MAP Channel Decoding by exploiting Multilevel Source A Priori
Knowledge

Stefan Heinen, Axel Geiler, Peter Vary

Institute of Communication Systems and Data Processing
RWTH Aachen, Templergraben 55, D-32056 Aachen. Germany
Phone: +49-241-806964, Fax: +49-241-3888186,

Email: heinen@IND.RWTH-Aachen.DE

Abstract

In digital transmission systems source encoders are used
to remove redundancy from the source’s output data in
order to save transmission bandwidth. As the compressed
data is sensitive against transmission errors channel en-
coding is used to perform forward error correction.

For practical reasons, source coding schemes produce
multilevel parameters with nonzero residual redundancy
which manifests itself in a nonuniform p.d.f. of a param-
eter and/or in the correlation of subsequent parameter
values.

The objective of this paper is to derive methods to ex-
ploit multilevel a priori knowledge within the detection
process of channel decoding. Joint a priori probabilities
of bit groups are taken into consideration within the path
metrics of the Viterbi algorithm.

1 Introduction

In data transmission systems source and channel coding
are usually treated separately. This may be justified by
Shannon’s information theory which states that within
the bounds of channel capacity a coding scheme working
at arbitrary low bit error rates can be found by sepa-
rately optimizing source and channel coding. This would
imply to realize a perfectly working source encoder which
outputs independent uniformly distributed bits or param-
eters. However, with practical source encoders, in most
- cases residual redundancy will be left. Shannon already
. mentioned [1]: “However, any redundancy in the source
- will usually help if it is utilized at the receiving point. In
particular, if the source already has redundancy and no
* attempt is made to eliminate it in matching to the chan-
nel, this redundancy will help combat noise.” In [2] Ha-
genauer uses this idea for “source-controlled channel de-

bits. It is obvious that we will gain more if we exploit
multilevel parameter statistics instead of bit statistics.
Since the modifications will only affect the channel de-
coder the proposed approach is an attractive means to
improve the transmission quality of a practical commu-
nication system where the decoding algorithm in the re-
ceiver is not part of a standard (e.g. GSM).

2 MAP Decoding Exploiting A Priori
Knowledge on Single Bit Level

Fig. 1 shows a standard transmission system with an
AWGN channel model. We assume a source encoder pro-
ducing frames of IV bits (for notational simplicity a se-
quence extending from p to g is denoted by x7)

x‘lv =, et}
that are channel encoded resulting in M bits
M
i = A{y, - uar}

with y; € {0,1} which are sequentially transmitted via
the channel. At the receiver the noisy sequence

2= {2, ., zm}

with z; € R is discretized with sufficient amplitude reso-
lution to support soft decision and then forwarded to the
channel decoder.

[n the sequel we want to restrict our investigations to
convolutional channel codes. Furthermor to simplifv the
formalism only encoders of rate 1/r are considered.

The Viterbi algorithm has been shown to be a power-
ful means for the decoding of convolutional codes. The
classical detection approach is the “Maximum Likelihood
Sequence Estimation”™ (MLSE) which is based on the cri-
terion

. coding”. This approach exploits the correlation of single CvMLSE: P (z;"r|xlv> = max/, (1)
. . L
bits of subsequent source encoded frames: the intraframe x
correlations between bits remain unused. where
In this contribution we want to generalize this concept to LN 3 )
Parameters consisting of groups of statistically dependent X1 =A% IN
n
xe€{0,1} ve{0,1} L zeR
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Fig. 1: Standard transmission system
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is a tentative bit sequence. The conditional probabil-
ity density function p(-|-) describes the channel statistics.
If the channel is assumed to be disturbed by additive
noise n, then p(:|) can be identified as the noise’s den-
sity function Pn(&). In the case of white Gaussian noise,
this formula leads to the wel] known “minimum Euclidian
distance criterion™. For the ML approach no knowledge
about the distribution of the information bits is needed.

In contrast, the “Maximum A Posteriori Sequence Esti-
mation” (MAPSE) requires a priori knowledge about the
sent information sequence. It is based on the criterion

Cvaps < Pr (%) = xVfa) = maxt  (3)
{x7')
which means that we have to find the most probably
sent sequence {r,..zx} given the observed sequence
{:1._...:,\,;}. It is well known that the MLSE and the
MAPSE approach are formally equivalent if the informa-
tion bits are identically distributed.

In a first approach, we want to characterize residual re-
dundancy in the source encoded bits by stating that the a
priori probabilities Pr(z; = 0) and Pr(z; = 1) of at least
some bits z; of the information sequence {zr, - IN} are
unequal

Pr(z; = 0) # Pr(z; = 1). (3)

If we assume statistical independence of the information
bits z; and white channe] noise, it will be possible to
formulate a metric that can efficiently be maximized us-
ing the Viterbi algorithm. With r the number of channel
encoded bits produced per information bit we can write
the MAPSE metric (4). The term enclosed by brack-
ets describes the branch metric for the transition from
one decoding step to the next corresponding to one infor-
mation bit. Therefore the single bit a priori probability
Pr(z; = &y) can directly be combined with the branch
metric. The single bit MAP metric has only a slightly
increased complexity compared to the Maximum Likeli-
hood (ML) metric as Just one additional multiplication
(or addition in the logarithmic domain) is necessary per
decoder branch.

Equation (4) corresponds to the “A Priori Viterbi Algo-
rithm” (APRI-VA) approach in [2].

A major drawback is that multileve] a priori knowledge,
L.e. the non-uniform distribution density on parameter
level, is not exploited.

3 MAP Decoding Exploiting A Priori
Knowledge on Parameter Leve]

We now want to show that a similar and only slightly
more complex formula can be derived if we no longer as-
Sume statistical independence of the source encoded bits
Within a frame of V bits {Z15s, zn}. Instead, we presume
Statistical independence amongst groups of bits within
the frame,

Thus the frame of N bits can be subdivided into @ pa- :

rameters Xy, | = 1,.., Q, each consisting of D = N/ bits
according to

D
X = sz(f) 2 b(3) = 2oy pa. (5)
i=]
For the time being statistical dependence of subsequent
values .Y, is not considered. However, this can as wel| he

taken into consideration by modelling the source encoder +
as a Markov source and estimating the a priori paramete;
knowledge with respect to previously decoded parameters

[3].
With @ = N/D and b (i) := £(1-1)p+i We obtain
Pr (xl\r = f{?) = HPI‘ (,Y[ = .\.’1) (6)
f=1
Q -
= [1Pr ({0t = bu(a) 2).
=1
Now the residual redundancy can be described by the
non-identical probability of the source coded parameters,

This means that for at least some pairs of parameter val-
ues m,n € {0,..,22 — 1} with m # n the inequality

Pr(Xi =m) # Pr (X, = n) (8)

holds. In this case the MAPSE metric results in (9).

In general, we cannot expect that the dependent bits are
fed into the channel coder subsequently.

In some cases is advantageous to reorder the source en-
coded bits such that the most sensitive bits are positioned
at the beginning and at the end of the transmitted block
of length N where the error protection is better than in
the middle.

Due to this reordering the dependent bits of a parameter
will be spread over the transmitted block (see Fig. 2).
For reasons of notational simplicity we assume that the
parameter bits still are in the same order as indicated by
3, l.e. by(i) preceeds bi(f) ifi < j.

= ——
L[ Bl ool T o0 T Todl ]

X X, . . .

Fig. 2: Spreading of dependent bits

As we will see, this reordering will cause some important
implications on our algorithm. In this context we have to
classify the problem into two cases:

A. The range R; over which the dependent information
bits of parameter / are spread is greater than the con-
straint length L + 1 (L = number of shift registers)
of the convolutional encoder.

B. The spreading range R, is less or equal to [ + |,

Since case A is more general we will consider it first.

MAP metric on bit level:

N r
MprapsE.pir = H [HP (kaq)rwf{*f})J Priz; = ) (4)

r=1

k=1
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MAP metric on parameter level:

r

‘%

MyaPSE.param = (ﬁ [HP (:(k—urﬁ-ui{*ﬁ})}) : (]_9_[ Pr (Xr = Xﬂ’:)) (9)

k=1 Lr=1

A. MAP decoding with R, > L +1

The problem in formulating an appropriate metric for the
Viterbi algorithm is how to split up the parameter proba-
bilities Pr (.X; = m) such that a decision for the maximum
metric can be made for every single decoding step k.

k[ 6,(1) k, b,(2)
OO - . L] . .
Pr(*,0)

Fig. 3: Exact MAP decoding

To explain the difficulty consider Fig. 3 (solid lines repre-
sent transitions for information bits 6;(¢) = 0 and dashed
lines transitions for information bits b;(¢) = 1). In this
example the parameter .X; consists of two bits b(1) and
by (2) that are spread by A; = 5. The constraint length of
the encoder is L + 1 = 3. The depicted path splits up at
decoding step A, into an upper path s, and a lower path
sy which merge at step kq.

A MAP decision at step k4 requires to multiply the up-
per and lower path metrics by their particular parame-
ter a priori probability Pr(b;(1), b(2)). Unfortunately at
step k; we do not know how the second bit b(2) of the
parameter will be decoded. Thus the final decision must
be delayed by continuing the decoding process with two
parallel paths whose metrics are multiplied by their re-
spective a priori probabilities Pr (b;(1), b;(2)). The first
bit &;(1) is already determined by the transition from k,
to k; + I for each path. At decoding step ky the paral-
lel branches of s; and s, merge. Therefore we have to
handle two pairs of competing paths which requires two
decisions, in particular

bi(1)=1
My -Pr(0,0) = My -Pr(1,0), assumedf(2) =0
bi(1)=0
and
bi(1)=1
M, -Pr(0,1) s M, Pr(l,1), assumed(2) = 1.
bi(1)=0

My and M, represent the metrics of the paths s; and s;
without the a priori probabilities of parameter X;. The
bi(1)=1
relation r(gj
b (1)=0
hand side is less than the righthand side, decide (1) =1
and in case it is greater decide b(1) = 0.
Depending on the decisions on b/(1) made at step k4 the
asterisk in the a priori probabilities Pr(*,0) and Pr(x, 1)
shown in Fig. 3 represents either 0 or 1. Note that it is
Possible that the parallel paths after step ky decode by(1)
different]y.

has to be understood such that if the left-

When extending the example to arbitrary parameter sizes
(D > 2) the decoding of each first bit b (1) of a parameter
X; will increase the number of parallel paths by a factor
of 2P=1 After decoding any further bit b,(i), i > 1 the
number of parallel paths shrinks by 2. Thus we can state
that after decoding the i-th bit b;(i) each parameter .\
contributes with a factor of

| = 9P (10)
to the number of parallel paths until i = D. [t becomes
obvious that the complexity of this decoding algorithm
increases exponentially with the parameter length and
linearly with the spread range R;. Therefore it is not of
practical interest and we should aim at an approximation
with a complexity comparable to the standard Viterbi
algorithm.

Approximate MAP decoding

In our approach we approximate the 22~% parallel paths
by only one path whose metric is multiplied by an esti-
mated a priori probability Pr(b; (1), .., bi(7)) that depends
on the previously decoded parameter bits b;(1), .., b(i))
but is independent of the future bits bj(z + 1), .., &( D).

k| b(1) k, b, (2)
Q0 e . . . . .
Pr(h,(1),0) r=l)
- L=1

Fig. 4: Approximate MAP decoding

Of course. we introduce an inaccuracy into the path met-
ric computation which will degrade the gain obtainable
with optimal MAP decoding, but on the other hand we
will decrease the complexity dramatically.

During the decoding process we take into consideration
the already decoded bits of a parameter, thus improving
the estimate until the whole parameter is decoded. This
is achieved by multiplying the metric of the representative
path by an enhancement factor
® o ie{1,.., D},

pe {01}

whenever an information bit b () of parameter .X; is de-
coded. The procedure described below comprises the nec-
essary operations when decoding the i-th bit of a param-
eter .X:

1. Compose two sets of a priori probabilities
S = (Pr(X0)[bi(1), .., bili — 1) fixed, by(é) =0}
and

SV = {Pr(Xy)|be(1). ... by(i = 1) fixed, be(i) =1}
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where the values of the already decoded bits
by(1),.., (¢ — 1) are fixed and shared by all prob-
abilities in both subsets, while the values of b (i +
1), (D) take on all possible valyes.

2. Compute two probability estimates
Pribi(1), . bi(i = 1), b (1)
Pr(bi(1), .., bi(i = 1), by (i)

for each subset.

=)

)

0 1
3. Compute the enhancemend factors cf " and et

cording to .
e = Pribi(1), ., (i) = 2
' Pr(b;(l)...,b;(f—l)]
with 7 € {1,.., D}, u € {0, 1} and multiply the met-
rics of the respective representatjve paths for transi-
tions b; (1) = 0 and (i) = | by it.

ac-

(11)

This may be clearified by the simple example depicted
in Fig. 4, which again shows the decoding of a two bit
parameter. We start with estimates for the subsets
5" = {Pr(0,0), Pr(0, 1)}
51 = {Pr(1,0), Pr(1, 1)}
yielding Pr(0) and Pr(1), respectively, as described be-
low. In contrast to the exact MAP solution of Fig. 3, at
step ks we now have to make only one decision on the
representative paths.
When decoding 6;(2) we can improve the probability es-
timate by splitting up further the surviving path’s prob-
ability subset into the subsets
sl = {Pr(b:(1).0)} and S§V = {Pr(p,(1). 1)}.
Here the estimates coincide with the single set elements.
The value of b;(1) is fixed and the same for both subsets.
It depends on which representative path survived after
the decision at step ky.
In order to find a good estimation rule we need a measure-
ment of the inaccuracy introduced by our approximation.
A suitable measure is the total squared error caused by
replacing all probabilities of one subset by only one esti-
mated probability. For simplicity, let
=—(u)

Pri™" o= Pr(by(1), .., b(i — 1), bi(7) = p)
be the estimated probability for the i-th bit. Then the to-
tal squared error entailed by replacing the parallel paths
of the exact solution according to Fig. 3 by one represen-

tative path is
(Az(»u))" - Z (P_ﬁl(y))g-
Pes!s)

It can be shown that by minimizing (12) the value of
the enhancement factor (11) results in the conditional
probability
e Prib(1),00(2), ... 6(i) = p)
! Pr{b;(l),...b;(z'—l))

= Pr (h(i) = fb;(l), wbi(i=1)). (13)
Assuming that the information bit x4 is the i-th bit by (1)
of parameter Xy, the MAP metric can now be expressed
as (14). This equation shows, that we have to keep in
mind how the parameter bits b;(1), .., bi(i — 1) have been
d.eCOdEd for the current path. Actually the Viterbj algo-
i‘lth‘m's Path memory contains this information. A non-
optimized implementation could therefore perform a trace
‘bfﬁ‘l\' for €Very parameter bit to find out how the previous
Oits have heey decoded.

(12)

32

B. MAP decoding with R, < [ + 1

We will now show that the decoding algorithm can even
be simplified if the parameter spread range R, is
equal to the constraint length of the code.

Due to the design of a convolutional code the encoder’s
state directly corresponds to the last L encoded informa.
tion bits. Therefore each state in the decoder trellis def-
initely determines the last J bits that would be decoded
if the traceback started from this state.

To understand the implications for the MAP decoding
algorithm consider the example in Fig. 5.

less o

K b (1) |b,(2)] &,
W o=, ) ’ " k=0
A Ll - '.E’.:-E
« Pr(0.1)
NP

Fig. 5: Exact decoding for R, <L+

The second bit b1(2) of the parameter X, is now placed
at a distance of L + 1 from bi(l). Again. to perform
exact MAP decisions for the two bold paths s; and s,
we have to multiply the metrics with the parameter a
priori probabilities Pr(bi(1),6(2)). Actually we should
do that for the transition from step k; to ky + 1 since
all subsequent path decisions will depend on the metric
factor applied. But this can be postponed as shown in
the example below.

At step ky— 1 the path ™My merges with the survivor path
51. It can be observed that the paths m; and s; both
decode b (1) = ¢ (solid line). Consequently the metrics
of m; and s; have to be multiplied by the same a priori
probabilities. The same is valid for paths m4 and ..
Finally, as for the path decisions only the quotient of the
path metrics is of interest, we can delay the multiplication
of the a priori probability until the transition from step
kg = 1 to ky. This is advantageous because wit] this
transition we also decide on the second parameter bit
b;(2) and therefore we know which parameter probability
has to be applied on the respective path metric.

Our considerations lead to the following decoding algo-
rithm in the case R, L+

L.} Perform the Viterbi algorithm with the standard ML
metric.

2.) Whenever the last bit of a parameter is decoded, ex-
tract the previously decoded bits of the parameter
from the current state and use them together with
the currently decoded bit to select the respective a
priori probability the path metric has to be multj-
plied with.

This shows that the proposed MAP decoding algorithm
will only slightly increase the complexity compared to a
Viterbi algorithm using the standard ML metric.
Comparing the complexity of our approach with that of
a recent publication [4], we find that our algorithm in
general is less complex. To male this clear, let us consider
the following example.

In [4], a rate 3/4 convolutional code taken from [5] is
applied to encode 3-bit speech encoder parameters. The




Metric on parameter level for approximate MAP decoding:

N r
My aPSE param = H [H P (:(k_l},+,|{5c’f})J -Pr (b:(i) = i

k=1 Lv=1

BECL), oy bl = 1)) (14)

trellis of this code has eight transitions emerging from
each state. Since such a transition decodes the three bits
of a parameter its path metric can be directly combined
with the particular a priori probability. The code has a
memory of L =5 and a free distance of ds... = 5.

We choose a significantly less complex punctured rate 3/4
code derived from a rate 1/2 code. From [6] we can adopt
a code with comparable (in fact slightly higher) perfor-
mance (L = 6, dfr.. = 5). Even though the trellis of this
code has more states than the code applied in [4] it can
be shown that its trellis complexity [7] is lower. For the
unpunctured code we obtain a complexity of

4 .
= 2543 = 341.3

3
symbol metric calculations per information bit while the

punctured code has a complexity of

ST

J

symbol metric calculations per information bit, which is
a saving of 50 percent. Moreover our concept allows a
higher flexibility when choosing an appropiate channel
code since the denominator of the code rate needs not to
be a multiple of the parameter size M.

The question how to provide the a priori knowledge about
source parameters is beyond the scope of this paper but
was already covered in several recent publications [3, 8].
The principles derived there can directly be adopted to
our algorithm.

4 Results

To study the behavior of our algorithm let us first con-
sider a simple experiment. We model the source encoder
output as a zero mean white (Gaussian noise source with
variance o> = 1. The noise signal is linearly quantized
with 16 levels using a midtread quantization character-
istic with minimum value -8.5 and maximum value 7.5
respectively, thus yielding parameters of 4 bits. The en-
tropy of this source is about 2 bit thus generating a statis-
tical dependence between the parameter bits. The chan-
nel encoder applies a rate 1/2 code with octal generators
G, = 15, G2 = 17 taken from [9].

Fig. 6 depicts the simulation results employing an AWGN
channel, for the ML decoding, the APRI-VA [2] using
single bit a priori probabilities and the new MAP ap-
proaches, both the approximate and the exact one. Ex-
cept for the exact MAP decoding in all other simulations
the source bits were interleaved by a 4 x 6 block interleaver
to simulate a spread range R, > L + 1.

The performance of the single bit MAP decoder in this
example is only slightly better than ML decoding. This is
due to the almost symmetrical distribution density func-
tion of the quantized source.

To explain the effect consider the following simple exam-
Ple: Let a source produce four different symbols A, B, C
and D with the probabilties Pr(4) = Pr(B) = 0.2 and

Residual Bit Error Rate

MAP param, exact ' N

2 3
Eb/NO [dB]

Fig. 6: Residual bit error rate for ML, single bit MAP
(APRI-VA), approximate parameter MAP (case B) and
exact parameter MAP decoding (case A)

Pr(C) = Pr(D) = 0.3. If we encode the symbols with two
bits and assign
A=00.B—=10.C=01,D—=11

then for both the first and the second bit a probability of
Pr(0) = Pr{l) = 0.5 results thus pretending at the single
bit MAP decoder that the source contains no redundancy.
In contrast the assignment

4A—=00,B—=01,C =11,D—= 10

results in Pr(0) = 0.4 for the first and Pr(0) = 0.5 for
the second bit. This example makes clear that the sin-
gle bit MAP decoder is very sensitive to the chosen bit
pattern assignment or the shape of the parameter density
function. respectively.

As further simulations have shown, the approximate pa-
rameter MAP decoder also slightly depends on the hit
pattern assignment but its performance is always better
than that of the single bit MAP decoder. The perfor-
mance of the exact parameter MAP decoder according
to case B is completely independent of the bit pattern
assignment, as expected.

[n order to test our concept in a practical communica-
tion system we choose 32kbit/s ADPCM as the source
encoder. This codec produces one 4-bit output parame-
ter per input sample. For speech input signals it can be
shown that some parameter values are much more prob-
able than others. Fig. 7 shows the normalized histogram
of the ADPCM output parameter for a long representa-
tive speech sequence. Moreover the correlation between
subsequent parameter values is almost zero.

Therefore, we modelled the ADPCM parameter as a
white source with the measured distribution of Fig. 7.
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ADPCM parameter
Fig. 7: ADPCM parameter histogram

Residual Bit Error Rate

MAP 1 bit

10‘2% : ot S 3
Ej + uncoded 28kbps
m [
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4 5 6 7 8 ¢ 10 11 12
E/N; [dB]

Fig. 8: Modified ADPCM, residual bjt error rate for ML,
single bit MAP (APRI-VA) and exact parameter MAP
decoding (case B)

Howerver, as we did not want to change the gross bit

rate of 32kbit/s on the channel with the applied forward
Error correction scheme we modified the ADPCM codec
such that the bit rate is merely 28kbit/s by producing
alternating parameters with 4 or 3 bits each (in this case
we have to apply two parameter histograms, one for the
3-bit and one for the 4-bit parameter).
Thus 4kbit/s are available for a rate 7/8 punctured [6]
channel code (G, = 23. G2 = 35). Fig. 8 shows the
residual bit error rates for the ML, the single bit MAP and
the exact parameter MAP decoder again for transmission
over an AWGN channel. In this case the gain achieved by
channel coding is marginal due to the high rate code but it
can be improved by MAP decoding exploiting parameter
i priori knowledge especially at low signal to noise ratios.
Note that the simulation speech sequence was not in-
‘luded in the training sequence applied to obtain the his-
Ogram in Fig. 7.

> Conclusion

Ve have presented two new concepts of exploiting a priori
‘Nowledge on parameter level for the decoding of convo-
dtlonal codes,

4

The first approach gives an approximate solution tq the
problem but is not restricted to a certain arrangemen;g of
the information bits before channel encoding,

The second approach performs an exact MAP sequence
decoding, vet it is restricted to cases where the bitg of
one parameter are encoded su bsequently and the size of
the parameter does not exceed the constraint lengt], of
the convolutional code.

To simplify the formal description only white paramete,
sources were considered, i.e. we did not mode] corre.
lations between subsequent parameter values. Yet, the
principles proposed here also he extended to coloureq
sources. However, this requires the application of a soft
output channel decoder, e.g. the SOVA [10].

Compared to ML decoding, both approaches do not sig-
nificantly increase complexity.
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