested
in their original publications. The task of the audio analysis is to mark the phases
of activity and inactivity individually for the three talkers, i. e., to perform a speaker
activity estimation as a function of time and space.

Finally, an objective evaluation of the six combinations is performed which is
based on a numerical comparison of the VAD vbin,n(λ) with the ground truth VAD
vtrue,n(λ), where n represents the participant index. Thus, for each soft VAD value a
corresponding hard decision value vbin,n(λ) is derived named VAD-AI, VAD-Ghosh,
and VAD-Sohn, respectively. For a better comparability, the thresholds for the
determination of these hard decision values were adjusted such that all systems
yield detection rates in the same order of magnitude. The numerical evaluation is
performed in terms of three VAD measures1:

• Accuracy rate Pa: Percentage of signal frames with correct VAD estimation;
• Detection rate (or true positive rate) Pd: Fraction of active speech frames

that are detected correctly;
• False alarm rate (or false positive rate) Pf : Fraction of speech frames without

speech that are classified erroneously as speech.

All VAD measures for the six combinations are detailed in Appendix F.2.
1The objective scores are detailed in Appendix C.4
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Figure 6.3: Accuracy rate Pa for different beamformers and VAD algorithms.
The results are evaluated and averaged over the occupied talker
positions as indicated by the video analysis stage.

Fig. 6.3 summarizes the VAD accuracy rate Pa by averaging over the three
talker positions. It is obvious that the proposed near field beamformer (NFB) in
combination with the VAD-AI ( ) achieves the best score with a Pa of 0.88. With
respect to the accuracy rate Pa the remaining combinations of beamformers and
VAD algorithms ( , ) show a significant performance loss. Comparing the NFB
and DSB, all VAD algorithms exhibit better scores when combined with the NFB.

Comparing the results of all talkers individually in Tab. F.2–F.4 the best rates
are observed for the proposed system, i. e., detection rates Pd in an order of 80%
and false alarm rates Pf of 5-6%. It is of special interest, that these results are
consistent among the three speakers reflecting the robustness of the approach. As
the hard decision thresholds were adjusted to yield similar detection rates, the low
accuracy rates Pa of the conventional VAD algorithms (Ghosh, Sohn) are due to
extremely high false alarm rates Pf .

In a last experiment, the performance of the stand alone audio analysis is
investigated, i. e., without location information from the video analysis stage. In
this case, beamformers have to be run in parallel for all possible participant positions
(i. e., positions 1 to 7 according to Fig. 6.2). For the evaluation, however, the focus is
on the results for the most critical non-occupied positions 3 and 5. Here, cross-talk
from neighboring occupied positions on both sides can occur.

The performance is quantified in terms of accuracy rate Pa and false alarm
rate Pf .2 The detailed results can be found in Appendix F.2, Tab. F.5. The
corresponding averaged accuracy rates Pa are depicted in Fig. 6.4. Again the
combination of NFB with VAD-AI ( ) leads to the best performance. It is notable
that this result of Pa ≈ 0.87 is almost equal to the result of Fig. 6.3 with Pa ≈ 0.88.
In contrast, the performance degradation of the five remaining combinations of
beamformers and VAD algorithms is even more pronounced.

2Since there are no talkers on these positions, the detection rate Pd can not be calculated
(Nd = 0).
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Figure 6.4: Accuracy rate Pa for different beamformers and VAD algorithms.
The results are evaluated and averaged over the most critical
non-occupied talker positions 3 and 5. This experiment illustrates
the case if no video information would be available.

This experiment shows the reliability and the stability of the audio analysis
by itself and additionally allows to quantify the impact of the video analysis on
performance and complexity. If the complementary information from the video
analysis is used, the accuracy rate for the non-occupied positions increases to 100%,
i. e., 13 percentage points better than by single-modal audio analysis. In terms of
computational complexity, a reduction of over 50% for the beamformer unit can
be achieved in this scenario as only three beamformers instead of seven are active
in parallel. Since the talker positions are necessary anyway for ROI encoding and
scene composition, no additional complexity is required for the video analysis stage.

If the accuracy rates over all positions 1 to 7 are averaged for the case when
video information is available, the overall accuracy rate results in 95%. At this
accuracy, virtually no artifacts in the scene composition of the demonstrator system
occur. In practice, all experiments with the real-time prototype using the NFB
and the VAD-AI verified a stable and reliable operation of the audio-visual scene
composition as indicated by the objective scores.

6.2 Real-Time Speech Enhancement for Mobile Phones
A real-time prototyping platform is proposed for rapid implementation, demonstra-
tion, and evaluation of speech enhancement algorithms. The focus is on telephone
applications. The FreeSWITCH – Open Source multi platform Software-PBX [Mi-
nessale et al. 2013] is an appropriate software basis for this purpose and supports
all eligible operating systems (Linux, OS X, Windows). It provides a powerful
audio signal processing application programming interface (API) and implements
necessary core features such as transcoding of audio codecs and media handling. Its
small system requirements makes it attractive for single-board computers (SBCs).
Moreover, various communication technology back-ends are integrated, e. g., voice
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Figure 6.5: Real-time speech enhancement for telephone applications.

over IP (VoIP), public switched telephone network (PSTN), and integrated services
digital network (ISDN).

Utilizing a SBC such as a Raspberry PI, a compact and comprehensive real-time
demonstrator, as depicted in Fig. 6.5, is assembled at low cost. Due to its geometric
size, this setup enables experiments under real conditions at various locations with
minimum effort. The SBC hosts FreeSWITCH as well as a simple user interface
using several LEDs. A standard CAT-iq capable SIP base station serves as gateway
between the terminal and FreeSWITCH. The terminal is a standard wideband
CAT-iq handset and supports the ITU-T G.711A (300Hz – 3.4 kHz) and G.722
(50Hz – 7 kHz) audio codecs. Furthermore, the terminal is able to remote control
FreeSWITCH via dual-tone multi-frequency signaling (DTMF). Hence, interactive
control of the speech enhancement algorithms is possible. Since the audio processing
is organized as a processing chain, the interaction of different speech enhancement
algorithms can be investigated.

Implemented applications are speech enhancement for the near end as well as
the far end, e. g.,

• Noise reduction A noisy near end signal captured by the microphone of
the handset, is enhanced for the far end by applying noise reduction, cf.
Chap. 3, 4 and 5;

• Near-end listening enhancement (NELE) On the other hand, the intel-
ligibility of a clean far end signal, perceived in strong near end environmental
noise, is enhanced by a pre-processing of the far end signal, e. g., [Heese et al.
2014b; Sauert et al. 2014; Sauert & Vary 2010; Shankar Chanda & Park
2007];

• Artificial bandwidth extension (BWE) The limited audio bandwidth of
narrowband telephone systems (300Hz – 3.4 kHz) is extended towards the
wideband frequency range (50Hz – 7 kHz) [Jax & Vary 2003]. This improves
the speech intelligibility [Heese et al. 2012a] as well as the listening comfort
in heterogeneous communication scenarios.
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The demonstrator was showcased on the International Workshop on Acoustic
Signal Enhancement (IWAENC 2012) [Hamm et al. 2012] demonstrating the BWE,
on the ITG Fachtagung Sprachkommunikation (ITG 2014) [Heese et al. 2014b]
presenting NELE, and on the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2014) [Sauert et al. 2014] performing NELE as well as
statistical based noise reduction.

6.2.1 Codebook Based Noise Reduction
Considering the computational capabilities of current SBCs, a further complexity
reduction of the proposed codebook based noise reduction is necessary, cf. Sec. 5.7
and Sec. 5.8.6. Since the speech codebook comprises spectral envelopes, the
estimation performance of speech remains behind compared with the codebook
driven noise estimation, which exhibits the full spectral resolution.

In a first step, the speech codebook size is investigated. Figure 6.6 depicts
different speech codebooks comprising L ∈ {4, 5, 8} entries. For five or more codebook
entries, voiced and unvoiced sounds are modeled separately, e. g., entry number
one models the long-term speech spectrum average (LTA) while entry number four
characterizes unvoiced sounds. With respect to the mentioned estimation quality of
speech, the codebook size is decreased from 128 entries to L = 5, which reduces the
number of distance calculations according to Eq. (5.62) from 213 to ND,GS = 28.5
on average using M = 12 noise codebook entries.

With respect to the algorithmic complexity, the codebook driven VAD is identi-
fied as expensive. In each frame λ the speech codebook is adapted to the current
noisy pitch, employing a cepstral approach (cf. Sec. 4.4.2), which is computational
expensive. Hence, the influence of pitch adaptation on the VAD performance is
analyzed. For this purpose, the same benchmark as in Sec. 4.4.4 is carried out,
except that the speech codebook size is set to L = 5 entries (same training sequence
of 3073 s) and the speech codebook pitch adaptation shown in Fig. 4.6 is deactivated.

When applying a VAD, a compromise between detection-rate Pd and false-alarm-
rate Pf has to be made by choosing an appropriate threshold. This compromise
can be visualized, utilizing a receiver operating characteristic (ROC) curve as a
function of varying thresholds3. A fixed but arbitrary threshold corresponds to a
specific point on the ROC curve. The averaged results for the original and modified
codebook based VAD are depicted in Fig. 6.7 separately for various signal-to-noise
ratios (SNRs). It is notable, that a significant difference between the codebook
based approaches turns out only for low input SNR values below 5 dB. The effect
is more pronounced for large thresholds resulting in small false-alarm rates Pf .
Since the pitch adaptation of the speech codebook has its major influence at very
low SNR conditions and in particular for large thresholds, it is discarded in the
following.

In order to analyze the impact of the modified VAD and the reduced number of
speech codebook entries with respect to the noise reduction, a further benchmark

3For the sake of clarity, the thresholds thr ∈ {0, 1} are discarded in the presented figure.
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Figure 6.6: Different speech codebooks are depicted with various codebook
sizes as spectrograms.
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Figure 6.8: The difference between SegNA and SegSA is depicted over the
input SNR for various types of noise.

is carried out. Thus, the associated benchmark from Sec. 5.8.6 is repeated using
the modified VAD and L = 5 speech codebook entries and M = 12 noise codebook
entries. Figure 6.8 presents the averaged results in terms of the difference between
segmental noise attenuation (SegNA) and segmental speech attenuation (SegSA)
depicted over the input SNR. The difference between SegNA and SegSA corresponds
to the noise reduction performance. In addition, the results of the SPP based
enhancement system ( ), as described in Sec. 5.8.1, are depicted for reference.

It is obvious that the difference among the codebook based enhancement systems
( , ) regarding SegNA – SegSA is negligible, independent of the type of
noise ( , , ). Comparing the conventional state-of-the-art system utilizing the
SPP noise estimator ( ), a tremendous performance gain is achieved by the
proposed modified noise reduction system ( ), especially for the noise type class
“transient fast”, e. g., up to 11 dB SegNA – SegSA improvement.

In addition, informal listening tests confirmed a very similar performance among
the codebook based noise reduction systems. However, the codebook based system
comprising L = 5 speech codebook entries ( ) produces artifacts very rarely.
These are caused due to a slightly increased number of estimation outliers with
respect to speech. Bounding the minimum spectral weighting gain to -15 dB, which is
common in noise reduction, the performance is virtually unaffected. Hence, a speech
codebook size of L = 5 is used, which reduces the number of distance calculations
to only ND,GSC = 28.5 on average. This includes the distance calculations necessary
for the VAD. Moreover, the reduced number of distance calculations allows the
real-time processing of the codebook driven noise reduction on current SBCs.
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Summary

Single-microphone and multi-microphone speech enhancement techniques for mo-
bile communication are investigated. First, the acoustic front-end of the digital
processing chain is addressed by a novel filter design and optimization concept of a
near field beamformer. This pre-processing stage guarantees an improved SNR for
subsequent single-channel speech enhancement. Simplified assumptions regarding
the statistical characteristics of noise signals typically limit the performance of
state-of-the-art single-microphone systems and implicate unpleasant artifacts in
terms of musical tones. In this thesis new methods and strategies of Informa-
tion Combining have been developed to tackle in particular the problem of noise
estimation in case of non-stationarity. The proposed single-microphone speech
enhancement algorithms clearly outperform conventional systems with respect to
high noise attenuation and low speech distortion. At the same time, musical tone
artifacts are almost eliminated by the significantly improved speech and noise
estimation accuracy. This is confirmed by numerous benchmarks with objective
instrumental measures as well as real-time experiments with demonstrators.

Near Field Beamforming
A novel concept for the filter design of a filter-and-sum beamformer based on
numerical near field optimization is presented. The beamformer consists of a
non uniform filterbank with FIR filters in the sub-bands The proposed design
strategy combines the advantages of decoupled sub-band filters with a frequency
resolution according to the human auditory system. The optimization scheme
allows to closely approximate a predefined reception characteristic which can be
freely chosen according to the application. The novel system provides a distinct
spatial selectivity independently of the frequency. Hence, the beamformer achieves
a substantial SNR already at the acoustic front-end. Switching between different
reception characteristics, e. g., for speaker selection in a video conference scenario,
can be easily achieved using several pre-computed filter sets.

Single-Microphone Based Noise Suppression
Baseline Tracing
A novel short-term noise power spectral density (PSD) estimator Baseline Tracing is
presented. The basic idea consists of a constrained logarithmic magnitude tracing of
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the noisy observation separately for each frequency bin. This constraint magnitude
change causes a certain inertia of the noise estimate over time which corresponds
to the temporal statistics of noise. The estimator can be explained in terms of
delta modulation with an adaptive step size, operating in the slope overload mode.
In the linear amplitude domain, the short-term noise PSD of the current frame is
calculated by a simple scaling of the last noise estimate with a frequency and time
dependent tracing factor. Stretching or compressing is decided according to the sign
of the difference between the last short-term noise PSD estimate and the current
noisy frame. Doing so, the estimator traces the noisy observation. Since speech
onsets are assumed as sudden rises in the noisy observation, the tracing factor has
to be selected to only follow the slow variations of the noise. A fixed as well as an
adaptive tracing factor are introduced which take into account the long-term speech
spectrum average and the frame SNR. Compared to state-of-the-art systems, the
new Baseline Tracing algorithm with the fixed tracing factor performs similar with
respect to the noise PSD error measure while performing superior utilizing the
adaptive tracing factor. The noise reduction performance is characterized by a low
speech distortion and simultaneously high noise attenuation. The proposed concept
has extremely low computational complexity and memory footprint. With these
characteristics it is especially well suited for applications where processing power
and memory is limited.

Exploiting Spectral Dependencies
An approach to wideband speech enhancement is proposed that exploits spectral
dependencies between the low band (50Hz – 4 kHz) and the high band (4 kHz –
7 kHz) of speech signals for improved noise reduction in the high band. While a
conventional noise suppression takes place in the low band, a joint noise suppression
approach is applied in the high band. Features from the enhanced low band
signal are extracted and used to estimate sub-band energies of the high band
using techniques known from artificial bandwidth extension. Compared to MFCC
features, the utilized RASTA-PLP features are more robust against short-term noise
variations and include furthermore a speaker normalization. The weighting gains
determined from these energy estimates are adaptively combined with conventional
gains, obtained in addition for the high band. This combining in the high band is
possible employing a pre-trained look-up table which depends on the average low
band SNR and the respective high band SNR. In order to increase the perceived
speech quality if only a noisy low band signal has been received, a slightly modified
version of the system can additionally be used to perform a joint noise reduction
and artificial bandwidth extension.

Codebook Based Speech and Noise Estimation
A priori knowledge about speech and noise allows to model and to cope with
highly non-stationary noise environments. Starting point is a brute force codebook
matching approach, which provides the upper performance bound and serves as
reference codebook processing scheme. The basic concept is based on a superposition
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of scaled speech and noise codebook entries. The speech codebook is pre-trained
once in advance, while the noise codebook is additionally adapted to new noise
types online. Training vectors for online noise codebook updates are identified
using a novel voice activity detector (VAD) and a codebook mismatch measure.

The VAD is realized as part of the codebook matching, but utilizes only a priori
knowledge of speech. A speech gain is provided in each frame which is a reliable
speech indicator and may contain a noise floor, especially at low input SNR. By
means of a baseline tracing algorithm, similar to noise reduction, the noise floor is
removed and subsequently the gain is mapped to soft VAD values between zero and
one. Instrumental measurements confirmed a consistent improvement compared
to state-of-the-art systems, resulting in higher detection rates at significant lower
false alarm rates, even for low input SNR and highly non-stationary noise.

Information Combining
A generic solution is formulated for the joint speech and noise estimation problem
given the noisy observation. The solution considers several speech and noise
estimates and provides optimal mixing coefficients with respect to minimized
estimation error power regarding the noisy observation. At first, various estimates
of the noisy observation are computed by permuting all different speech and noise
estimates. Based on a distance measure between these estimates and the noisy
observation optimal mixing coefficients for each frequency bin of the individual
speech and noise estimates are determined. Applying the optimal mixing coefficients
to the individual speech and noise estimates yields the final refined speech and noise
estimate. This procedure is called Information Combining. The estimation error
power after Information Combining is less than the minimum of the error power of
the individual estimates. Utilizing Information Combining two main restrictions of
codebook based speech and noise estimation are tackled:

Although the noise codebook is updated online, it is not guaranteed that an
appropriate codebook entry is available for each noisy observation. A noise codebook
update is prevented, for example, if the ambient noise changes while speech is
still present. In such cases, the noise estimation is restricted, but this impact
is compensated utilizing the proposed Information Combining. The necessary
second noise estimate is provided by a statistical noise estimator, e. g., the new
proposed Baseline Tracing. Given a second speech estimate, e. g., from the last
enhanced frame of the speech enhancement system, the Information Combining
is capable to provide also a refined speech estimate. The evaluation verified a
tremendous improvement of noise attenuation, while the speech distortion is reduced
simultaneously. Hence, the proposed Information Combining is used to overcome
missing a priori codebook knowledge.

Facing practical application scenarios the brute force codebook matching is too
expensive and a substantial complexity reduction is necessary. With respect to the
Information Combining procedure, the brute force codebook driven speech and
noise estimates can be replaced by two cascades of gain shape vector quantizer
(VQ) estimates. While the first cascade provides a reliable noise estimate for low
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SNR, the second cascade provides a robust speech estimate for high SNR. Utilizing
the Information Combining procedure again, the best of all estimates is combined
yielding the final estimates of speech and noise. Hence, the brute force search is
replaced by four gain shape VQs and subsequent Information Combining, reducing
the number of distance calculations in each frame by a factor of 60.

The simulations confirm that, the proposed codebook based noise reduction
system clearly outperforms conventional state-of-the art noise reduction systems. A
tremendous performance gain is achieved, especially for transient and fast types of
noise with up to 12 dB improved noise attenuation. Although the proposed system
achieves best scores regarding noise attenuation and speech distortion, the variance
of the spectral weighting gains is decreased compared to conventional systems.
This is a strong indicator for significantly reduced musical tone artifacts. Informal
listening tests confirmed that musical tones are almost removed by this technique.

Real-Time Implementation
The practical capability of the proposed algorithms is demonstrated by two ap-
plications. The novel near field beamformer is embedded in a high quality video
conferencing client. The identification and separation of the most active talkers is
the target of the proposed multimodal signal analysis. Exploiting information from
video and audio analysis, the most active speakers are determined as a function of
time and space. On this basis, the most active participants are artificially placed
side by side in a conference at the receiver. Due to the novel near field beamformer
actual no artifacts in the artificial scene composition of the demonstrator occur.

With respect to single-microphone speech enhancement, the codebook driven
enhancement system has been further investigated. Considering the computational
capabilities of current single-board computers (SBCs), a complexity reduction is
carried out for both, the codebook matching as well as the VAD. It turns out,
that already L = 5 carefully selected speech codebook entries are sufficient without
affecting the overall performance. Utilizing a software based private branch exchange
(PBX) a prove of concept is implemented on a lightweight embedded computing
platform.

Conclusion
The proposed Information Combining is a powerful method to merge the best of
several speech and noise estimates. It is of special interest, that the estimation error
power after Information Combining is less than the minimum of the error power of
the individual estimates. In the context of codebook driven noise suppression, the
proposed method is so efficient that the brute force search can be replaced by several
gain shape VQs estimates without loosing notable performance. Moreover, missing
a priori codebook knowledge is compensated incorporating a statistical fallback
noise estimator. Hence, Information Combining can be used for both improving the
estimation quality and reducing the complexity. The resulting estimation quality of
speech and noise is such accurate, that the occurrence of undesired musical tones
is almost avoided – a decisive step towards artifact-free speech enhancement.
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Appendix A

Optimized filter coefficients

A.1 Free Field

A.1.1 Sub-band beamformer

Microphone

# 1 2 3 4 5 6 7 8

1 −0.55096 0.95313 0.97401 0.98146 0.99065 0.98817 0.98622 0.98715
2 0.82418 0.77801 −0.22916 −0.27949 0.91870 0.56402 0.91225 0.98034
3 0.89846 −0.90478 −0.96104 −0.97088 −0.97977 −0.97411 −0.93783 0.95025
4 0.71215 −0.94958 −0.97249 −0.97588 −0.98681 −0.98492 −0.97337 0.94182
5 0.04905 −0.95201 −0.96443 −0.95723 −0.98661 −0.98280 −0.96814 0.67551
6 −0.86549 −0.91395 −0.30493 0.96073 −0.97812 −0.97785 −0.96386 0.89431
7 −0.79211 0.91849 0.97995 0.99018 0.78722 −0.71738 −0.72880 −0.74877
8 −0.18672 0.98019 0.99185 0.99526 0.98659 0.97245 0.91072 −0.67535

Table A.1: Optimized filter coefficients of sub-band 1 (1Hz – 268Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.41510 −0.64213 0.70482 −0.85706 0.97949 0.97739 0.97799 0.98783
2 0.04329 −0.06134 0.91892 −0.72908 0.33629 −0.76612 0.46939 0.97850
3 0.14936 0.74476 0.88976 0.07453 −0.96120 −0.96928 −0.95924 0.95238
4 0.06091 −0.17004 0.90249 −0.71018 −0.96844 −0.97641 −0.97315 0.84845
5 −0.06483 −0.27719 0.59026 −0.58652 −0.94317 −0.97184 −0.97118 −0.63597
6 −0.03628 −0.84770 0.57097 −0.71253 0.93546 −0.92366 −0.95713 −0.74877
7 0.28061 −0.84274 −0.79429 0.79044 0.98456 0.95764 −0.10158 −0.70714
8 0.66698 −0.89254 0.32669 0.92647 0.99223 0.98590 0.96347 0.11570

Table A.2: Optimized filter coefficients of sub-band 2 (268Hz – 839Hz)
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Microphone

# 1 2 3 4 5 6 7 8

1 −0.16934 0.95933 −0.24197 −0.97999 0.17398 0.97410 0.85469 0.19047
2 0.13251 −0.94855 0.88287 0.33649 −0.93793 0.69086 −0.74307 0.02136
3 0.14344 −0.96963 0.43211 0.95602 −0.85648 −0.64071 −0.30945 0.46151
4 0.36741 −0.96720 0.90696 −0.55528 0.37535 −0.89908 0.34223 0.75848
5 0.19800 −0.92705 0.74132 −0.92679 0.86626 −0.86340 0.00064 0.34685
6 0.12718 0.32359 0.90968 −0.96756 0.32632 −0.92725 −0.79812 −0.28475
7 −0.22162 0.90298 −0.48449 0.14034 0.00994 −0.66801 −0.71688 −0.74175
8 0.03805 −0.49440 −0.61180 0.98136 0.90343 0.94759 0.91011 0.09941

Table A.3: Optimized filter coefficients of sub-band 3 (839Hz – 1549Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 0.22750 −0.18613 0.15414 −0.38216 −0.17940 0.52722 0.99139 −0.17122
2 −0.60693 0.30275 −0.04624 0.82993 0.33335 −0.96943 0.31047 −0.38974
3 0.23268 0.05010 −0.24007 −0.30234 −0.18941 −0.94356 −0.94837 0.83630
4 0.71505 −0.21618 −0.06626 −0.86615 −0.43333 0.19182 0.09029 0.87494
5 −0.59813 −0.45857 0.85817 0.68876 0.90434 0.65783 0.77719 −0.75468
6 −0.23858 0.30301 −0.17516 0.27536 0.45845 −0.93277 −0.89761 −0.50089
7 0.37863 0.50336 −0.86079 −0.46740 −0.87402 −0.45443 −0.96228 0.78333
8 −0.04781 −0.53750 0.70673 0.06062 0.57535 0.99006 0.52855 −0.30255

Table A.4: Optimized filter coefficients of sub-band 4 (1549Hz – 2614Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 0.02943 −0.08057 0.12956 −0.11367 0.17923 −0.27472 0.43424 0.73270
2 −0.01953 0.06891 −0.12670 0.15798 −0.49291 0.10985 −0.86247 −0.43910
3 −0.03017 0.03451 −0.07490 −0.00192 0.45217 −0.03731 −0.58577 −0.37712
4 0.06483 −0.12040 0.25986 −0.22230 0.54781 −0.22690 0.35583 0.56455
5 0.00290 −0.01343 −0.02651 0.13035 −0.87764 0.64568 −0.12909 −0.12932
6 −0.02983 0.03832 −0.14253 0.03680 0.10643 −0.03254 −0.33007 −0.08442
7 0.01079 0.01040 0.10111 −0.06978 0.88298 0.18600 −0.16915 −0.08760
8 0.01489 −0.05148 0.01889 0.00158 −0.68755 0.30672 0.23880 0.04269

Table A.5: Optimized filter coefficients of sub-band 5 (2614Hz – 4731Hz)
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A.1 Free Field

Microphone

# 1 2 3 4 5 6 7 8

1 0.00574 0.00020 0.00307 −0.01478 −0.01924 −0.05988 −0.01492 0.39988
2 −0.01152 −0.01407 0.00497 0.02998 0.00708 −0.03735 −0.06875 −0.48879
3 0.02491 0.02607 −0.00599 −0.05903 0.07766 0.01011 −0.52104 0.33019
4 −0.02408 −0.05223 0.02301 0.06007 −0.20990 −0.22424 −0.04987 −0.26629
5 0.02490 0.05199 −0.01970 −0.05770 0.45996 0.42535 −0.13117 −0.00202
6 −0.01140 −0.05120 0.02401 0.03041 −0.47523 0.02861 0.04660 0.04486
7 0.00583 0.02600 −0.01203 −0.01244 0.48048 0.31310 0.05593 −0.05442
8 0.00035 −0.01134 0.00570 −0.00044 −0.32945 −0.08982 −0.02700 0.00278

Table A.6: Optimized filter coefficients of sub-band 6 (4731Hz – 12049Hz)

A.1.2 Full-band beamformer

Microphone

# 1 2 3 4 5 6 7 8

1 0.07114 0.08709 0.09633 0.00189 0.02439 0.02870 −0.02841 0.02239
2 −0.14259 −0.13731 −0.31511 0.00477 −0.13586 −0.01264 0.04188 −0.09627
3 0.10294 −0.02893 0.35399 −0.08881 0.26313 0.01171 −0.11276 0.23645
4 −0.04071 0.18617 −0.26620 0.18509 −0.26647 0.01308 0.14426 −0.29070
5 −0.15850 −0.13198 0.11949 −0.06987 0.03489 0.10417 −0.21182 0.16350
6 0.22776 0.10295 −0.03086 −0.14443 0.19931 −0.06697 0.08140 0.10562
7 −0.22693 −0.01725 −0.14352 0.22281 −0.33637 −0.01542 −0.05573 −0.15016
8 −0.07602 0.13150 0.11367 0.04684 0.40464 0.20658 0.02553 −0.01017
9 0.27695 0.19307 −0.02782 −0.24612 −0.50664 0.00226 −0.21517 0.15765
10 −0.17478 −0.15521 −0.23465 0.24704 0.25736 −0.14822 0.05646 0.05032
11 −0.10660 −0.03741 −0.19088 −0.09286 0.34148 0.14630 0.03514 −0.20626
12 0.04732 0.26890 0.22693 0.15783 −0.70559 0.28692 −0.11297 0.13077
13 0.15779 −0.17038 −0.03417 0.05641 0.23886 −0.33055 −0.22697 0.12992
14 −0.26853 0.09891 −0.36892 −0.24271 0.36039 0.11821 0.13105 −0.03884
15 −0.11058 −0.33622 0.03956 0.27293 −0.13001 0.20169 0.11744 −0.11779
16 0.15380 0.47596 0.27903 0.29828 −0.61597 −0.01738 −0.41010 0.11662
17 0.03261 0.12745 0.28921 −0.47747 0.62070 −0.18012 0.08566 0.13936
18 −0.33998 −0.45806 −0.96085 0.10487 0.22450 0.17929 0.05957 −0.12795
19 0.12421 0.34335 0.53825 0.19959 −0.61342 0.14576 0.01997 0.02016
20 0.05259 0.16416 0.32805 0.25343 0.04403 −0.34609 −0.27675 0.02015
21 −0.14684 −0.15170 −0.43962 −0.74714 0.51735 0.31674 0.07206 0.07732
22 −0.17884 −0.05999 −0.10195 0.46129 −0.21492 −0.05072 0.06525 0.08307
23 0.27463 0.36049 0.23246 0.30053 −0.25435 −0.17904 0.00963 −0.21249
24 −0.17838 −0.35165 0.06593 −0.52715 0.16324 0.15735 −0.29198 0.03816
25 −0.30466 0.19168 0.19709 0.17942 0.20223 0.10700 0.26580 0.36063
26 0.51328 0.30026 −0.46385 0.02337 −0.14990 −0.21520 −0.20237 −0.32870
27 −0.51609 −0.55543 0.28848 0.00660 −0.08665 −0.02601 0.08246 −0.04273
28 0.07060 0.31306 0.19634 −0.13852 0.00847 0.39711 0.00331 0.28108
29 0.05222 0.18153 0.10638 0.12000 0.21565 −0.38240 −0.22298 −0.01403
30 −0.07365 0.12908 −0.23198 −0.17577 −0.11658 0.12652 0.12301 −0.35409
31 −0.02498 −0.22959 0.06270 −0.08679 −0.28814 0.16540 −0.00623 0.58806
32 −0.03200 0.11154 0.09239 0.35299 0.39531 −0.07707 −0.00347 −0.52084
33 −0.09729 0.39019 0.13024 −0.51276 −0.16029 0.02570 −0.36402 0.29806
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# 1 2 3 4 5 6 7 8

34 0.07975 −0.11300 −0.29604 0.14854 −0.17850 0.08740 0.29717 0.09506
35 0.16184 −0.03297 −0.12553 0.09833 0.11316 0.15085 −0.00296 −0.26798
36 −0.36035 0.10496 0.09135 0.08446 0.08578 −0.19027 −0.43140 0.19261
37 0.18286 0.13877 0.24811 −0.39375 −0.27993 0.27624 0.28181 0.05073
38 0.14298 0.05902 −0.62067 0.31191 0.10679 0.04091 −0.15775 −0.05187
39 −0.14837 −0.24901 0.06011 0.14549 0.06177 −0.05738 −0.05364 −0.00948
40 −0.12265 0.11767 0.13854 −0.29634 −0.16578 0.04207 −0.03765 0.07745
41 0.27018 0.17324 0.06151 0.12862 −0.01377 0.27238 −0.03023 −0.06111
42 −0.15926 −0.14847 −0.32444 0.25567 0.10368 −0.20113 −0.08089 0.17735
43 −0.02650 −0.00145 −0.05649 −0.26119 −0.09827 0.07262 0.02996 −0.23661
44 0.09616 −0.11129 0.31829 0.07862 −0.06023 0.17022 0.00084 0.15807
45 −0.13720 0.36793 −0.16663 0.16253 0.11725 −0.13079 −0.17175 0.05730
46 0.15632 −0.34275 −0.14746 −0.11990 −0.10969 0.08482 0.17584 −0.15601
47 −0.13379 0.12700 0.15515 0.03144 0.04388 −0.00712 −0.11806 0.11733
48 0.04912 0.01166 −0.04966 0.03649 −0.01433 0.01163 0.02065 −0.03265

Table A.7: Optimized full-band filter coefficients

A.2 Reverberant Room
Microphone

# 1 2 3 4 5 6 7 8

1 −0.99948 −0.99447 0.99846 0.99955 0.99282 0.37780 0.30044 −0.99972
2 −0.99917 −0.97780 0.99788 0.99946 −0.02509 −0.99309 0.98454 −0.99968
3 −0.99825 0.96024 0.99604 0.99929 −0.98965 −0.99538 0.99549 −0.99961
4 −0.50439 0.97300 0.83226 0.99896 −0.99320 −0.99534 0.99788 −0.99946
5 0.99804 0.01759 −0.99617 0.99794 −0.99330 −0.99272 0.99877 −0.99900
6 0.99897 −0.98678 −0.99814 −0.15093 −0.99011 0.94023 0.99920 −0.81912
7 0.99928 −0.99446 −0.99877 −0.99794 0.08199 0.99595 0.99943 0.99911
8 0.99944 −0.99673 −0.99907 −0.99896 0.99359 0.99819 0.99958 0.99958

Table A.8: Optimized filter coefficients of sub-band 1 (1Hz – 268Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.71926 −0.48637 −0.99670 0.98006 0.99505 −0.99653 −0.99882 0.66781
2 0.96959 0.80318 −0.99555 −0.06960 0.99423 −0.99346 −0.99851 0.83343
3 0.96745 0.74212 −0.99179 −0.94972 0.99349 −0.93087 −0.99789 0.96119
4 0.70022 0.06959 0.02213 −0.94596 0.99205 0.99040 −0.99641 0.96985
5 −0.97312 −0.09498 0.99256 −0.87271 0.98635 0.99444 −0.99129 0.60781
6 −0.98668 0.86139 0.99634 0.15725 −0.94581 0.99489 −0.52403 −0.98877
7 −0.98976 0.95937 0.99756 −0.86858 −0.99366 0.99276 0.97721 −0.99609
8 −0.98912 0.98193 0.99813 −0.97641 −0.99716 −0.46079 0.88619 −0.99804

Table A.9: Optimized filter coefficients of sub-band 2 (268Hz – 839Hz)
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Microphone

# 1 2 3 4 5 6 7 8

1 −0.96654 0.99688 0.99690 −0.06746 0.99461 −0.99274 −0.99772 0.97905
2 0.26084 0.00165 0.94118 −0.99321 0.99054 −0.83507 −0.99424 0.65517
3 0.87508 −0.99270 −0.98928 −0.99146 0.95105 0.96827 0.05269 −0.89135
4 0.79587 −0.99180 −0.98641 0.59280 −0.97846 0.72550 0.98716 −0.80780
5 −0.07375 −0.63699 −0.36849 0.99134 −0.98443 −0.97900 0.98561 0.54200
6 −0.60351 0.99387 0.97906 0.99264 −0.33187 −0.98534 −0.01608 0.75816
7 −0.50297 0.99678 0.74940 −0.87677 0.99441 0.07934 −0.98924 0.26644
8 −0.61543 0.99738 −0.99457 −0.99721 0.99805 0.99543 −0.99381 −0.72760

Table A.10: Optimized filter coefficients of sub-band 3 (839Hz – 1549Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.99888 0.99566 0.12940 0.55757 0.98984 −0.99840 0.27608 −0.05137
2 −0.17041 0.04779 −0.98830 0.65512 0.60206 −0.99729 0.99201 −0.80324
3 0.99725 −0.99007 −0.78251 −0.69055 −0.71427 −0.99260 0.99066 −0.59038
4 0.99665 −0.98827 0.99390 −0.82807 0.91535 0.88406 0.23134 0.46190
5 −0.01613 −0.16682 0.99669 −0.75661 0.83123 0.97628 −0.99100 0.66678
6 −0.99637 0.98831 0.99647 0.43024 −0.95707 −0.11961 −0.99271 0.53379
7 −0.99609 0.99013 −0.53478 0.78183 −0.97554 −0.97768 −0.25621 −0.25858
8 0.99662 −0.88154 −0.99838 −0.45846 0.84962 0.67823 0.99708 −0.46794

Table A.11: Optimized filter coefficients of sub-band 4 (1549Hz – 2614Hz)

Microphone

# 1 2 3 4 5 6 7 8

1 −0.06206 −0.90128 −0.92650 −0.68340 −0.12689 0.27685 −0.99737 0.44595
2 0.94055 0.96540 0.89525 0.99654 0.66967 0.53433 −0.83029 0.97797
3 −0.96877 0.92654 0.55340 0.27228 −0.95850 0.08120 0.98684 −0.96775
4 −0.72231 −0.72542 −0.93887 −0.99692 −0.95720 0.57541 0.25564 −0.97797
5 0.97648 −0.80982 −0.83429 −0.99687 0.40895 0.74836 −0.98162 0.85678
6 0.82205 0.39063 0.96683 0.80609 0.89284 −0.51218 −0.59309 0.97257
7 −0.98853 0.34685 0.81806 0.99638 −0.93634 −0.34762 0.98807 −0.42139
8 0.05032 0.13273 −0.99559 −0.89950 −0.44582 0.98312 −0.80257 −0.30492

Table A.12: Optimized filter coefficients of sub-band 5 (2614Hz – 4731Hz)
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Microphone

# 1 2 3 4 5 6 7 8

1 −0.24818 −0.15122 0.32139 −0.07186 −0.39530 0.55145 −0.99959 0.19819
2 0.44246 0.42300 −0.95083 −0.10051 0.97126 −0.04898 0.75347 0.44091
3 −0.67355 −0.96852 0.98746 0.73087 −0.99801 −0.25283 −0.36988 −0.98893
4 0.74090 0.99633 −0.22434 −0.99719 0.17210 0.99650 −0.84638 0.99282
5 −0.88435 −0.33316 −0.99626 0.28482 0.60361 0.71572 0.99747 −0.56924
6 0.83249 −0.76373 0.79479 0.75302 −0.99726 −0.78153 −0.63883 0.11439
7 −0.61275 0.99917 −0.10899 −0.99891 0.43522 0.99843 0.30493 −0.03826
8 0.22406 −0.44149 −0.36195 0.41225 −0.32549 −0.08265 0.03311 0.05252

Table A.13: Optimized filter coefficients of sub-band 6 (4731Hz – 12049Hz)
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Appendix B

Equivalent Variance of Recursive and
Mean Average Smoothing

By assuming an uncorrelated signal x(k) and equating the variance of the mean
short-term expectation EK {·} and the recursive short-term expectation Ẽα {·}
estimators, the equivalent rectangular window length of the recursive short-term
expectation estimator can be calculated. The corresponding block diagram is
depicted in Fig. B.1, where x(k) is the input signal and hK(k), hα(k) are the
impulse responses of the short-term expectation operators. The averaged output
signal y(k) is given for the mean short-term expectation operator by yK(k) and for
the recursive short-term expectation operator by yα(k), respectively.

The impulse response of the mean short-term expectation EK {·} operator is
given by

hK(k) =

{
1
K

for 0 ≤ k < K

0 else ,
(B.1)

and the impulse response of the recursive short-term expectation operator Ẽα {·} is
defined as

hα(k) =

{
(1− α) · αk for k ≥ 0, 0 < α < 1
0 else .

(B.2)

The parameters K and α control the smoothing properties of the respective short-
term expectation estimator. A relation between K and α is derived in the following
by equating the variance of both short-term expectation estimators.

In general, the variance of the output signal y(k) is given by

σ2
y = E

{
y2(k)

}
− (E {y(k)})2 , (B.3)

Smoothing
hK|α(k)x(k) yK|α(k)

Figure B.1: Block diagram of smoothing operation
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where E {·} denotes the expectation operator. Decomposing the output signal y(k)
into an alternating component ỹ(k) and a mean E {y(k)} yields,

y(k) = ỹ(k) + E {y(k)} , (B.4)

and the expression E
{
y2(k)

}
from Eq. (B.3) is now formulated in terms of Eq. (B.4)

by

E
{
y2(k)

}
= E

{
(ỹ(k) + E {y(k)})2} (B.5)

= E
{
ỹ2(k)

}
+ 2 · E {ỹ(k)}E {y(k)}+ (E {y(k)})2 (B.6)

= E
{
ỹ2(k)

}
+ (E {y(k)})2 . (B.7)

Moreover, utilizing Eq. (B.7) in Eq. (B.3), the variance of y(k) is given by,

σ2
y = E

{
ỹ2(k)

}
. (B.8)

In the following derivation the filter impulse response h(k) represents either
the short-term mean expectation or the recursive short-term expectation operator.
Using the Wiener-Lee relation, the auto-correlation function of the alternating
component ỹ(k) is given by

ϕỹỹ(i) = ϕx̃x̃(i) ∗ ϕhh(i), (B.9)

where ∗ denotes the linear discrete convolution operator, ϕx̃x̃ represents the auto-
correlation function of the alternating component x̃(k) of the input signal and
ϕhh is the auto-correlation function regarding the filter impulse response h(k).
Assuming x̃(k) as zero mean and white yields

ϕỹỹ(i) = ϕx̃x̃(0) · δ(i) ∗ ϕhh(i) , (B.10)
ϕỹỹ(i) = ϕx̃x̃(0) · ϕhh(i) . (B.11)

Using the relation,

σ2
y = E

{
ỹ2(k)

}
= ϕỹỹ(0), (B.12)

the variance of y(k) is given by,

σ2
y = ϕx̃x̃(0) · ϕhh(0) (B.13)

= E
{
x̃2(k)

} ∞∑

j=0

h2(j) (B.14)

= σ2
x̃

∞∑

j=0

h2(j) . (B.15)

By equating the variance of the output signals yK(k) and yα(k) of both short-term
expectation operators,

σ2
yK = σ2

yα , (B.16)
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a relation between K and α can be found. Utilizing Eq. (B.15), the variance of the
mean short-term expectation operator EK {·} is given by,

σ2
yK = σ2

x̃

∞∑

j=0

h2
K(j) = σ2

x̃

K−1∑

j=0

1
K2 = σ2

x̃ ·
1
K

(B.17)

whereas the variance of the recursive short-term expectation operator Ẽα {·} yields

σ2
yα = σ2

x̃

∞∑

j=0

h2
α(j) = σ2

x̃

∞∑

j=0

(1− α)2 · α2·j (B.18)

= σ2
x̃(1− α)2 · 1

1− α2 = σ2
x̃

1− α
1 + α

, (B.19)

with
∞∑

j=0

α2·j = 1
1− α2 . (B.20)

Finally, the smoothing parameter α of the recursive short-term expectation estimator
is given by,

α = K − 1
K + 1 , (B.21)

in terms of the equivalent rectangular window length K in samples and vice versa,

K = 1 + α

1− α. (B.22)
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Appendix C

Evaluation System for Speech
Enhancement

The evaluation of speech enhancement algorithms is a difficult task since the speech
quality is perceived subjectively. The aim of the evaluation is to quantify the
subjectively perceived speech quality. So far, the best way to evaluate speech
enhancement is probably to conduct a listening test. However, such tests are very
time consuming and costly as a large number of participants is required to get
statistically significant results.

On the other hand, so called instrumental measures also allow to assess the
speech quality. Each of the instrumental measures aim to predict different aspects
of the subjectively perceived speech quality, e. g., in terms of speech distortion and
noise attenuation. The interpretation of several instrumental measurements allows
a ranking of the investigated speech enhancement algorithms.

In this thesis the evaluation of the speech enhancement algorithms is based on
the evaluation framework and instrumental measures proposed in [Gustafsson et al.
1996; Quackenbush et al. 1988]. In the following, a brief overview of the evaluation
framework as well as the instrumental measures is given.

The framework is illustrated in Fig. C.1. The spectral weighting gains G(λ, µ)
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Ñ (λ, µ)
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Figure C.1: Evaluation framework for speech enhancement
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are determined in the short-term Fourier domain (STFD) based on the noisy input
signal y(k), which is the sum of the clean speech s(k) and the noise signal n(k).
Besides, the noisy input signal Y(λ, µ), the spectral weighting gain is applied to the
clean speech component S(λ, µ) as well as the noise component N (λ, µ). Finally, the
resulting filtered signals Ŝ(λ, µ) = Ỹ(λ, µ), S̃(λ, µ), and Ñ (λ, µ) are transformed
back into the time domain, where ŝ(k) denotes the enhanced noisy output signal,
s̃(k) is the filtered speech component, and ñ(k) is the filtered noise component,
respectively. This allows to investigate the influence of the enhancement algorithms
on the noisy input signal as well as on speech and noise separately.

C.1 Input Signal-to-Noise Ratio
The noisy input signal y(k) is generated from a clean speech signal s(k) which is
degraded by an additive noise component n(k). In order to control the degradation
the signal-to-noise ratio (SNR) of the input signal y(k) can be adjusted.

For the adjustment of the SNR only signal samples with speech presence are
considered. Note that the noise signal is assumed to be active all the time. The
speech presence is determined by the objective measurement of the active speech
level according to [ITU-T Recommendation P.56 1993]. Hence, the corresponding
power of speech Ps and noise Pn are computed by

Ps = 1
#{MS}

∑

κ∈MS

s(κ)2 , (C.1)

Pn = 1
#{MS}

∑

κ∈MS

n(κ)2 , (C.2)

where MS is a vector which contains all signal samples with speech presence and
#{MS} is the number of elements of vector MS. Given the desired SNR value
SNRdB in dB, the scaling factor a of the noise signal component is computed
according to

a =
√

Ps
Pn · 10SNRdB/10 (C.3)

and the noisy signal yields

y(k) = s(k) + a · n(k) . (C.4)

C.2 Instrumental Measures for Speech Enhancement

C.2.1 Segmental Speech and Noise Attenuation
The segmental speech attenuation (SegSA) and segmental noise attenuation (SegNA)
are defined as the segmented power ratios between the original speech and noise
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signals and their filtered versions, respectively. The measures SegSA and SegNA
are given in dB and defined by

SegSA/dB = 1
#{MS}

∑

λ∈MS


10 · log10




LF−1∑
κ=0

s(κ+ λ · LF )2

LF−1∑
κ=0

s̃(κ+ λ · LF )2





 , (C.5)

SegNA/dB = 1
#{MN}

∑

λ∈MN


10 · log10




LF−1∑
κ=0

n(κ+ λ · LF )2

LF−1∑
κ=0

ñ(κ+ λ · LF )2





 , (C.6)

where MS denotes all frames with speech presence and MN is the set of frames to
be evaluated in total. #{MS} and #{MN} denote the number of frames in each
set MS and MN, respectively. The frame size is represented by LF .

Although the SegSA is not directly related to the manner of speech distortion,
the difference between SegNA and SegSA indicates the effective noise reduction.
For values greater than 0 dB the application of noise reduction appears reasonable.

C.2.2 Segmental Speech Signal-to-Noise Ratio
The segmental speech SNR (SegSpSNR) is defined as the geometric mean of the
SNR of short signal segments, where the difference between the original speech
signal s(k) and its filtered version s̃(k) is considered as noise. The SegSpSNR is
also given in dB and defined as

SegSpSNR(λ) = 10 · log10




LF−1∑
κ=0

s(κ+ λ · LA)2

LF−1∑
κ=0

(s(κ+ λ · LA)− s̃(κ+ λ · LA))2


, (C.7)

SegSpSNR/dB = 1
#{MS}

∑

λ∈MS

SegSpSNR(λ) , (C.8)

where MS is a vector which contains all frames with speech presence and #{MS}
is the number of elements of vector MS. This measure is an indicator for speech
distortion. Higher values of SegSpSNR result in a better performance. However,
no information about possible noise reduction is provided.

C.2.3 Cepstral Distance
The real cepstrum of a signal s(k) is defined as the inverse DFT (IDFT) of the
logarithm of the magnitude spectrum of the signal. For the signal frame λ of s(k)
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the cepstrum is calculated according to

Cx(λ, q) = IDFT{ln |DFT{sλ(κ)}|} , (C.9)

where sλ(κ) denotes the samples of signal frame λ, κ = 0, . . . , LF is the sample
index within the frame, and q = 0, . . . , NDFT − 1 represents the cepstral bin index
(quefrency).

The cepstral distance (CD) corresponds to the speech distortion and is defined
as distance of the clean speech cepstrum Cs(λ, q) and the filtered clean speech
cepstrum Cs̃(λ, q). In general, the magnitude spectrum |S(λ, µ)| of s(k) is fully
described by NDFT cepstral coefficients. However, the coarse structure of the
spectrum is of interest which corresponds to the first cepstral coefficients. Hence,
the cepstral distance is calculated for first NCD = d0.1 · LF e cepstral coefficients
according to

CD(λ) = 10
ln(10)

√√√√(Cs(λ, 0)− Cs̃(λ, 0))2+2
NCD∑

q=1

(Cs(λ, q)− Cs̃(λ, q))2, (C.10)

CD/dB = 1
#{MS}

∑

λ∈MS

CD(λ) , (C.11)

where MS denotes all frames with speech presence and #{MS} is the number of
elements of vector MS. Lower values of the CD indicate a better performance.

C.2.4 PESQ
The perceptual evaluation of speech quality (PESQ) measure [Rix et al. 2001] aims
to provide an objective measure of the perceived audio quality that predicts the
results of a subjective listening test. PESQ compares the original clean speech
signal s(k) with the enhanced speech signal ŝ(k) = ỹ(k). The resulting PESQ
values are related to the mean-opinion score (MOS) and range from one (bad) to
4.5 (no distortion).

C.3 Instrumental Measures for Noise Estimation

The logarithmic error measures between the estimated
∣∣∣N̂ (λ, µ)

∣∣∣
2
and the true

short-term noise power spectral density (PSD) |N (λ, µ)|2 are defined as

Err(λ, µ) = |N (λ, µ)|2∣∣∣N̂ (λ, µ)
∣∣∣
2 , (C.12)

LogErr = 1
#{MN}NDFT

∑

λ∈MN

NDFT−1∑

µ=0

|10 log10 Err(λ, µ)| , (C.13)
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LogErrUnder = 1
#{MN}NDFT

∑

λ∈MN

NDFT−1∑

µ=0

|max(0, 10 log10 Err(λ, µ))| , (C.14)

LogErrOver = 1
#{MN}NDFT

∑

λ∈MN

NDFT−1∑

µ=0

|min(0, 10 log10 Err(λ, µ))| , (C.15)

LogErr = LogErrOver + LogErrUnder , (C.16)

where MN denotes all frames to be evaluated in total and #{MN} is the number of
elements of vectorMN. Lower values indicate a better performance. In applications
such as speech enhancement an overestimation of the true noise power, as indicated
by LogErrOver, likely results in an attenuation of the speech and thus in speech
distortions. On the other hand, a noise power underestimation, pointed out by the
LogErrUnder probably causes a lower noise attenuation.

C.4 Instrumental Measures for VAD
The instrumental measures are based on the numerical comparison of vbin(λ) ∈
{0, 1} from the voice activity detector (VAD) algorithm under test with the ground
truth VAD vtrue(λ) ∈ {0, 1}. The true speech presence vtrue(λ) is provided by the
objective measurement of the active speech level according to [ITU-T Recommen-
dation P.56 1993] which is computed from the clean speech signal s(k). Based on
vbin(λ) and vtrue(λ) three VAD measures are defined:

• Accuracy rate Pa: Percentage of speech frames with correct VAD-estimation;

• Detection rate (or true positive rate) Pd: Fraction of active speech frames
that are detected correctly;

• False alarm rate (or false positive rate) Pf : Fraction of speech frames without
speech that are classified erroneously as speech.

To calculate these measures, three sets of frames are necessary. Here, MA denotes
the set of all frames, MS is the set of frames with speech activity (vtrue(λ) = 1),
and MF is the set of frames without speech activity (vtrue(λ) = 0). Let #{MA},
#{MS}, and #{MF} denote the number of frames in each set, respectively. The
objective VAD measures can now be formulated according to

Pa = 1− 1
#{MA}

·
∑

λ∈MA

|vbin(λ)− vtrue(λ)| , (C.17)

Pd = 1
#{MS}

·
∑

λ∈MS

vbin(λ) , (C.18)

Pf = 1
#{MF}

·
∑

λ∈MF

vbin(λ) . (C.19)
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Appendix D

Independence Assumption of Speech
and Noise

Most algorithms in speech enhancement are derived based on short-term power
spectrum (STPS) quantities. Moreover, noise as well as speech is often estimated
from the STPS of the noisy observation |Y(λ, µ)|2. According to the additive signal
model, the STPS |Y(λ, µ)|2 of the noisy observation is given in terms of speech
S(λ, µ) and noise N (λ, µ) by

|Y(λ, µ)|2 = |S(λ, µ)|2 + |N (λ, µ)|2 (D.1)
+ S(λ, µ)N (λ, µ)∗ +N (λ, µ)S(λ, µ)∗ (D.2)

= |S(λ, µ)|2 + |N (λ, µ)|2 (D.3)
+ 2 |S(λ, µ)| |N (λ, µ)| cos(ϑS(λ, µ)− ϑN (λ, µ))︸ ︷︷ ︸

cross-term

(D.4)

where ϑS(λ, µ) and ϑN (λ, µ) denote the phase of speech and noise, respectively.
During the codebook matching procedure, as described in Sec. 4.1.2, the cross-

term of |Y(λ, µ)|2 is neglected. To verify the irrelevance of the cross-term, the
independence assumption of speech and noise is investigated with respect to short-
term signal frames λ in the following.

At first, an error measure is determined. With Errct(λ, µ) denoting the error
power which is associated with the cross-term of |Y(λ, µ)|2,

Errct(λ, µ) = 2 |S(λ, µ)| |N (λ, µ)| cos(ϑS(λ, µ)− ϑN (λ, µ)) , (D.5)

the relative error of the cross-term is defined for the current frame λ according to

RelErrct(λ)/dB = 10 · log10




NDFT−1∑
µ=0

|Errct(λ, µ)|

NDFT−1∑
µ=0

|Y(λ, µ)|2


 . (D.6)

In order to analyze the relative cross-term error RelErrct(λ) dependent on
different speech and noise signals as well as the input SNR, a benchmark is
performed. Therefore, noisy signals are generated from all permutations of the
following parameters:
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Figure D.1: Boxplot of the relative cross-term error RelErrct depicted over
the input SNR.

• The input SNR ranges from -35 dB to 35 dB in 5 dB steps 1;

• 10 randomly chosen sentences belonging to 5 male and 5 female randomly
chosen speakers from the TIMIT database [Garofolo & Consortium 1993] are
selected and concatenated;

• The resulting speech sequences are mixed with 10 different types of noise
(F16, midsize car, outside traffic, train station, inside train, living room,
nature, pub noise, wind, jackhammer).

For the evaluation only signal frames with speech presence are considered. The
speech presence is determined by the objective measurement of the active speech
level according to [ITU-T Recommendation P.56 1993] from the clean speech
component. From all resulting signal frames a boxplot over the input SNR is
created and depicted in Fig. D.1.

As expected, the largest relative cross-term error RelErrct(λ) occurs at 0 dB
input SNR with a median value of RelErrct = −13 dB. Since the estimation error
of codebook driven speech and noise estimation is in the range of several dB, the
influence of the cross-term is considered as non-dominating error. In addition,
experiments have confirmed that the resulting error with respect to the application
of noise reduction is negligible.

1The mixing procedure is detailed in Appendix C.1. Note that for the calculation of the
scaling factor to adjust the input SNR only speech and noise signal sections with speech
presence are considered.
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Appendix E

Optimization of σ2
n in the MMSE sense

The optimal gain σ2
n can be found by minimizing the distance between the noisy

observation and its estimate. Hence, the optimization of σ2
n for a fixed but arbitrary

combination of speech codebook entry |Sl(µ)|2 and noise codebook entry |Nm(µ)|2
is calculated in the minimum mean-square error (MMSE) sense for the current
frame λ. Rewriting Eq. (4.9) yields

∣∣∣Ŷl,m,σn(µ)
∣∣∣
2

= σ2
y |Sl(µ)|2 + σ2

n

(
|Nm(µ)|2 − |Sl(µ)|2

)
(E.1)

= σ2
y |Sl(µ)|2 + σ2

n |Dl,m|2 , (E.2)

with |Dl,m|2 = |Nm(µ)|2 − |Sl(µ)|2. The estimation error dist
∣∣∣Y,ŶMSE in the mean-

square error (MSE) sense between the noisy observation Y(µ) and its estimate
Ŷl,m,σn(µ) is given by

dist
∣∣∣Y,ŶSE = |Y(µ)|2 −

∣∣∣Ŷl,m,σn(µ)
∣∣∣
2

(E.3)

= |Y(µ)|2 − σ2
y |Sl(µ)|2 − σ2

n |Dl,m|2 (E.4)

dist
∣∣∣Y,ŶMSE =

NDFT−1∑

µ=0

(
dist

∣∣∣Y,ŶSE

)2 != min . (E.5)

Building the partial derivation of dist
∣∣∣Y,ŶMSE with respect to σ2

n and setting to zero
yields the extremum of the distance given by

∂

∂σ2
n

(
dist

∣∣∣Y,ŶMSE

)
=
NDFT−1∑

µ=0

2 ·
(

dist
∣∣∣Y,ŶSE

)∂
(

dist
∣∣∣Y,ŶSE

)

∂σ2
n

!= 0 (E.6)

=
NDFT−1∑

µ=0

2
(
|Y(µ)|2−σ2

y |Sl(µ)|2−σ2
n |Dl,m|2

)(
−|Dl,m|2

)

= 2 · σ2
n ·
NDFT−1∑

µ=0

(
|Dl,m|2

)2 + 2 · σ2
y ·
NDFT−1∑

µ=0

|Sl(µ)|2 |Dl,m|2
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+ 2 · σ2
y ·

NDFT−1∑

µ=0

Y(µ) |Dl,m|2

Hence, Eq. (E.6) can be transformed and σ2
n is expressed as:

σ2
n =

NDFT−1∑
µ=0

|Y(µ)|2 · |Dl,m|2 − σ2
y

NDFT−1∑
µ=0

|Sl(µ)|2 · |Dl,m|2

NDFT−1∑
µ=0

(
|Dl,m|2

)2
. (E.7)

Since the second partial derivation of Eq. (E.6) with respect to σ2
n yields

∂2

∂2σ2
n

(
dist

∣∣∣Y,ŶMSE

)
= 2 ·

NDFT−1∑

µ=0

(
|Dl,m|2

)2
, (E.8)

and is greater than zero, the found extremum is in fact a minimum of dist
∣∣∣Y,ŶMSE .

Since in general Eq. (E.9) is not fulfilled,

σ2
y

NDFT−1∑

µ=0

|Sl(µ)|2 · |Dl,m|2 ≤
NDFT−1∑

µ=0

|Y(µ)|2 · |Dl,m|2 , (E.9)

it is possible that σ2
n is negative, which violates the model assumption, i. e., σ2

n

represents the short-term power of noise.

168



Appendix F

High Quality Video Conferencing

F.1 Activity Index Calculation
The activity index is a soft quantification of the activity of each participant on a
continuous scale between 0 (no activity) and 1 (high activity). It is based on the
separated speech signals provided by the parallel beamformers.

For the activity index calculation, it is beneficial to use only frequency sub-bands
which exhibit a reasonable SNR. Experimental studies have shown that noise, e.g.,
structure-borne sound, dominate the sound field especially in the first sub-band
(1-268Hz, cf., Table F.1). Hence, the lowest frequency band is discarded for the
activity index calculation. Thus, the activity index calculation relies on the energy
of the remaining frequency bands only (cf. Sec. 2, Sec. 2.3.1).

The determination of the activity index vsoft,n(λ) of participant n is carried out
on signal frame λ of the corresponding beamformer output signal ŝn(k). The typical
audio frame length TF ranges between 20ms and 40ms leading to a frame size of
NF = bfs · TFcsamples. The short-term energy of the audio signal of participant n
is calculated by

Vn(λ) =
NF−1∑

i=0

ŝ2
n(λ ·NF + i) . (F.1)

Due to remaining noise and sudden outliers this energy fluctuates. Thus,
recursive smoothing of the energy is applied according to

V n(λ) = α2 · V n(λ− 1) + (1− α2) · Vn(λ) . (F.2)

The smoothing factor α2 is chosen to be 0.98 (=̂2 ms equivalent rectangular window

Table F.1: Filterbank sub-bands

Band Frequency range / Hz Band Frequency range / Hz

1 1 - 268 4 1549 - 2614
2 268 - 839 5 2614 - 4731
3 839 - 1549 6 4731 - 12049
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length at fs = 48 kHz) which results in a system that still adapts quickly to changes
while the larger fluctuations are leveled out.

This smoothed energy could directly be used as an indicator of activity of
participant n. Since the frame energy depends strongly on the recording level of
the microphone array an additional step is necessary to map the frame energy into
a target scale from 0 (no activity) to 1 (strong activity). It was observed that the
smoothed energy measure provides values that increase steeply between situations
with no activity and high level of activity. Both, the change in gradient and the
mapping of the frame energy values can be achieved simultaneously by means of a
sigmoid function. The activity index vsoft,n(λ) is calculated by

vsoft,n(λ) = 1
1 + e−β·{V n(λ)−γ} , (F.3)

and ensures that the values show a more smooth transition between the different
activity levels of the participants.

The parameters β and γ of the sigmoid function depend strongly on the expected
minimum and maximum smoothed frame energy. Since these quantities are related
to the calibration of the microphones and background noise, they are not known
a priori and adaptive adjustment of the parameters is required. Therefore, the
maximum statistics of a sliding time window containing the smoothed energy frames
of the last seconds (typically 30 – 180 s) are exploited.

Given an audio frame buffer V Buffer(λ) containing the energies of the past frames
sorted in descending order, an estimate of the expected maximum frame speech
energy is obtained by averaging the LN highest-energy frames according to

V maxStat = 1
LN

LN−1∑

i=0

V Buffer(i) . (F.4)

The parameter γ, which defines the center of the sigmoid function, can now be
calculated according to

γ = max
{
V maxStat

2 , V min

}
, (F.5)

with V min serving as a lower bound to prevent underestimation for the expected
frame speech energy, e. g., in the initialization phase. The gradient of the function
is controlled by β which can be determined using the inverse of (F.3) by

β = −
ln
( 1

0.99 − 1
)

γ
. (F.6)

With this choice of β and γ the activity index for a frame energy of V (λ) = V maxStat
results in vsoft(λ) = 0.99. The parameters β and γ are updated according to this
procedure in each frame.
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F.2 Detailed Objective VAD Measures

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.90 0.82 0.85 0.90 0.06 0.23
B 0.87 0.75 0.73 0.68 0.05 0.22
C 0.91 0.69 0.84 0.72 0.06 0.32

Table F.2: Detailed objective VAD measures for VAD-AI

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.58 0.53 0.73 0.57 0.54 0.50
B 0.50 0.48 0.50 0.46 0.50 0.51
C 0.56 0.57 0.80 0.64 0.65 0.46

Table F.3: Detailed objective VAD measures for VAD-Ghosh

Participant Accuracy rate Pa Detection rate Pd False alarm rate Pf

# NFB DSB NFB DSB NFB DSB

A 0.64 0.56 0.83 0.87 0.50 0.67
B 0.56 0.49 0.77 0.86 0.55 0.70
C 0.55 0.48 0.78 0.86 0.56 0.69

Table F.4: Detailed objective VAD measures for VAD-Sohn

VAD Position Accuracy rate Pa False alarm rate Pf

(cf. Fig. 6.2) NFB DSB NFB DSB

VAD-AI 3 0.81 0.47 0.19 0.53
5 0.93 0.62 0.07 0.38

VAD-Ghosh 3 0.42 0.47 0.58 0.53
5 0.42 0.51 0.58 0.49

VAD-Sohn 3 0.39 0.24 0.61 0.76
5 0.36 0.24 0.64 0.76

Table F.5: Detailed objective VAD measures for all VADs at positions between
the talkers without video information
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Mathematical Notation & Abbreviations

Mathematical Notation
In this thesis, the following conventions are used to denote quantities: vectors are
underlined, e. g., y, scalar values are not, e. g., y. The cardinality of a vector, i. e.,
the number of elements is indicated by the #{·} operator, e. g., #

{
y
}
. Estimated

or approximated variables are marked with a hat, e. g., ŷ, and averaged or smoothed
values are denoted with a bar, e. g., y.

Time-domain signals are written in lower-case letters, e. g., y(k) with the sample
index k. The complex-valued discrete Fourier transform (DFT) coefficients are
labeled with the calligraphic upper-case letters, e. g., Y(λ, µ) with DFT bin index
µ ∈ {0, 1, . . . , NDFT − 1}, even DFT size NDFT, and frame index λ.

Mathematical Operators
≈ approximately equal to
=̂ equivalent to (usually a unit conversion)
!= /

!
≤ shall be equal to / shall be less than or equal to

∧ / ∨ logical and / or
∈ element of
∀ for all
x∗ complex conjugate of x
|x| absolute value of x
bxc floor function, i. e., largest integer which is not greater than x
dxe ceiling function, i. e., smallest integer which is not less than x
E{x(k)} expectation value of x(k)
Re{x} real part of x
Im{x} imaginary part of x
exp{x} exponential function ex

log{x} logarithm of x to base 10
max
x
{f(x)} maximum of f(x) over x
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arg max
x

{f(x)} argument x of maximum of f(x) over x

mean
x
{f(x)} average of f(x) over all x of a finite set

Principal Symbols
α(λ) time dependent scaling parameter of Baseline Tracing
αΦ VAD based noise PSD smoothing factor
αG(λ, µ) parameter of spectral weighting gain
αξ decision directed SNR smoothing factor
β(λ, µ) tracing factor of Baseline Tracing
βG(λ, µ) parameter of spectral weighting gain
δ(k) unit impulse sequence
∆(λ, µ) adaptive step-size parameter of Baseline Tracing
ϑY(µ) phase of noisy signal in the DFT domain
ϑN (µ) phase of noise signal in the DFT domain
ϑS(µ) phase of speech signal in the DFT domain
κ time index within a single signal frame λ
λ frame index
µ DFT bin index
φ(µ) speech dependent scaling parameter over the frequency of Baseline

Tracing
Ω normalized frequency
N̂ (λ, µ) estimated DFT coefficients of noise signal
C codebook containing codebook entry vectors
D(λ) parameter of Baseline Tracing
d(λ) parameter of Baseline Tracing
dist(P, P̂) distance between power spectra P(µ) and P̂(µ)

dist
∣∣∣P,P̂IS (λ) Itakura-Saito distance between power spectra P(µ) and P̂(µ)

dist
∣∣∣P,P̂MSE (λ) MSE between power spectra P(µ) and P̂(µ)

dist
∣∣∣P,P̂REL (λ) Relative energy distance between power spectra P(µ) and P̂(µ)

e Euler’s number
ENn (λ, µ) estimation error of the noise estimate
ESs (λ, µ) estimation error of the speech estimate
EYi (λ, µ) estimation error of the noisy observation estimate
f continuous frequency
fp Pitch frequency

174



Principal Symbols

fs sampling rate
gw window normalization factor
G(λ, µ) spectral weighting gain
gmin lower bound for spectral weighting gain
j imaginary unit
k sample index
LA frame advance in number of samples
LF frame size in number of samples
LTA(f) long-term speech spectrum average
LTA−1(µ) inverse long-term speech spectrum average
c(λ, µ) information combining coefficients
n(k) noise signal in the time domain
NDFT DFT size, i. e., number of DFT bins
N̂CB(λ, µ) DFT coefficients of codebook estimated noise signal
Nm(µ) noise codebook entry with entry index m
σn gain factor of noise codebook entry
N (λ, µ) DFT coefficients of noise signal n(k)
N set of positive integers
N0 set of non-negative integers
p noise estimate change in percent every 10ms
q quefrency bin index
S(µ) DFT coefficients of speech signal s(k)
s(k) speech signal in the time domain
Ŝ(µ) estimated DFT coefficients of speech signal
ŝ(k) enhanced speech signal in the time domain
ŜCB(λ, µ) DFT coefficients of codebook estimated speech signal
Sl(µ) speech codebook entry with entry index l
σs gain factor of speech codebook entry
γ(λ, µ) a posteriori SNR
ξ(λ, µ) a priori SNR
SNRCB(λ, µ) codebook SNR
SNRDD(λ, µ) decision directed SNR
SNRi(λ, µ) instantaneous SNR
t continuous time
TA frame shift in seconds
TF frame length in seconds
T training set for codebook creation
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w(k) window function
y(k) noisy signal in the time domain
Y(λ, µ) DFT coefficients of noisy signal y(k)
|Y(λ, µ)| magnitude of noisy signal y(k)
Ŷ(λ, µ) DFT coefficients of estimated noisy signal
z z-transform
Z set of integers
Φ̂nn(λ, µ) short-term estimate of PSD of noise
Φnn(λ, µ) short-term PSD of noise

Acronyms
API application programming interface

AR auto-regressive

BWE artificial bandwidth extension

CAT-iq cordless advanced technology – internet and quatliy

CD cepstral distance

DFT discrete Fourier transform

DSP digital signal processor

DTMF dual-tone multi-frequency signaling

FFT fast Fourier transform

FIR finite impulse response

GSC generalized sidelobe canceller

HMM hidden markov model

IDFT inverse DFT

IIR infinite impulse response

IMS IP Multimedia Subsystem

ISDN integrated services digital network

LCMV linearly constrained minimum variance

LPC linear prediction coefficient

LSF line spectral frequencies
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Acronyms

LTA long-term speech spectrum average

MAP maximum a posteriori

MFCC mel frequency cepstral coefficients

ML maximum likelihood

MMSE minimum mean-square error

MOS mean-opinion score

MSE mean-square error

MVDR minimum variance distortionless response

MWF multichannel Wiener filter

NELE near-end listening enhancement

PBX private branch exchange

PDF probability density function

PESQ perceptual evaluation of speech quality

PSD power spectral density

PSTN public switched telephone network

QMF quadrature mirror filter

RASTA-PLP relative spectral transform - perceptual linear prediction

ROC receiver operating characteristic

ROI region of interest

SBC single-board computer

SegNA segmental noise attenuation

SegSA segmental speech attenuation

SegSpSNR segmental speech SNR

SIP session initiation protocol

SNR signal-to-noise ratio

SNR a priori SNR

SNR a posteriori SNR

SPP speech presence probability
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STFD short-term Fourier domain

STPS short-term power spectrum

VAD voice activity detector

VoIP voice over IP

VQ vector quantizer

ZCR zero-crossing rate
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