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RASTA speech processing was originally developed to 
reduce the sensitivity of recognizers to frequency 
characteristics of an operating environment (i.e., to 
convolutional noise). RASTA does this by band-pam 
filtering time trajectories of logarithmic parameters of 
speech (e.g., logarithmic spectral energies or cepstra). 
In our current paper we study RASTA processing in 
an alternative spectral domain which is linear-like for 
small spectral values and logarithmic-like for large 
spectral values. We show on experiments with a 
recognizer trained on the clean speech and test data 
degraded by both convolutional and additive noise that 
doing RASTA processing in the new domain yields 
results comparable to results obtained by training the 
recognizer on known noise. 

INTRODUCTION 

An operating acoustic environment for a practical recog- 
nizer (room, microphone, telecommunication channel, ...) 
has its own frequency characteristics and may also be 
noisy. TABLE shows the results of an isolated word 
recognition experiment in which the recognizer was 
operating on data which were subject to linear filtering 
(convolutional noise) and to which the noise was added 
(additive noise). (Details of the experimental setup and 
recognition task are described in the Appendix). 

Section I of TABLE shows the recognizer accuracy when 
training is on data with an environment identical to that 
for the test data. That is, the recognizer was always 
trained on the data which were subject to the identical 
distortion as was the test. As long as each operating 
environment is well represented in the training, the recog- 
nizer typically performs well. 

Unfortunately, the noise is seldom known in advance. 
When the data from different environments is used in 
training and test. the same recognizer typically performs 
much worse. This situation is illustrated in all remaining 
sections of TABLE, which show recognition accuracies 
for the recognizer trained on the clean data and used on 
the noisy data. 

Our goal is to understand and eliminate variance in the 
speech signal due to the cnvironmental changes and thus 
ultimately avoid the need for extensive training of the 
recognizer in different environments. As indicated by the 
last section VI of the TABLE, our new method is com- 
parable to training on noisy data. 

all results in % correct 

TRAINED AND TESTED 
ON DATA WITH IDENTICAL NOISE 

I. PLP 

88.0 87.9 82.8 68.8 86.0 83.2 78.5 64.6 

TRAINED ON CLEAN, TESTED ON NOISY DATA 

11. PLP 

88.0 88.3 56.6 47.1 40.3 41.0 32.5 17.4 

111. RASTA-PLP 

87.8 75.0 57.9 32.3 80.1 67.1 50.8 30.0 

IV. PLP with noise stripping 

90.3 88.3 84.9 69.7 53.0 58.3 58.0 46.7 

V. RASTA-PLP with noise stripping 

85.7 77.9 67.5 47.9 75.3 68.1 60.0 42.1 

VI. ADAPTIVE LIN-LOG RASTA-PLP 

88.6 90.3 84.9 73.2 79.1 77.5 74.3 60.7 
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RASTA AND ITS SENSITIVITY TO ADDITIVE NOISE 

Our original RASTA (RelAtive SpecTrAl) processing 
[Hermansky, Morgan, Bayya and Kohn 19911 was 
designed to alleviate logarithmic spectral components with 
rates of change outside the typical rate of change of 
speech spectral components. By operating in the loga- 
rithmic spectral domain, RASTA effectively diminishes 
spectral components that are additive in the logarithmic 
spectral domain, in particular the fixed or slowly-changing 
spectral characteristics of the environment (convolutive in 
the time domain and therefore additive in the log spectral 
domain). However, uncorrelated additive noise com- 
ponents that are additive in the power spectral domain 
became signal-dependent after the logarithmic operation 
on the spectrum and cannot be effectively removed by 
RASTA band-pass filtering in the logarithmic domain. 
Thus, as shown in the section I11 of the TABLE, the ori- 
ginal RASTA processing on the logarithmic spectrum or 
cepstrum is not particularly appropriate for speech with 
significant additive noise. 

PRE-PROCESSING OF NOISY SPEECH 

The standard method for dealing with unknown noise is 
the spectral subtraction technique (see e.g. [Kang]) in 
which the power or magnitude spectrum of the noise, 
estimated in "silence" intervals between speech signals, is 
subtracted from the spectrum of noisy speech. Various 
adaptive techniques are typically used to update the spec- 
tral estimate of the slowly varying noise. Negative power 
spectral values after subtraction are common and need to 
be dealt with. 

Similarly to spectral subtraction, RASTA processing on 
the power spectrum should alleviate the spectral com- 
ponents due to additive noise. [Hirsch, Mayer and Ruehl] 
reports good results with RASTA-like processing in the 
power spectral domain. However, since RASTA band- 
pass filtering attempts to set the mean value of all pro- 
cessed parameters to zero, it makes about half of the 
power spectral values negative. Therefore, just as in the 
case of spectral subtraction, the negative power spectrum 
requires some ad hoc post-processing. 

An alternative strategy is to clean up the noisy speech 
prior to sending it to the recognizer. We have had some 
success with noise suppression using RASTA processing 
instead of a conventional spectral subtraction in the 
overlap-add analysis-synthesis of [Kang]. The RASTA 
processing was done on the cube root of the power spec- 
trum with a subsequent setting of all negative spectral 
values to a small positive constant. We have observed 
that such processing is comparable to the conventional 
adaptive spectral subtraction technique while being con- 
ceptually much simpler. Sections IV and V of TABLE 
show the results of cascading the overlap-add RASTA 
processing with PLP and RASTA-PLP based recognizers 
from the previous experiment. 

The pre-processing with PLP analysis is quite effective. 

Performance in the presence of convolutional noise 
improves slightly. Applying the noise-suppressing pre- 
processing with RASTA-PLP softens the degradation of 
the original RASTA-PLP based system in noise. How- 
ever, considering that on the clean speech, the pre- 
processing causes about 20% increase in the error rate, 
our results essentially confirms [Accero and Stern] which 
reports negative experience with cascading two systems, 
one dealing with the additive and other with the convolu- 
tive noise. 

LIN-LOG RASTA 

In [Morgan and Hermansky 19921 we have proposed as a 
substitute for the logarithmic transform in RASTA pro- 
cessing the function 

y=ln( l+J .x) ,  ( 1 )  
where J is a signal-dependent positive constant. The 
amplitude-warping transform ( 1 )  is linear-like for J a l  
and logarithmic-like for J s l .  Its inverse 

x=(e y- 1)lJ. (2) 
where e is the base of natural logarithm, is not guarantied 
positive for all y and, like the conventional spectral sub- 
traction, would require some ad hoc magic to ensure the 
positivity of the processed power spectrum. To avoid this 
we use an approximate inverse transform 

x=eyIJ. (3) 
This inverse is equivalent to the sum of the exact inverse 
and and additive constant 1IJ. It is therefore more inaccu- 
rate for small spectral values than for the larger ones. 

Isolated Digit Experiment 

We repeated the earlier isolated word recognition experi- 
ments using the nonlinearities ( 1 )  and (3). The results 
shown in Fig. 1 were generated using a number of 
different values of J . There is a distinct optimal value of 
J for each particular noise level. The optima are always 
better than either PLP or RASTA-PLP result. 

With similar results we have also experimented with a 
transform pair 

y=J-xle, for J.x<e,  

y=log(J;r), for J-xSe, (4) 

and its approximate inverse 

x=e y l  J. ( 5 )  
The inverse of (4) using (5) is exact for J.x>e.  Results 
using either transform pair Eqs. (1) and (3), or Eqs. (4) 
and (5) are generally very similar and, throughout the 
paper, we only give results using the first transform pair. 
This comparison indicates that the exact form of the non- 
linearity may not be crucial, as long as it is roughly linear 
for small arguments and logarithmic for large arguments. 
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DARPA Task Experimeni 

All the experiments above were done with a simple DTW 
recognizer on a small isolated word recognition task. 
This recognizer and task were chosen for the exploratory 
research where we had to repeat the recognition experi- 
ment many times. To see whether our approach would 
scale to large tasks, we used a standard DARPA Resource 
Management recognition task and hybrid neural 
network/HMM recognizer (see the Appendix for further 
description). Fig. 2 shows the results for additive noise. 
Roughly the same pattern as was observed in the earlier 
digit experiment can be seen here: there is an optimal 
value of J for each particular S/N ratio. Smaller values of 
J are preferred for noisy speech. 

Rationale for the optimal J .  

Results shown in Figs. 1 and 2 indicate that there is a 
particular optimal value of J for each particular S N R  case 
in the test data. Fig. 3 shows histograms of logarithmic 
auditory-like spectral energies x for all four SNRs that 
were used. Spectral values for which JoPrjnol-x=e for all 
four investigated S/N ratios are indicated in the figure by 
arrows. Supporting Wan Compemolle], the histograms 
are multi-modal. Assuming that the strongest mode 
represents noise, the optimal value of J is such that it puts 
most of the signal into the logarithmic-like part of our 
nonlinearity and most of the noise into its linear-like part. 

2.101' 2 . 1 0 ~  
CRITICAL BAND ENERGY 

Fig. 3 Histograms of critical-band energies 
Fig. 2 DARPA Resource Management Recognition 
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Adaptive adjustment of the optimal J .  

In the experiments described above, the same value of J 
was used in both the training and the operation-of the 
recognizer. This would then require that the analysis for 
both the training and the operation of the recognizer 
would change depending on the noise level during the 
operation. As indicated in Fig. 3, the optimal J seems to 
depend on the noise level. We have pursued this and 
measured the mean critical band energy in the first 125 
ms of the utterance (there was no speech in this part of 
utterance in our data). Then, we made J inversely depen- 
dent on such measured mean noise energy Emire, i.e. 

J =  1 .O/(C *Emire). 
Since the particular value of J influences the shape of the 
resulting all-pole model spectrum, it would be desirable 
from the model-matching perspective to use identical J on 
both the training and the test data. However, as shown in 
Fig.1, the J depends on the level of noise in the signal 
which is generally different for the training and the test 
data. We have approached this problem by using four 
different sets of templates in the recognizer, each set 
trained with an order-of-magnitude different Ctrain. 
namely 

C,,,.,=3.1O3, 3.102, 3-10', and 3. 
Thus, comparing to our standard recognizer, 4 times as 
many templates are used. Constant C during the test of 
the recognizer was fixed at 

Ctes, =3. 
Results from such an automatically adaptive system are 
shown in section VI of the TABLE . 

DISCUSSION AND SUMMARY 

The logarithm or the absolute value are mathematically 
convenient nonlinearities. There is no particular reason to 
believe they are optimal for processing natural signals 
such as speech. We have experimented with RASTA 
temporal processing in a new spectral domain which is 
approximately linear for small spectral values and approx- 
imately logarithmic for large ones. When such processing 
was applied in a recognizer trained on clean speech, then, 
without any explicit knowledge of the noise in the test 
data, results were comparable with those from the same 
recognizer trained on noisy data. 
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APPENDIX: EXPERIMENTAL SETUP 

The following experimental setup is being used for the isolated digit 
experiments described in this paper: 

11 isolated digits and two control words c'yes" and "no") were recorded 
at 8 kHz by 30 talkers over dialed-up telephone lines. All words were 
hand end-pointed. The recognizer was a DTW-based nearest-neighbor 
multi-template recognizer. 27 talkers out of 30 were used in for training 
of the recognizer in a "leave-three-out" experimental design [Duda and 
Hart]. In the "leave-three-out" design, three templates out of 30 are held 
for test and remaining 27 templates per each uuerance are treated as 
training data. All possible unique choices of 27 templates out of available 
30 were used, thus yielding 52780 recognition trials per experimental 

enova, 1991. 

point. 

Recognition features were exponentially-weighted [Hermansky and Jun- 
qua 19881 (exp = 0.6) five cepstral coefficients (zeroth coefficient exclud- 
ing) of the 5th order PLP on RASTA-PLP model, computed from a 25 
ms analysis window with a 12.5 ms analysis step. 

The data were also degraded by realistic additive noise, recorded over 
cellular telephone from a 1978 VOLVO 244 with windows closed, run- 
ning at 55 milesihour on a freeway. The noise was added at several 
signal-to-noise (S/N) ratios. The S/N ratios given in the paper represent 
ratios between the averaged energy over the whole utterance and the 
averaged energy of the added noise. 

To introduce convolutional noise, linear filtering simulating the difference 
between frequency response of the carbon microphone and the electret 
microphone m the telephone handset was applied. 

In the continuous speech experiment, the noise described above was 
added to 600 standard test sentences from the February 1989 and 
October 1989 DARPA Resource Management evaluation sets. The stan- 
dard 3990 Resource Management training sentences were used to gen- 
erate a layered neural network to estimate phonetic probabilities for a 
Hidden Markov Model (HMM), 8 cepstral, 8 6 cepstral and 8 6 * 6 cep- 
stral coefficients ( zeroth cepstral coefficient including ) of the 8th-order 
PLP or RASTA-PLP all pole model over the 9 frame window (Morgan 
et al. 19911 were used as the features. Both the network and the HMM 
were somewhat simpler than the ones used for our best recognizer in 
order to cmserve computational resources for our front end experiments. 
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