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Abstract — We present a new class of channel
codes, which we call Source Optimized Channel Codes
(SOCCs). These codes are designed by an optimization
process, which takes into account the source and chan-
nel statistics as well as a quality measure. The quality
measure is different from that of conventional chan-
nel coding, which usually aims at a minimum resid-
ual bit or sequence error rate. Instead, the code de-
sign is based on a quality measure in the domain of the
continuous-valued source encoder symbols (e.g. speech
parameters). At the receiver we exploit the code redun-
dancy not for error correction, but to support param-
eter estimation in terms of Soft Bit Source Decoding
(SBSD). Designing SOCCs with respect to the Signal
to Noise Ratio (SNR) quality measure is considered in
detail.

To show the potential of SOCCs, we let them com-
pete with a channel coding scheme including Un-
equal Error Protection (UEP) and Source Controlled
Channel Decoding (SCCD). These experiments are
performed using a common communication model to
guarantee a fair comparison of the results.

I. INTRODUCTION

Source and channel coding play a major role in mod-
ern communication systems. While source coding re-
moves redundancy and irrelevance from the source data to
achieve a high bandwidth efficiency, channel coding, on
the other hand, adds redundancy to protect the transmit-
ted information against channel noise. An optimum per-
formance of the overall system could be achieved if both
source and channel coding would be optimal [1]. How-
ever, due to practical constraints, such as limited delay and
computational power, optimality is usually not reached.

For this reason a jointly optimized source and chan-
nel coding scheme can possibly exhibit a better perfor-
mance than one with separately designed components. In
the past, several approaches to joint source channel cod-
ing have been proposed, such as Unequal Error Protec-
tion (UEP) [2] and Source Controlled Channel Decoding
(SCCD) [3, 4]. Two approaches to exploit the a priori
knowledge of an m-ary source in terms of channel decod-
ing have been published in [5, 6].

Farvardin proposes in [7] Channel Optimized (Vector)
Quantization and derives encoder/decoder pairs that min-
imize the mean square error of the decoded parameters
specifically for a certain channel condition. In [8] an ap-
proach of joint source/channel coding utilizing optimized
linear encoder mappings is investigated.

The new concept presented here makes use of source
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optimized quantizers in combination with a new class of
non-linear channel codes, called Source Optimized Chan-
nel Codes (SOCCs). These codes are the result of an op-
timization process, which takes into account the source
and channel statistics as well as a parameter-based quality
measure. The code is derived by objective means directly
from the given specification of the transmission system,
unlike UEP design where often heuristic methods must be
applied to classify and protect the transmitted bits accord-
ing to their sensitivity. Thus the usage of SOCCs can be
an alternative to UEP, especially when used in combina-
tion with conventional channel coding [9].

The usage of SOCCs influences not only the transmit-
ter, but also the channel decoder design. While conven-
tional channel decoders are designed such, that the resid-
ual bit or sequence error rate after decoding is minimized,
our concept will make use of decoders that maximize a
parameter-based quality measure. In case of the SNR
quality measure, the Minimum Mean Square Error (MS)
estimator is the optimal decoder. Thus the SOCC concept
may also be seen as an extension of the SBSD-error con-
cealment technique described in [10] and a generalization
of the precoding approach presented in [11, 12, 13, 14].

An important issue for channel coding in general is
the search for “good codes”, which applies to SOCCs as
well. In contrast to conventional codes, which are selected
with respect to their Hamming distance properties, SOCCs
must be designed such that they maximize the given qual-
ity measure. In fact, designing SOCCs turns out to be a
very complex task, that can only be solved approximately
by suboptimal optimization strategies.

Beside the discussion on SOCC design, this contribu-
tion presents results of a scientific competition between
the Institute of Communication Systems and Data Pro-
cessing at Aachen University of Technology (this paper)
and the Institute for Communications Engineering at Mu-
nich University of Technology (see companion paper [4]).
The task given to the competitors was to achieve a max-
imum parameter-SNR for a defined set of transmission
model configurations, either with the methods described
here or with the SCCD approach.

The paper is structured as follows: Section II describes
the configuration of the applied communication model.
Section IIT deals with the new Source Optimized Chan-
nel Codes, gives an example for a code search algorithm
and generalizes the concept to Vector Source Optimized
Channel Codes (VSOCCs). To explain the applied de-
coder structure, Section IV gives a brief review of Soft Bit
Source Decoding. In Section V we present the simulation
results achieved and compare the performance of our new




approach with the results of [4]. The decoder complexity
is estimated in Section VI,

IT. COMMUNICATION MODEL

To allow an objective comparison between our new
channel coding strategy and the SCCD approach [3, 4],
we first define a communication model that is mandatory
for both. This model simulates a block-oriented speech
transmission, as it is used in digital mobile communication
systems, such as GSM. Figure 1 shows the basic structure.

n| AWGN
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Fig. 1: Communication model

SE: parameter source, model of the source encoder
En: parameter encoder,

either quant. + SOCC

or  quant. + UEP + conv. channel enc. [4]
De: parameter decoder,

either parameter estimation by SBSD

or  SCCD + table lookup [4]
SD: parameter sink, model of the source decoder

Abbreviations
SOCC  Source Optimized Channel Code
SBSD  Soft Bit Source Decoding
UEP Unequal Error Protection
SCCD  Source Controlled Channel Decoding

The source yields time discrete vectors u of L elements
u; € R which are binary encoded to N-dimensional bit
vectors X = (z1,..,zn) with z, € {—1,+1}. As chan-
nel model serves an AWGN channel with power spectral
density Np/2, BPSK modulation and matched filter re-
ceiver. The decoder receives the channel soft output vector
¥ € RV to estimate sample vectors i which are delivered
Lo the sink.

A. Source Model

The source model is designed to approximate the char-
acteristics of the source parameters generated by block
based speech coding schemes. E.g. speech codecs uti-
lizing Code Excited Linear Prediction (CELP) encode a
speech segment of typically 5-20ms by a set of speech
parameters, such as LPC filter coefficients, gain factors
and so on. In our model, such a set of parameters is rep-
resented by vector u. Due to speech encoding the pa-
rameters representing one speech segment are mutually
almost uncorrelated, while parameters of subsequent seg-
ments still have some residual correlation.

Therefore each component u; of the source parameter
vector u= (uy, .., ur) is modeled by an individual Gauss-
Markov process of order one. The component sources
w; and u; (i # j) are statistically independent. Figure 2
depicts the generation of a single component u;. White
Gaussian noise w; with variance 1 is processed by a first
order recursive filter. In this way a well defined correlation
is introduced into the vector components.

Fig. 2: AR model for source vector components

Letting 1/1 — p? = f3;, we get
(1014;11.‘(0)20-:'2:02:1 and @y, (1)=pi=p, ()

where ¢y, 4, () represents the auto-correlation function of
source component u;.

The joint probability density function (pdf) of a tuple
of two subsequent output values u;(7),u;(7 — 1) is then
given by (see Appendix A)

plui(7),ui(r-1)) = m

w(r)+ui(r—1 —2pu;(T)u;(7—1
.exp( i) ?,,(ngﬂzpsz)() (r )). @

B. System configuration

To cover a wide range of possible system configurations
we vary the following parameters of our communication
model:

e Correlation p € {0,0.5,0.75,0.9}
e Maximum allowed bit rate on the channel

N/L € {4,6,8} bit/dim.

e Required SNR(11) under noise-free conditions

TABLE I: SNR requirements

bitrae N/L [ 4| 6 | 8
SNR(q) [dB] | 9 | 13 | 17

The number of bits N transmitted per vector x will be
fixed to V = 120, thus the number of dimensions in u
takes the values L € {30,20,15}. For the described sys-
tem configurations the mean SNR of the estimated vector
i1 has been determined as a function of Eg/Nj.

II1. SOURCE OPTIMIZED CHANNEL CODES

The conventional way to adapt channel codes to the
source properties and a given quality measure is to apply
Unequal Error Protection with respect to the binary repre-
sentation of the source symbols, i.e. sensitive bits are pro-
tected by strong channel codes and less sensitive by weak
codes.

By contrast, Source Optimized Channel Coding is
based on the idea to consider the quality measure in the
parameter domain for the design of channel codes such,
that the distance properties of the real valued source sym-
bols remain preserved in the Hamming distance-domain
of their assigned bit vectors.

A. Definition

We assume that the encoding block in Figure 1 is split
into a quantization and a channel coding part, as shown by
Figure 3. The quantizer maps the range of values of u, i.c.
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Fig. 3: Quantization and channel encoding

RY, to a set of M discrete vectors U = {@(!),..,a(M)}
of dimension L. In this way irrelevant information, that
is not necessary to achieve the required accuracy at the
receiver, is removed. A second, redundant mapping x =
®[a], which represents the channel coding part, assigns
a unique channel symbol x consisting of N > log, (M)
bits to each of the discrete vectors . Note that M is not
necessarily a power of 2.

Our concept also differs from conventional channel
coding in the way we use the redundancy introduced by
® at the receiver: Instead for error correction of the bi-
nary representation of 1, it is utilized to support the direct
estimation of . While conventional systems employ a
channel decoder and subsequent table lookup, here these
functions are replaced by a single parameter estimation
unit (see Figure 4), which exploits

e code redundancy due to @,

e residual source redundancy Pr(a(7r) |a(r—1)),
e channel soft output ¥ (reliability),

e channel quality information E; /Ng.

Decoding

R
=

Parameter
Estimation

Y
Y

Fig. 4: Decoding by Soft Bit Source Decoding

By introducing a quality measure

D(u, 1), (3)
a statistical model of the transmission channel
¥ =t(x) (described by pgx(¥]x)) 4)

and the decoder (estimator) which is optimal with respect
toD and ¢

= fp(¥), (5)
we can now define a SOCC as a code C

C={x|x=2[u], aeU}, (6)
that is a solution to the optimization problem

minE {D(a, fp,.( (&[a]) )} . M)

Here, E{-} denotes the expectation of the expression in
braces.

B. Code Search Strategy

It becomes obvious that solving the optimization prob-
lem (7) is a non-trivial task, when considering the enor-
mous number of possible mappings ®. In total these
amount to @52’-}@ which makes an exhaustive search

prohibitive, as soon as the code vectors exceed a length of
N = 4 bits.

Similar to the Index Assignment (IA) problem, the
SOCC optimization problem can be classified as a so
called Non-Polynomial (NP)-complete problem. For this
class of problems there is no known algorithm in which
the worst-case computational complexity is bounded by a
polynomial in the size of the input. However, by subopti-
mal search algorithms [15, 16] at least local optima can be
obtained in reasonable time.

To apply these algorithms, we have to introduce ap-
proximations that make the code search problem suited
for computation without sacrificing too much of the code
performance. As we will see later on, the code design al-
gorithm requires the frequent evaluation of (7). Therefore,
it is crucial to minimize the computational complexity of
this expression. A major obstacle to do so is the contin-
uous output of the AWGN channel, as the evaluation of
the expectation in (7) would require an N-fold integration
over all components of §.

To avoid this, we approximate the continuous AWGN
channel by an AWGN channel combined with a subse-
quent one-bit quantizer for each vector component ;, as
shown in Figure 5. It has to be stressed that this approxi-
mation is only used for the code design not for the decod-
ing algorithm presented later.

n| AWGN

X y T X

Fig. 5: AWGN channel with one-bit quantizer

The channel shown in Figure 5 can also be interpreted
as a Binary Symmetric Channel (BSC). As the channel
is assumed to be memoryless, its transition probability is
given by

Pr{&|x) = (1 —e)¥—120x . clxx| (8)

with | - | denoting the Hamming weight of a bit vector and
@ the bitwise exclusive-or operation. Assuming identical
distribution of the code bits

Pr(zp=—1) = Pr(zxy=+1) = 0.5,

the bit error probability € is given by

0
.= 1}%/ o Be - dij . (9)
™ —o0

By quantizing the channel output the number of possi-
ble reception vectors X becomes finite, as they stem from
the discrete set X = {x(1), ..,ic(?'N)} of all possible bit
combinations consisting of N bits. Thereby we approx-
imate the integrals, that would be necessary to compute
for a channel with continuous output, by a sum over all
possible reception vectors %(7)

In the sequel, we will focus our considerations on the
SNR quality measure

D(i,a) = |la—al?. (10)

In this case the optimal decoder is the Minimum Mean



Square (MS) estimator. Due to complexity aspects, the
statistical dependence of corresponding elements u; of
subsequent vectors @(7), @(7—1) is not taken into consid-
eration for the code design but for parameter estimation at
the receiver. Thus the MS estimator is given by'
a=fpux) =Y a-Pr(Rla)- ii&’)) . (11)

el

The probability of occurrence of the received channel
symbols is obtained by Pr(%) = } ;. Pr(X[q) - Pr(a).

By inserting (11) and (10) into (7), we get after some
algebraic operations (see Appendix B)

E{D(s,9)} = ) [[8]* - Pr(s)
" S )2 - Pr(R) . (12)

XEX
The first term in (12) is independent of @ and therefore
irrelevant for the optimization task. Thus it is sufficient to
maximize the second term with respect to mapping func-
tion ®. In general, the resulting SOCC C does not exhibit
the linearity property of linear block codes. Hence SOCCs
have to be considered as non-linear codes.

C. Scalar SOCCs

Utilizing the concept of SOCCs for the communication
model described in section II, an obvious approach is to
apply an individually optimized SOCC to each of the L
vector components of 4, i.e.

®(a) = (¢1(u1),..,0r(ur)) . (13)

By the separation of the mapping function @ into such
scalar SOCCs, it is possible to avoid long codes which are
difficult to design and which cause a high decoding com-
plexity. On the other hand it is a well known fact, that the
performance of an error protection code increases with its
length. To approach the theoretical performance bound,
the code length must even tend to infinity [1]. Thus, scalar
SOCCs are not the best choice to achieve high error ro-
bustness.

D. Vector SOCCs

To overcome this shortcoming of scalar SOCCs, we
propose so called Vector SOCCs. Similar to vector quan-
tization, where vectors of parameters are commonly quan-
tized, a VSOCC protects a group of parameters by a com-
mon code, e.g. with two-dimensional SOCCs the mapping
looks like

®(u) = ( ¢r2(ur,uz),..,¢r—1,0(up—1ur) ). (14)

Of course, the usage of high-dimensional vector SOCCs
is limited due to complexity aspects. But in section V we
will show by simulation that a significant gain is already
achievable by applying two-dimensional instead of scalar
SOCCs.

A further enhancement could be obtained if correlated
components u;(7—T)..u;(7) were commonly vector-
quantized and protected by SOCCs. However, with re-
spect to the specified communication model, this would

!Here, we assume, that a source optimized quantizer is used, i.e. that
alt) = E {ulu € S;}, where S; is the i-th quantizer partition.

imply an illegal coding delay and was therefore not con-
sidered here.

E. Code Design Algorithm

For the optimization of (7), we employ a modified Bi-
nary Switching Algorithm (BSA) [15], which was origi-
nally proposed to optimize the index assignment of vector
quantizers. The basic idea of this algorithms is, starting
from an initial mapping ®;,;, to select a pair of reproduc-
tion levels @*), @¥) and interchange their assigned code-
words ®[@*)] « ®[a'?)]. If this modified mapping yields
areduced reduced distortion (12), it is accepted, otherwise
the former is kept and another pair is checked. This pro-
cedure 18 repeated until a local minimum of the distortion
is reached.

As the complexity caused by selection and tentative in-
terchanging of codewords is negligible, the dominant part
of the algorithmic complexity is due to the frequent eval-
uation of the sum

Pr=) o) - Pr(x). (15)
2€X
Unfortunately, in general all decoder output values
fp,¢(%X) as well as the probabilities of occurrence Pr(%)
vary if two codewords are swapped. But we show in
Appendix C, that the re-computation of (15) can be per-
formed using update rules with low complexity.

IV. SOFT BIT SOURCE DECODING

Soft Bit Source Decoding (SBSD) was recently pro-
posed [10] to perform sophisticated error concealment for
speech decoding. This technique can easily be generalized
to derive a decoder for parameters that are protected by
SOCCs.

Again, the decoder shall be optimal with respect to the
SNR quality measure. But in contrast to the hard input
decoder (11) which was utilized to solve the SOCC op-
timization problem, we will now consider a decoder that
operates on the soft bits ¥ delivered by the channel. Be-
sides, we take into account the statistical dependence of
subsequent source samples to exploit the inherent redun-
dancy as a priori knowledge for SBSD.

If no decoding delay is allowed, it can be shown that

a= Y a(r) Pr(a(r)|9(r),...5(1)) (16)

a(r)eU

is the optimal estimator for the parameter at time instant
7. In (16), the sequence ¥(7), .., ¥(1) represents the com-
plete history of received soft bit vectors. The a posteriori
probabilities in (16) can be computed by a recursion for-
mula [17, 10]. Denoting the a posteriori probabilities by
P(a(r)) = Pr(a(r) | y(7),..,¥(1)) we obtain (see Ap-
pendix D)

s p(¥(7)|a(r))
PEO) = @ 39D, 50)
> Pr(ii(r) [Hi(r-1)) - P(@(r—1)) . (17)
f(r-1)€u
Explicit computation of the conditional pdf in the de-

nominator of equation (17) is not necessary as it is de-
termined by the condition Zﬁ(r)EU P(a(r)) =1. The




transition probabilities of the quantized source samples
Pr(a(r)|a(r—1)) can be obtained by integrating the
Jjoint pdf (2) over the quantizer partitions or by measure-
ment.

V. SOCC PERFORMANCE

Before we present the performance results of SOCCs
for the various system configurations described in sec-
tion IL.B, the adjustment of basic design parameters, such
as SOCC dimensionality, BER e and quantizer SNR is dis-
cussed.

A. Design Parameters: Example

To investigate the influence of dimensionality on the
SOCC performance, we performed simulations with a
one-, two- and three-dimensional SOCC. In all cases
the parameter correlation was p = 0 and the gross rate
N/L=4 bits per dimension. The employed Lloyd-Max
quantizer had 6 reproduction levels. As the curves in Fig-
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Fig. 6: SOCC dimensionality and performance

ure 6 show, a significant gain of parameter SNR (about
0.8dB at E;/Ny = 0dB) can be achieved by the two-
dimensional compared to the one-dimensional SOCC,
whereas using the three-dimensional SOCC only yields
a negligible enhancement in the range from E;/Ny €
[0, 6] dB. Thus, a dimension of two is a good trade-off be-
tween code performance and decoder complexity.
Comparing our approach with a memory 3, rate 1/2
convolutional code and soft input Maximum Likelihood
decoding, as shown in Figure 6, we identified the inter-
val from [—1, +1]dB channel SNR as the most critical. If
we optimize the SOCC for E; /Ny = 0dB, then it outper-
forms the convolutional code for all channel conditions.

TABLE II: LMQ reproduction levels

required SNR [dB] 9113 |17
reprodulctlon l.evels 6112 | 20
per dimension

The number of quantizer reproduction levels was se-
lected such that the SNR requirements for noise-free con-

ditions given in Table I are fulfilled and at the same time
a maximum SNR at E; /Ny = 0dB is achieved. Table II
shows the applied settings.

B. Transmission with 4 Bits per Dimension

For the transmission with 4 Bits per Dimension we ap-
plied a SOCC with M = 36 code vectors of dimension
D = 2 out of 256 possible bit combinations, i.e. the code
rate was log,(M)/(4D) = log,(36)/8 ~ 0.65. Figure 7
depicts the simulation results for the given correlation fac-
tors p. Due to Soft Bit Source Decoding (SBSD) a re-
markable enhancement in terms of parameter SNR can be
achieved if p > 0.
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Fig. 7: SOCC/SBSD, 4 bits per dimension and D = 2

The UEP/SCCD approach works with a memory 6 Re-
cursive Systematic Convolutional (RSC) coder and a two-
step decoder structure [4]. In the first decoding step one
set of parameter a posteriori probabilities are computed
with respect to a received block ¥. With a formalism sim-
ilar to (17) a second set of parameter a posteriori proba-
bilities is derived from previously decoded parameter val-
ues by exploiting the time correlation of the source. The
combination of both probability sets is used as a priori in-
formation for the second decoding step. As both decoding
steps involve convolutional decoding of a received block,
the complexity of the UEP/SCCD system becomes very
high.

In Figure 8 our SOCC approach is compared to
UEP/SCCD for p = 0, p = 0.75 and p = 0.9. While
for correlation p = 0 there is a small SNR-range from
Es/Ny € [-1,0]dB where the SOCC/SBSD performs
slightly worse than the UEP/SCCD scheme, SOCC/SBSD
outperforms UEP/SCCD for all channel conditions if
p=>0.75. For p=0.9 a gain in parameter SNR of at least
1dB and up to 3 dB can be observed.

In addition, the SOCC/SBSD system exhibits a grace-
ful analogue-type degradation, whereas the system op-
erating with UEP/SCCD suffers from a threshold effect
known from conventional channel coding.

C. Transmission with 6 Bits per Dimension

Figure 9 shows the simulation results for transmission
with 6 bit per dimension and D = 2. The rate of the ap-




parameter SNR [dB]

-2 0
E_/N, [dB]

Fig. 8: SOCC/SBSD (D = 2) vs. UEP/SCCD, transmis-
sion with 4 bits per dimension

plied codes was log,(M)/(6D) = log,(36)/12 = 0.43.
Compared to 4 bit transmission the parameter SNR at
E,/Ny=0dB is increased by about 3 — 4 dB.
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Fig. 9: SOCC/SBSD (D = 2) vs. UEP/SCCD, transmis-
sion with 6 bits per dimension

D. Transmission with 8 Bits per Dimension

Due to the enormous optimization complexity, a two-
dimensional SOCC design was not feasible with the mod-
ified BSA described above. Hence, we investigated some
approaches to constrain the set of potential codewords,
such as selecting SOCC codewords only from the code-
word set given by a linear code, or to align the SOCC
to a tree structure. However, experiments showed that
the performance loss due to these constraints almost con-
sumes the dimensionality gain. Therefore we applied a
one-dimensional SOCC with M = 20 levels for transmis-
sion at 8 bits per sample.

Alternatively, we considered a hybrid solution consist-
ing of a concatenation of SOCCs and linear convolutional
codes to protect one parameter block. By utilizing a sys-
tematic code (generated by a Recursive Systematic Con-
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Fig. 10: SOCC/SBSD (D = 1) vs. UEP/SCCD, transmis-
sion with 8 bits per dimension

volutional (RSC) coder), the distance properties of the
SOCC are preserved to some extend, as the systematic
part of the code contains the unchanged SOCC codewords.
Hence the resulting code can be interpreted as a SOCC
given additional constraints.
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Fig. 11: SOCC/RSC/SBSD (D = 1, M = 12) vs.
UEP/SCCD, transmission with 8 bits per dimension

To decode such a SOCC/RSC combination, we employ
an MSE-optimal parameter decoder based on a combina-
tion of the forward-backward algorithm [17] and the re-
cursion (17): By exploiting the time correlation of the
transmitted parameters in terms of (17), parameter proba-
bilities for the current block are estimated considering the
history of received parameter blocks. These probability
estimates serve as a priori information for a parameter-
based forward-backward recursion running over the cur-
rent SOCC/RSC-encoded block. As result we get a set of
a posteriori probabilities for each transmitted parameter
in that block. These probabilities allow to determine the
parameter estimates t and simultaneously are the basis to
proceed with recursion (17).

Figure 11 depicts the simulation results yielded by the



alternative approach in comparison to the UEP/SCCD ap-
proach. Under noise-free conditions an SNR of 17dB
(horizontal line) is required (see Table I) which is achieved
by a M = 12-level LMQ. Thus we employ a rate
log,(12) /4 SOCC and concatenate it with a rate 1/2 mem-
ory 6 RSC (same as used for UEP/SCCD). Although our
scheme exhibits a lower quality under good channel con-
ditions, the 17 dB-requirement is fulfilled and under bad
channel conditions we gain up to 1.5dB in parameter
SNR.

VI. DECODER COMPLEXITY

To determine the decoder complexity we consider
equations (16) and (17). Applying a scalar quantizer with
I reproduction levels and D-dimensional SOCCs (hence
RP = M), a straightforward implementation of the de-
coder has a complexity of

RPL (N D
D L
where a denotes additions and g multiplications. In Ta-
ble III the decoder complexities for the three considered
coding rates are listed. The MOPS column is calculated
under the assumption that a parameter block has to be

transmitted within 20 ms.

C==—= +RP4+2) u+(RP+1)a| , (18)

TABLE III: Decoding complexities for one block u

bit rate add. mult. | total op’s | MOPS ¢
4 19980 | 24840 | 44820 2.24
6 208800 | 227520 | 436320 21
Lz 6300 9000 15300 0.765

“MOPS are given for a 20 ms block rate.
"For rate 8 one-dimensional SOCC were applied.

VII. CONCLUSION

We presented a new class of channel codes which we
call Source Optimized Channel Codes (SOCCs). These
codes are designed according to an optimization proce-
dure, which takes into account a parameter-based quality
measure. The redundancy introduced by SOCCs is not
used to detect/correct bit errors at the receiver, but to sup-
port parameter estimation in terms of Soft Bit Source De-
coding (SBSD).

We performed detailed simulations in order to compare
the new approach with known error protection schemes,
such as convolutional codes in combination with Unequal
Error Protection (UEP) and Source Controlled Channel
Decoding (SCCD). It turned out that SOCC/SBSD is able
to outperform UEP/SCCD under most channel conditions.
Especially, at low gross rates and if the transmitted pa-
rameters have time correlation, SOCC/SBSD is superior.
Gains in parameter SNR of at least 1dB and up to 3dB
were observed compared to UEP/SCCD.

Combining SOCCs and conventional linear systematic
channel codes offers new possibilities to the system design
concerning the trade-off between source coding and error
protection. By a close alignment to the system require-
ments we could achieve further performance gains under
bad channel conditions.

APPENDIX
A. JOINT PDF oF AR MODEL

According to Figure 2 the current output value u;(7) is
composed of

w(7) =p-ui(r—1)+ 8- wi(7) .

Due to the central limit theorem, u;(7) and consequently
also u;(7—1) are Gaussian distributed with variance o2
and zero mean. Hence w;(7— 1) has the pdf

1 i ( u?(r— 1))
V2no P 202 -
The conditional pdf of u;(7) given u;(7—1) is also Gaus-

sian distributed, but because of (A.1) has variance 232
and mean pu;(7—1), i.e

(A.1)

(A2)

plui(t—1)) =

p(ui(7)|ui (1 1)) \/?O_ﬁ

i(7) — pui(r=1))* ‘
np (DY

Multiplying (A.2) and (A.3) and inserting 3 =
yields equation (2).

B. DERIVATION OF THE OPTIMIZATION CRITERION
FOR THE BSC

The BSC channel model according to Figure 5 is described
by the equation

Xx=tx)=xde, (B.4)

where e is a binary error vector. Inserting (B.4) into (7)

yields
min Bae {D(a, fp.( 2] &)} | ®5)

and due to x = @[], the criterion (B.5) transforms to
min Eqg s {D(8, fp,1(%))} - (B.6)
Now we can evaluate the expectation and we get

min >N D(, fpu(%)) - Pr(i, %) . (B.7)
aclUxeX
With the abbreviation G(X) = fp (%), the SNR quality
measure according to (10) expands to
& - a®@)| = (@ - a®)" (@ - ak))
= [lalP* + [la®))I* - a"a(%) - a(x)'a. (B.8)
By noting that the expectation of the first mixed term (and
equivalently of the second) in (B.8) is

Z Z a'a(x) - Pr(a, %)
ey (Z a’ - Pr(alg) ) (%) - Pr(®)
%eX \aelU
= S la®)I? - Pr(x), (B9
REX

equation (12) results.




C. UPDATE RULES FOR CODEWORD SWAPPING

Simplification of (15) yields

(C.10)

For both, numerator and denominator we will now derive
update rules with low computational complexity.

The probability of occurrence of the received bit vec-
tors X in the denominator is is given by the marginal dis-
tribution

Pr(%) = ) Pr([a) - Pr()

acy

(C.11)

If we interchange the code vectors assigned to @*) and
@'® only the conditional probabilities Pr(x|@a(*)) and
Pr()‘(|ﬁ(5)) vary, actually their values are swapped:

Pr'(%|a*) = Pr(x|a‘?),
Pr'(%|a'?) = Pr(x|a®)

Hence, the probability of occurrence can be updated ac-
cording to

Pr'(%) = Pr(%) + [Pr(a®) - Pr(a®)]
' [Pr(ilﬁ”)) —Pr(ilﬁ(’“))] . (C.12)

By introducing the abbreviation ||A(%)||* for the nu-
merator, we get similarly

N'(%;) = N(%) + [ﬁ“") Pr(@®) —
: [Pr(fc|ﬁ(f)) - Pr(i]ﬁ(k))] . (C.13)

Finally, the combination of (C.12) and (C.13) allows a
fast update of the criterion (C.10):

N'(%
= 3

xeX

al Pr(ﬁ(*’-))]

(C.14)

D. RECURSIVE COMPUTATION OF A Posteriori
PROBABILITIES

For notational simplicity we abbreviate a vector ¥(7)
received at time instant 7 by ¥, and a sequence by
¥7 =¥(7),..,¥(1). Accordingly a sequence of quantized
source symbols will be denoted by a].

The a posteriori probability Pr(a, | §7])
preted as the marginal distribution

= Y Pr(u,,a; " [§]),

Vu’l"'l

can be inter-

Pr(a; |¥] (D.15)

where the sum runs over all possible M ™! variations of
the sequence @ 'T_ . Repeatedly applying Bayes’ theorem
on the term under the sum yields

_ P(y ) — =
Pr(ii,,al 2 (% | $7 G, 8
v = P07) |§ 1)
-Pr(a, |a] 3T -Pr(@l ™ |37 . (D.16)

By exploiting the mcmorylcssncss of the transmission

channel and the Markov property of the source

Pr(d, |a] ™) = Pr(d, |Gr), (D.17)
we obtain
P o
Pr(i,,a; = — = T
Pr(f, | G—) - Pr(@] ™ |377Y) . (D.18)

Inserting (D.18) into (D.15) yields equation (17).
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