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Abstract 

In this paper we describe a noise reduction preprocessing algorithm for the adaptive multirate (AMR) speech 
codec of the GSM system. The algorithm is based on spectral weighting and explicitly takes into account the 
properties of the human auditory system. The weighting rule results in the smallest possible speech distortion 
under the constraint that the background noise should exhibit no audible distortions. 
The algorithm was implemented in 16 Bit fixed-point arithmetic and submitted to the ETSI AMR noise reduction 
standardization contest. Compared to other algorithms, our noise reduction method gave very good results in 
CCR tests and good results in ACR tests. 
 
1 Introduction 

Today, mobile phones are used in various acoustic 
scenarios including environments with strong acoustic 
background noise of different kinds, e.g. car, street or 
babble noise, interfering talkers, music etc. 
Thus, in 1998 ETSI decided to develop a noise sup-
pression (NS) algorithm as an optional feature of the 
AMR codec [1]. The noise suppression function is a 
preprocessing module in front of the speech encoder 
of the mobile terminal. It is used to improve the signal 
to noise ratio (SNR) prior to speech coding and in this 
way improves speech quality and ease of conver-
sation. 
To guarantee minimum performance levels, ETSI sub-
group SMG11 developed a set of design constraints 
concerning the subjective quality of the speech 
enhancement preprocessor and complexity. The 
performance of submitted algorithms was evaluated 
by a number of formal listening tests according to 
these constraints. 
This paper describes an algorithm developed under 
the ETSI design constraints as well as test results ob-
tained by this solution. 

2 Algorithm 

The proposed noise suppressor acts as a preprocessing 
front-end to the AMR encoder. The basic concept of 
our algorithm is to allow deviations from a constant 

frequency independent noise attenuation only when 
these deviations are masked by speech. Thus, in a 
psychoacoustical sense, a uniform and “musical noise” 
free noise reduction is achieved. 
A block diagram of the algorithm is shown in Fig. 1. 
In the following subsections each of the blocks is 
described briefly. 

Fig. 1: Block diagram and main signal flow of the 
noise reduction algorithm 

2.1 Analysis and Synthesis 

Since the processing is performed on a frame-by-
frame basis in the frequency domain, the noise 
reduction system employs a FFT based analysis-
synthesis filterbank. 
The noisy input signal is sampled with a sampling 
frequency of 8 kHz. The input signal is first seg-

perceptual
weighting

sy
nt

he
si

s

estimation of
mask. thresh.

an
al

ys
is

control

estimation
prel. speech

estimation of
noise psd

 



mented into frames using the same frame rate of one 
frame per 160 samples (20 ms) as used by the AMR 
codec. Each frame consists of the 200 most recent 
input samples such that adjacent frames overlap by 40 
samples (5 ms). Due to the overlapping of adjacent 
frames of 40 samples, the noise reduction causes an 
additional algorithmic delay of 5 ms compared to the 
stand-alone operation of the AMR codec. 
A pre-emphasis filter amplifying high frequency 
components is applied to the signal segments. This 
helps to reduce quantization noise in the fixed-point 
implementation. 
Before transforming into the frequency domain, each 
signal segment is multiplied by a flat-top Hann win-
dow. The rising and falling parts of this window 
function consist of 40 samples each. In-between, the 
window function is constantly one. Each signal seg-
ment is padded with zeros to a length of 256 samples. 
The signal blocks are then transformed into the 
frequency domain by means of the Fast Fourier 
Transform (FFT) algorithm. 
The Fourier coefficients of the output signal are cal-
culated by multiplying the Fourier coefficients of the 
input signal with a real-valued and positive weighting 
vector which is derived according to the weighting 
rule described in subsection 2.4. Hence, the phase of 
the Fourier coefficients is not modified. 
After this modification of the amplitudes of the Fou-
rier coefficients, the speech frame is transformed back 
into the time domain by an Inverse Fast Fourier 
Transform (IFFT). Afterwards, the overlapping 
speech segments are reassembled by the overlap-and-
add method. Then a de-emphasis filter which is the 
inverse of the pre-emphasis filter is applied to the 
signal. 
Finally, signal segments of the 160 latest fully recon-
structed samples are transferred to the AMR codec. 

2.2 Noise Estimation 

The power spectral density (psd) of the background 
noise is estimated using the Minimum Statistics 
(MINSTAT) approach [2]. This method utilises the 
fact that a (short term) stationary background noise 
forms a “spectral floor” in the smoothed modified 
periodogram of the noisy signal. 
First, the smoothed modified periodogram of the input 
signal is calculated. Then, for each frame and each 
frequency bin i the power spectral density Rn(i) of the 
noise component is estimated by determining the 
minima of the periodogram of the input signal over a 
sliding window of a fixed number of previous frames 
and applying an over-estimation factor. 
This noise estimation algorithm needs no voice ac-
tivity detector. Hence, it allows a continuous adapta-
tion of the estimated noise psd also during periods of 

speech activity. As a result, fast tracking of non-sta-
tionary background noise is achieved. 

2.3 Preliminary Clean Speech Signal 
Estimation 

The aim of this part of the algorithm is to derive a first 
estimate of the clean speech signal. This estimate is 
used as the input to the algorithm which estimates the 
masking threshold that is needed for the final 
weighting rule. 
The core of this preliminary speech estimation proce-
dure is the well-known weighting rule proposed by 
Ephraim and Malah which aims at minimizing the 
mean-squared error of the log-spectral amplitudes 
(MMSE LSA) of the Fourier coefficients of the 
speech estimate [3, 4]. Furthermore, the MMSE LSA 
gain vector is weighted by a soft-decision vector 
which takes the probability of speech absence (or 
presence) into account [5, 6]. For this purpose the 
weighting rule uses three input quantities, namely the 
a posteriori and the a priori Signal-to-Noise Ratios 
(SNRs) as well as speech absence probabilities. 
The a posteriori SNR is defined as the ratio between 
the current periodogram of the noisy input signal and 
the psd of the noise. Since both quantities can be 
easily estimated, the calculation of the a posteriori 
SNR is straight forward. 
The a priori SNR is defined as the ratio between the 
psd of the clean speech and the psd of the background 
noise. Since the clean speech psd is not explicitly 
available, the estimate of the a priori SNR is based on 
the a posteriori SNR and the output signal of the noise 
reduction algorithm for the previous frame (decision-
directed approach [3]). 
Due to the fact that speech is non-stationary and may 
not be present in every frequency bin, especially 
during voiced speech, the speech absence probabilities 
are tracked individually for each frequency bin and 
continuously over time [6]. This tracking procedure is 
based primarily on exploiting the a posteriori SNR. 
The preliminary speech estimate is finally calculated 
by multiplying the Fourier coefficients of the input 
speech signal by the weighting vector derived ac-
cording to the MMSE LSA weighting rule. 

2.4 Weighting Rule based on Psycho-
acoustic Criteria 

This final weighting rule is based on masking prop-
erties of the human auditory system [7]. The masking 
threshold Rt(i) is estimated using the preliminary clean 
speech estimate as the masker. This estimation is 
performed by means of a simple auditory model and 
involves several steps. First, the result of an initial 



critical band analysis is convolved by a spreading 
function. Then a threshold offset is applied and nor-
malizations are performed. 
The desired amount of noise reduction in the psycho-
acoustical sense is defined by a scalar noise attenua-
tion factor ζ . Accordingly, the weighting factors H(i) 
for the individual frequency bins i are chosen in such a 
way that all components of the residual noise which 
exceed the desired amount are just “hidden” below the 
estimated masking threshold: 
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The value of H(i) is then limited to values smaller than 
one. 
This weighting method results in the smallest possible 
speech distortion for the desired amount  of noise 
reduction. 

2.5 Control of the Algorithm 

In order to obtain optimal results for various kinds of 
acoustic situations, the averaged a posteriori SNR of 
the noisy input signal is continuously scanned. The 
noise reduction algorithm is adjusted according to this 
parameter [8]. 

3 Implementation 

The noise suppression algorithm was implemented in 
16 Bit fixed-point arithmetic using ANSI C and ETSI 
basic operations [9]. These basic operations include a 
mechanism to measure the maximal computational 
complexity of the algorithm which is expressed in 
weighted million operations per second (WMOPS). 
Additionally the usage of  the different kinds of 
memories had to be evaluated. The measured 
complexities are summarized in Table 1. 
 

Table 1: Summary of the computational complexity of 
the noise suppression algorithm and the ETSI 
design constraints. 

4 Evaluation 

During the AMR noise suppression selection phase 
the proposals were tested in a variety of test condi-
tions. These tests took place in different independent 
test laboratories and were performed in several lan-
guages. 
The ETSI testing rules define a number of experi-
ments as well as minimum performance levels for the 
evaluation of the different test conditions: 

• Quality during the initial convergence time (in-
formal test with expert listeners) 

• Degradation in clean speech (pair comparison 
test) 

• Artifacts and clipping effects in background 
noise conditions (ACR test) 

• Performances in background noise conditions 
(CCR test) 

• Performance in background noise: Influence of 
propagation errors (CCR test) 

• Performances in background noise: Influence 
of VAD/DTX (CCR test) 

• Influence of the input signal + noise level and 
performances with special noises (ACR test) 

Due to the large number of test conditions, only a 
small subset of the test results will be described in the 
following subsections. 

4.1 Artifacts and Clipping in Back-
ground Noise 

The goal of this test is to assess the subjective quality 
of the background noise in the processed speech sig-
nal. The test was performed as an Absolute Category 
Rating (ACR) test, i.e. the listeners had to assess each 
of the presented speech samples using an absolute 
Mean Opinion Score (MOS). The candidates were 
instructed to make their judgement of the sample 
“considering unnatural sound during the complete 
sample”. 
Results of this experiment for the English language 
and for different noise situations are shown in Fig. 2 
for low SNR and in Fig. 3 for high SNR. In the se-
lected sub-experiment the AMR coder operates at its 
highest bit rate of 12.2 kBit/s. 
From both Fig. 2 and Fig. 3 it can be seen, that the 
noise suppression preprocessing helps the AMR coder 
to reduce unnatural sounds and artifacts in the 
background noise. Such unnatural sounds typically 
occur as coding artifacts when coding speech with 
high level background noise. 
The advantage of the noise suppression preprocessing 
is especially dominant for stationary noises (car and 
street noise). In babble noise, the stand-alone AMR 

 Complexity design 
constraint 

WMOPS 3.386 5 

Dynamic RAM 
(words) 

2234 3039 

Static RAM (words) 718 1500 

Data ROM (words) 863 1000 

Program ROM (ETSI 
basic operations) 

772 2000 



coder already performs very well and thus the effect of 
additional NS preprocessing is low. Furthermore, for 
the instationary babble noise the amount of noise 
reduction is lower than for the other noise types. 
 
 
 
 
 
 
 
 

Fig. 2: Results of the test concerning “artifacts and 
clipping in background noise” for low SNR. 

 
 
 
 
 
 
 
 

Fig. 3: Results of the test concerning “artifacts and 
clipping in background noise” for high SNR. 

4.2 Performance in Background Noise 

The performance of the NS preprocessor in back-
ground noise was evaluated formally by a Comparison 
Category Rating (CCR) test. In this test the listener 
has to assess the quality differences between two 
samples – a reference sample and the sample under 
test. A rating of zero indicates that there is no dif-
ference between the samples. The reference samples 
for the results presented in Fig. 4 are the speech sam-
ples processed by the stand-alone AMR codec at a bit-
rate of 12.2 kBit/s. The low and high SNR of the input 
speech was 6 and 12 dB for the car noise and 9 and 15 
dB for street and babble noise, respectively. 
The results from Fig. 4 show a significant preference 
of the listeners for those samples, which were 
preprocessed by the noise suppression algorithm. The 
speech enhancement system yields best results for 
stationary noises such as car noise. For non-stationary 
and more speech-like background signals such as 
babble noise, the CMOS rating is smaller. In such 
cases the noise suppression algorithm does not 
succeed in reducing the noise as much as for station-
ary noises. However, also for such background noises 
the enhanced and coded signal is still significantly 
preferred over the signal processed by the stand-alone 
AMR codec. 
 
 

 
 
 
 
 
 
 

Fig. 4: Results of the CCR test comparing the trans-
mission with noise suppression and AMR 
codec with the stand-alone AMR coder. 

5 Conclusion 

The proposed algorithm in conjunction with the AMR 
speech coder results in significant improvements for 
various background noise situations such as car noise, 
street noise and office babble. Furthermore, it has 
been shown, that a fixed-point implementation of an 
advanced speech enhancement algorithm is possible 
within the tight ETSI design constraints. 
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