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Abstract—We present a new class of nonlinear block codes
called source-optimized channel codes (SOCCs), which are par-
ticularly designed for parametric source encoding of speech,
audio, and video. In contrast to conventional channel codes, the
new codes are not optimized for minimizing residual bit-error
rate, but maximizing the signal-to-noise ratio of transmitted
source codec parameters. The decoding of SOCCs is not based on
bit-error correction, but on parameter estimation. We compare
SOCCs with other approaches to joint source/channel coding such
as channel-optimized vector quantization, channel-constrained
vector quantization, unequal error protection, and source-con-
trolled channel decoding. In terms of performance, SOCCs show
better robustness if under channel mismatch conditions. For
real-world applications, SOCCs are attractive, since the separa-
tion of source and channel codec is preserved.

Index Terms—Joint source-channel coding, nonlinear block
codes, parameter estimation.

I. INTRODUCTION

I N THE PAST, many promising approaches to joint optimiza-
tion of source and channel coding were proposed. One of

the most popular methods is unequal error protection (UEP)
[3], which assigns high protection to sensitive bits (i.e., bits
causing high distortion in the reconstructed signal if inverted by
an error), while less important bits are more weakly protected.

Joint optimization is not limited to the coding scheme,
but can be extended to the detection/estimation taking place
in the receiver. A jointly optimized receiver exploits, e.g.,
residual redundancy, which results from the imperfections of
practical source encoding. So can a channel decoder improve
its decisions by exploiting a nonuniform distribution of source
bits as a priori information (e.g., source-controlled channel
decoding (SCCD) [4]–[8]). Alternatively, residual redundancy
can be used as a priori information in an estimation-based
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source decoder. The advantage of the second approach is that
a perception-related quality measurement can be taken into
account, e.g., the square of the parameter error in the context
of speech transmission [9]–[13].

Farvardin et al. [1], [14] propose a joint optimization
method, which does not require any explicit channel coding.
Instead, the source encoder is directly optimized with respect
to the conditions on the disturbed transmission channel. The
error-protecting capability of this so-called channel-optimized
vector quantization (COVQ) is a result of leaving some of the
possible quantizer output symbols unused, which implicitly
increases the redundancy. Goldsmith et al. [15] combine COVQ
and UEP in terms of rate-compatible punctured convolutional
(RCPC) codes.

Skoglund proposes channel-constrained vector quantization
(CCVQ) [2], which adjusts the quantizer regions such that the
a priori distribution of the codevectors results in an increased
redundancy. To achieve higher channel robustness, the code is
trained on a subspace of the available code space. He also con-
siders the optimization of redundancy-increasing index assign-
ments for discrete channels. However, no means are given how
to determine the size of the subspace optimally with respect to
the channel.

Bozantzis et al. combine vector quantization with a redun-
dancy-increasing index assignment and trains both components
alternately [16]. A drawback of their approach is that the number
of both codevectors and codewords is constrained to powers
of two, which disables a fine-granular adjustment of error-pro-
tecting redundancy.

Goodman et al. apply simulated annealing to train quantiza-
tion and channel coding jointly [17]. In the training process, sev-
eral contiguous cells of an initial quantizer are comprised and
assigned the same codeword. This, however, makes it difficult
to extend the method to vector quantization.

A joint source/channel coding method, which does not re-
quire any training is proposed by Kim [18]. He uses a fixed class
of distance-preserving codes, so-called snake-in-the-box codes,
to perform a robust, redundancy-increasing index assignment.
However, it is difficult to extend this concept to vector quan-
tization. Another drawback is that an adaptation of the code to
known source and channel statistics is not possible, which leaves
precious information unused.
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A. Contribution of This Paper

In this work, we present a new concept of jointly optimizing
source and channel coding. We achieve this by a new class of
nonlinear block codes, which we call source-optimized channel
codes (SOCCs) [19], [20]. An SOCC is optimized with respect
to a quality measure defined in the real-valued domain of source
codec parameters [typically the minimum mean-square error
(MMSE)] and takes into account both source and channel statis-
tics. The nonlinearity of the code is important to achieve a high
degree of freedom for adapting it to both source and channel,
which is not offered by a linear code. Unlike a classical channel-
optimized index assignment, the SOCC encoder adds redun-
dancy to the transmitted symbols by restricting to a subset of
the available alphabet. The SOCC training algorithm (based on
the binary switching algorithm (BSA) [21]) is straightforward,
and despite its simplicity (e.g., no eigenvalue decomposition
needed, as in [2]), very fast due to the new smart update strategy
we developed to evaluate the target function.

In contrast to COVQ [1], [14], the quantizer to be used in
combination with an SOCC can be trained independently from
the channel statistics, i.e., the quantization regions are only de-
termined by the source statistics. Hence, in contrast to COVQ,
the separation of source and channel codec is preserved, which
is highly desirable from the engineering point of view, as it al-
lows reusing the source codec in other transmission scenarios.

In practice, transmission takes place over continuous output
(analog) transmission channels. Therefore, we do not restrict to
the simpler case of a discrete channel (as in [2]), but consider
the optimization of SOCCs for the continuous additive white
Gaussian noise (AWGN) channel. Moreover, we address the im-
portant question how to choose the size of the coding subset
optimally for a given continuous channel, which was left unan-
swered by [2]. As a by-product of this investigation, we find an
optimized bit assignment to source and channel coding.

The decoding of SOCCs is a further focus of this paper. The
optimality criterion of an SOCC decoder basically differs from
that of a conventional channel decoder; it is not residual bit-
or sequence-error rate minimized, but the MMSE. The required
framework for soft decoding of block codes can be found, e.g.,
in [10], [11], and [22]–[24]. We combine MMSE soft decoding
[12] with a recursive, probabilistic approach [25] to exploit nat-
ural or residual correlation of source codec parameters at the
receiver.

In order to evaluate the performance of our new SOCC ap-
proach, we compare it with COVQ, as well as a coding scheme
featuring convolutional coding, UEP, and SCCD, and present
rich numerical results.

The paper is structured as follows. Section II describes the ap-
plied communication model. Section III gives the definition of
the new SOCCs, derives the optimum decoder for SOCCs, and
describes a sample algorithm for SOCC design. In Section IV,
we present the comparison of SOCC with the two benchmark
approaches, COVQ and SCCD.

II. COMMUNICATION MODEL

We assume a communication system that makes use of
model-based source coding, as illustrated in Fig. 1. The basic

Fig. 1. Generic concept of model-based source coding using the
analysis-by-synthesis approach.

Fig. 2. Communication model. SE: source encoder (parameter source); Q:
quantizer with M reproduction levels/vectors; ���: channel encoder, codeword
lengthK bits; f : channel decoder and parameter estimator; SD: source decoder
(parameter sink).

idea of this generic coding approach is to approximate the
actual source signal by a model of its underlying phys-
ical-generation process. In some cases, the model parameters
can be derived directly from the source signal by open-loop
processing. Usually more effective is the analysis-by-synthesis
(closed-loop) approach shown in Fig. 1, by which the set of
model parameters is adjusted such that the mean square of the
error signal is minimized. As real-world
source signals usually are nonstationary, the parameter set
has to be updated and retransmitted periodically. In case of
a block-wise update, the source signal is partitioned into a
stream of equally sized frames. From the frame at time instant

, the source encoder extracts a set of real-valued parameters
, , such as linear predictive

coding (LPC) coefficients or gain factors.
As indicated by Fig. 2, we assume a digital transmission,

which requires quantizing the source codec parameters to
, , where is the quantizer’s

reproduction set containing real-valued
vectors of dimension . The channel encoder maps the quan-
tized parameter sets to -dimensional codewords

with being the channel code. If
the system is designed such that , we obtain a
redundancy-increasing code. For convenience, we assign

.
Further, we assume a binary modulation scheme, such as

binary phase-shift keying (BPSK). Consequently, the elements
of the code vectors are binary ,

, and the energy per transmitted symbol is
. An extension to -ary modulation schemes is straight-

forward and will not be considered here. The additive channel
noise is represented by the vector , whose scalar compo-
nents are realizations of independent, zero-mean Gaussian
distributed random processes with variance . At the
receiver, the decoder processes the soft channel-output values

, and yields estimates of the
transmitted codec parameters.
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III. SOURCE-OPTIMIZED CHANNEL CODES

SOCC is based on the idea to design a redundancy-increasing
block code such that the transmission quality of the source
codec parameters is maximized. Although this is not completely
equivalent to maximizing the quality of the source signal itself
at the receiver, there is usually a close relationship between
error-caused deviation of the parameters and degradation of the
received signal, which justifies this approach.

A. Definition

The new channel encoder is an independent functional unit,
which is optimized with respect to the channel-dependent pa-
rameter distortion , while the distortion due to
parameter quantization is considered to be fixed. Thus
the optimization criterion can be stated as

(1)

where denotes the expectation of the expression in braces.
Now, given the quantizer reproduction values , their statis-

tics , a statistical transfer function of the channel
(described by ) and a decoder (estimator) ,
we define an SOCC as the set of codewords

(2)

which result from solving the optimization problem

(3)

The symbol “ ” denotes concatenation.
Concerning the structure of the code, we do not impose any

constraints, so, in general, the code will not be linear, i.e., it will
not fulfill the condition

(4)

where “ ” denotes bit-wise modulo-2 addition. As a conse-
quence, the number of quantizer reproduction values, and
thus the number of codewords, can be chosen freely and need
not to be a power of two, as it is the case for binary linear codes.
This additional degree of freedom allows for a high flexibility
from the design perspective, because the number of reproduc-
tion values can br exactly selected to satisfy a given quality con-
straint, and it is possible to add error-protecting redundancy at
a fine level of granularity.

SOCCs are ideal to protect single parameters or small param-
eter groups. Large codewords will usually consist of sev-
eral independent subcodewords , where

is the number of parameter groups. Accordingly, the received
vector is .

Although the general definition of SOCCs given above is not
restricted to a particular quality measure, in the rest of the paper,
we will focus on the square error

and (5)

due to its high practical relevance, e.g., as quality indicator for
the decoded signal.

B. Decoding of SOCCs

The basic framework for optimum soft decoding in com-
bination with block coding was already derived in [26]. Soft
decoding methods in the case of correlated sources were pro-
posed in [12], [13], [27], and [28]. We will briefly review the
algorithms and adopt them for the problem of SOCC decoding.
In order to simplify notation, we assume parameter-individual
quantization and encoding, i.e., .

1) Optimum Decoder for a Memoryless Parameter
Source: Our objective is to derive the estimator ,
which recovers the parameter set from the received vector

with MMSE, i.e.,

(6)

We drop the time index in the following derivation for the sake
of notational simplicity. From estimation theory, it is known that
the optimal estimator in this case is given by [29]

(7)

The probability density function (pdf) in (7) can be expanded
into

(8)

where can be crossed out in the first conditional pdf, as de-
pends only on the quantized parameter set , i.e.,

. Since the channel-encoder mapping is
deterministic, the equivalence holds. A
given quantizer establishes the partitioning

, . This partitioning implies

else.
(9)

Substituting (8) back into (7) and interchanging sum and inte-
gration, we obtain

(10)

Further, we assume the reproduction values being centroids
of their respective quantization cells, i.e.,

(11)

Recognizing that the integral in the numerator is identical to that
in (10), we finally get the optimal estimator

(12)

The assumption of individual coding allows applying (12) to
each parameter independently

(13)
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This solves the complexity problem inherent in (12), as the
number of summations in (12) is , while
applying (13) to each component requires only
summations.

2) Optimum Decoder for Sources With Interframe
Memory: Now we take into account that source codec pa-
rameters usually have residual correlation in time

(14)

where represents the autocorrelation series of the
parameter sequence . We describe the correlation
property of the parameters by a first-order Markov source with

(15)

An extension of the decoding algorithm to a higher Markov
order is straightforward [30] and will not be considered here.
A source model with parameters , , and exhibiting prop-
erty (15) is shown in Fig. 3. To be precise, (15) does not hold
exactly for the quantized parameters , but for quantization
with more than 2 b per parameter, it is valid with high accuracy.
Setting , we obtain

and (16)

For our simulations, we adjust the coefficients of the model in
Fig. 3 according to typical correlation values we measured with
standardized speech and audio codecs (ETSI, ITU, MPEG).

To improve the estimate, we take now into account the his-
tory of received vectors . To enhance readability
of the equations, in the following, we denote a sequence by
applying start and end index to the respective variables, e.g.,

. The estimator can then be stated as
. Note that this estimator is only optimum

under the constraint that no algorithmic decoding delay is
allowed. Without this restriction, the estimation can be further
improved by exploiting vectors received in future
[28], [30], yet we do not consider this case here. With the result
of Section III-B.1, we obtain

(17)

The conditional pdf in (17) is closely related to the joint pdf
, which can be interpreted as marginal distribution of

. Applying the chain rule, we obtain the recur-
sion formula

(18)
where the sequence can be omitted because we assumed
a Markov source and a memoryless channel. Furthermore, the
conditional pdf in (18) can be expressed in known terms

(19)

As the components of the parameter set are assumed to be
mutually independent, complexity can again be reduced by pa-
rameter-individual estimation. It should be mentioned that (18)

Fig. 3. Model of a parameter source with interframe memory of order 1; inner
sources ~u memoryless; individual quantization and SOCC of each parameter.

corresponds to the forward recursion of the famous maximum a
posteriori (MAP) algorithm first presented by Bahl et al. [25].
In our case, the backward recursion is dropped because of the
zero-delay constraint.

C. SOCC Design

Solving the optimization problem (3) by exhaustive search
would require probing possible encoder map-
pings , which becomes infeasible for codeword lengths
longer than four bits. Therefore, we will apply a suboptimal
search algorithm, which finds at least a good local optimum in
reasonable time [21], [31]. A further speed-up is achieved by
leaving the correlation of subsequent data sets out of account
for the code design, i.e., we assume for all

. But note that we do exploit this correlation for the decoding,
as shown in Section III-B.

We start with a modified expression for the channel-related
mean square error (MSE) (Appendix I)

(20)

The sum depends only on the fixed quantizer and can be ignored
for the optimization. Therefore, a sufficient condition for the
optimality of is the maximization of the integral term.

As the integration cannot be solved analytically for the
Gaussian channel, we apply a numerical approximation by
quantizing the channel output values . This converts the inte-
gral into a sum over , where .
Then, the optimization criterion (3) can be stated as

(21)

By choosing an appropriate quantizer it can easily be ensured
that the sum in (21) converges to the integral term of (20), i.e.,
by increasing the number of reproduction values , the error
due to the applied approximation can be made arbitrarily small.

A powerful means to optimize the encoder mapping is the
BSA proposed by Zeger and Gersho [21]. This algorithm itera-
tively approaches a local minimum of (21) by repeatedly swap-
ping the assignment of two codewords. If and represent
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the mapping before and after a swap, then one swap iteration is
characterized by

.
(22)

Note that swapping a code word with some element
from the pool of unused bit combinations is allowed
as well, which enables modifications not only of the mapping
but of the code itself. In each iteration step of the BSA, the
candidates for a swap are selected such that a maximum growth
of the target function (21) is achieved. Appendix II shows how
the computational complexity for evaluating a tentative swap
can be kept low. The BSA terminates if there is no swap yielding
a further increase of the target function left. We will denote the
optimized mapping obtained in this way by .

For the numerical efficiency of the code design, it is important
to keep the number of discretized channel-output values in
(21) as low as possible, since has a big impact on computa-
tional complexity and memory consumption. On the other hand,
suboptimality due to coarse quantization should be avoided. To
find a tradeoff, we carried out two experiments.

With the first experiment, we determined the minimum to
achieve saturation of the estimator performance. Using the com-
munication model according to Fig. 2, with a single, Gaussian-
distributed codec parameter with and

, we measured the overall distortion
as a function of and on the AWGN channel. We ob-
served performance saturation if each received symbol is
uniformly quantized with at least five bits. We concluded that
this quantization accuracy is sufficient to avoid a degradation of
the code design.

Next, we investigated the impact of on the SOCC design
algorithm. We expected a similar saturation of the resulting code
performance if is increased to the saturation value found
by the first experiment. Instead, the code performance did not
change significantly. This is due to the BSA’s property to se-
lect a mapping by relative comparisons. Although the abso-
lute value of the target function (21) is changed by the quanti-
zation, the relative relations remain almost the same. Hence, in
the SOCC design phase, hard decisions may be applied to the
received symbols .

D. Bit Allocation Between Source and Channel Coding

For a particular transmission scenario given in terms of trans-
mission rate (number of channel bits/number of pa-
rameters per set) and , an optimum number of repro-
duction levels can be found, which yields the best performance
achievable by means of SOCCs, i.e.,

(23)

The simulation results of this optimization for a scalar Gaussian
distributed parameter and codeword lengths are
depicted in Fig. 4. Implicitly, also the optimum bit allocation
between source and channel coding is determined, i.e.,
bits are assigned to the source coding, and bits
to the channel coding. Fig. 5 displays the resulting coding

Fig. 4. Best performance achievable by means of SOCCs; individual code
design and optimization of M for each simulation point; white Gaussian
parameter source, � = 1; Lloyd–Max quantizer; gross data rate: r = K=1
bit per parameter value; AWGN channel; figures: optimum number M
of reproduction values/codewords; evaluation: Monte Carlo simulation, no
quantization of channel output values.

Fig. 5. Optimum coding rates in case of a limited code length; individual code
design for each simulation point; white Gaussian parameter source, � = 1;
AWGN channel; gross data rate: r = K=1 bit per parameter value.

rates , and for reference, the capacity of the
AWGN channel as functions of .

IV. PERFORMANCE COMPARISON

A. Channel-Optimized Vector Quantization

Before comparing SOCC and COVQ performance ex-
perimentally, we will discuss the differences between both
approaches in terms of their optimization criteria. The COVQ
criterion is given by

(24)

i.e., it is a true joint optimization of the parameter quantizer
Q, the number of reproduction values , and the mapping .
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Fig. 6. Comparison of SOCC and COVQ for gross data rate r = 4 bit per
parameter value; code lengthK = 4; individual code design for each simulation
point; figures: numbers of reproduction values M ; white Gaussian parameter
source, � = 1; AWGN channel.

Denoting the COVQ centroids with we can decompose (24)
to

(25)

With SOCC, the total MSE for a given number of reproduction
values is

(26)

In contrast to COVQ, the bit allocation between source and
channel coding is explicitly determined by a second optimiza-
tion step with respect to

(27)

Applying the inequality to
the above criteria, we conclude that only the COVQ criterion
ensures a minimization of the total MSE, while the independent
design of Q and in the case of SOCC does not guarantee this.

In order to verify this consideration, we trained COVQ code-
books for and and different by applying the
original design algorithm proposed by Farvardin [1]. However,
as our communication model employs the continuous-output
AWGN channel, the update equations for COVQ training con-
tain integrals over the conditional channel pdf, which cannot be
solved analytically. We coped with this by approximating the in-
tegrals by sums over a precomputed set of channel realizations,
as proposed in [10]. In total, we used realizations for the
source and realizations for the channel training set. For the
highest under consideration, the COVQ training algo-
rithm was initialized by a source-optimized codebook trained
with the split-LBG (Linde Buzo Gray) algorithm. Then, pro-
ceeding toward lower , the COVQ codebook of the pre-
vious optimization was each time applied as initialization.

Figs. 6 and 7 show the comparison of COVQ and SOCC per-
formance. In many cases, SOCC slightly outperforms COVQ,

Fig. 7. Comparison of SOCC and COVQ for gross data rate r = 8 bit per
parameter value; code lengthK = 8; individual code design for each simulation
point; figures: numbers of reproduction values M ; white Gaussian parameter
source, � = 1; AWGN channel.

Fig. 8. Comparison of SOCC and COVQ at channel mismatch; design for
highlighted simulation points; white Gaussian parameter source, � = 1; gross
data rate r = K=1 bit per parameter value, whereK 2 f4; 8g; AWGN channel.

which indicates that the applied COVQ training algorithm did
not converge close to the optimum. Certainly, the COVQ results
could be somewhat improved by more sophisticated training
methods, such as simulated annealing. However, what can be
derived from the curves, is that SOCC, despite the independent
optimization of quantizer and channel encoder, provides a per-
formance close to that of COVQ. This means that SOCC allows
optimizing the source encoder independently from the channel
without a big performance loss, which is a crucial design advan-
tage, compared with COVQ.

So far we assumed that the encoder (Q, in Fig. 2/COVQ)
is matched to the conditions on the transmission channel.
However, in many practical systems, we encounter time-variant
transmission conditions, e.g., due to a fluctuating interference
situation. As run-time adaptation is often not possible, the
coding scheme should ensure a high transmission quality even
under such mismatch conditions. In fact, SOCC is better fitted
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TABLE I
MODEL ASSUMPTIONS

to this, as can be verified by the results shown in Fig. 8. Unlike
in the previous experiments, the training is performed only for
one single channel condition, which is highlighted by black dots
in the plot. In all other simulation points, SOCC/COVQ are not
matched to the channel. We observe that SOCC performs better,
especially under good channel conditions, where the usage of
the source-optimized quantizer becomes most advantageous.

In conclusion, we can state that due to the beneficial design
aspects and its better robustness under channel mismatch,
SOCC is an attractive alternative to COVQ for real-world
applications.

B. Convolutional Codes

As a second benchmark, we consider a sophisticated coding
system based on convolutional codes, UEP, and SCCD [32],
[33].

The convolutional coding approach employs a rate-1/2,
memory-6 recursive systematic convolutional (RSC) encoder.
UEP is achieved by placing sensitive bits at the beginning of a
frame, where error protection is high due to the known initial
state of the encoder. No tail bits are appended, so that less-sen-
sitive bits can be placed at the end of a frame, where in this
case, error protection is weak. This UEP approach despite its
simplicity is very effective, and has found application in mobile
communications, such as GSM. The convolutional decoder
uses an advanced version of SCCD [4], which exploits a priori
information of the source on the parameter level in a two-step
fashion, where the first step produces extrinsic information for
the second one. However, each decoding step requires a costly
soft-output trellis decoding of a received block [5], [7], [33].

For the comparison, we assume a block-wise transmission
of parameter sets. A fixed number of bits per
parameter set is available for transmission. Two transmission
rates are here investigated, and bits per scalar
parameter value, which means that we can transmit either

30 or 20 parameter values per block. An additional
constraint is put on the transmission quality to be achieved
under noise-free conditions , as shown in Table I.
The channel is assumed to be AWGN. Each component
of the parameter set is individually quantized, yielding .
While a convolutional encoder can easily map to one single
codeword , with SOCC, we have to restrict the codeword length
due to complexity aspects. A first choice was to protect each
parameter individually by an SOCC, but the performance of
such short codewords was not satisfying. We found a reasonable
compromise by encoding pairs of parameters, i.e., , ,

are jointly encoded by one codeword. The
codewords obtained in this way are then compiled to a

transmission block . The SOCC is designed
for dB, otherwise it is mismatched. The comparison
covers both the case of a memoryless parameter source and that
of a Markov source (Fig. 3), which models a residual parameter
correlation in time (interframe correlation). For transmission

Fig. 9. SOCC versus UEP/SCCD; transmission rate r = 8=2 bits per
parameter value (two parameter values encoded by one single codeword);
Gauss–Markov source, � = 1, Efu u g = #; setup according to
Table I; AWGN channel.

Fig. 10. SOCC versus UEP/SCCD; transmission rate r = 12=2 bits per
parameter value (two parameter values encoded by one single codeword);
Gauss–Markov source, � = 1, Efu u g = #; setup according to
Table I; AWGN channel.

rate , we use an SOCC consisting of
code vectors out of possible bit combinations,
which represents a coding rate of . For

, we found , resulting in a coding rate of
.

Figs. 9 and 10 depict the simulation results. For ,
the new SOCC approach is clearly ahead; there is only one
simulation point ( and dB) where the
convolutional code performs slightly better. At transmission
rate , the convolutional code gains at medium channel
conditions dB dB , but the lead of
SOCC outside this interval is still dramatic. This tendency can
be found also at higher transmission rates. Highly desirable
is the graceful degradation of transmission quality achievable
with SOCCs. The convolutional coding system suffers from
the known threshold effect of conventional channel coding.
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We concluded from these results that there is not an overall
winner, as it depends on the operating point and on the vari-
ance of which one of the two approaches is preferable.
A promising way out of this dilemma is to benefit from both
coding strategies by combining them [19].

V. CONCLUSION

We have proposed a novel joint source-channel coding con-
cept called SOCC based on a new class of nonlinear block codes.
The new scheme is intended to protect source codec parameters
against transmission errors such that the maximum parameter
SNR is achieved at the receiver. This is a crucial innovation,
compared with conventional channel coding, which aims at a
minimum residual bit-error rate. For the overall system design,
SOCC offers the additional degree of freedom that the number
of codewords is not bound to a power of two. For the decoding
of SOCCs, we employ the optimum estimator in the minimum
mean-square sense. We derived this estimator for memoryless
sources and for Markov sources under zero-delay decoding
constraint.

Compared with COVQ, we found that SOCC has a compa-
rable performance for channel-match conditions and is more
robust if channel mismatch occurs. Regarding the overall de-
sign of a transmission system, SOCC is easier to implement
than COVQ, because the source encoder needs not to be opti-
mized with respect to the channel and can completely be reused
in other transmission scenarios. This makes it more attractive
for real-world application. We compared SOCC with a sophis-
ticated convolutional coding system featuring UEP and SCCD
[32]. Our simulations show that SOCC outperforms this bench-
mark system, especially for low transmission rates , and
is beaten only in a small medium range of for higher
rates.

APPENDIX I
OPTIMALITY CRITERION

In case of the square error-distance measure, the generic op-
timality criterion (3) becomes

(28)
Using the abbreviation , the quadratic term expands to

(29)

The expectation of the mixed term in (29) can be expressed as

(30)

(31)

where the last line results from (7). Back substitution of (31)
into (28) yields (20).

APPENDIX II
EFFICIENT SWAP EVALUATION

We define the following abbreviation for the nominator term
of the target function (21):

(32)

After a code-word swap, according to (22), it is not necessary
to recompute from scratch. It can be computed by
updating each , according to

Collecting equal terms yields

(33)

By analogy, the denominator expression

(34)

results in

(35)

In case is swapped with an element from the pool of un-
used bit combinations , the respective update rules
are readily obtained from (33) and (35) by simply substituting

and . The value of the target function for
the modified mapping is

(36)
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